r\i EASTERN MEDITERRANEAN UNIVERSITY
;’ COMPUTER ENGINEERING DEPARTMENT

- Iflll.-“.n..-l"""'

CMPE 324 - Computer Architecture and
Organization

Lab 6: Single Clock Data Path for 16-bit R-type Instructions
In ALTERA QUARTUS VHDL Environment

1. Objective:

To familiarize with the Single-Clock VHDL implementation for a set of 16-bit R-
type instructions, and to measure the response time of several building components
in a RISC datapath.

1. Introduction

You have already worked to construct a simple 16-bit instruction set for your
project/homework. A typical simple 16-bit instruction set and a corresponding R-
type datapath is provided in this experiment. You will be asked to take several
measurements that can lead you to a conclusion about the typical speed constraints,
and possible improvements of the similar circuits.

In this experiment, we will focus only on the R-type instructions, so that we can
observe typical properties of some of the basic building blocks such as the Program-
Counter, the Instruction-Memory, the Register-File, and the Adder for updating the
Program-Counter.

instruction field
iseparator
16-bitinstruction | -
instruction memory | -~
program counter | .
adder for PC+1 | -

EEETAURS

......

A1 AR T
R
- FHE.0)
P e
_______ Jjump-register

TS
L_pmaml - ..

_________ [———

'multiplexer :

" Single Cride 16-bt RECRAupe datepeth

PR EML Compuder Enginesring Dept

T D Il Bocar) S Bali

100

P b 12002004

[

The complete set of the 16-bit instructions are summarized in the following tables.

Opcode

Read1 rég

Read? reg

Write reg

Function code

4-bits

3-bits

3-bits

3-bits

3-bits

Table 1-2 Function Codes for the R-t

/pe Instructions

FNCODE

.00

o1 | .1

10

0..

And

Or Xor

Add

1..

Jr

ShrA | Slt

Sub

Table 1-3 Representation of R-type Instructions with opcodes

instruction Opcode | Read-reg1 | Read-reg2 | Write-reg | Fn code
And 0000 XXX XXX XXX 000
Or 0000 XXX XXX XXX 001
Add 0000 XXX XXX XXX 010
Xor 0000 XXX XXX XXX 011
Jump-Register | 0000 XXX 000 XXX 100
Shift-right-Arith | 0000 XXX XXX XXX 101
Subtraction 0000 XXX XXX XXX 110
Set less than 0000 XXX XXX XXX 111

2. QUARTUS and VHDL Code

In this section you should learn how to implement a VHDL code for single cycle
data path. Before we go any further, let’s define some of the terms that we use
throughout the book.

Entity: All designs are expressed in terms of entities. An entity is the most basic
building block in a design. The uppermost level of the design is the top-level entity.
If the design is hierarchical, then the top-level description will have lower-level
descriptions contained in it. These lower-level descriptions will be lower-level
entities contained in the top-level entity description.

Architecture: All entities that can be simulated have an architecture description.
The architecture describes the behavior of the entity. A single entity can have
multiple architectures. One architecture might be behavioral while another might be
a structural description of the design.

Configuration: A configuration statement is used to bind a component instance to

an entity-architecture pair. A configuration can be considered like a parts list for a

design. It describes which behavior to use for each entity, much like a parts list
describes which part to use for each part in the design.

Package: A package is a collection of commonly used data types and subprograms
used in a design. Think of a package as a toolbox that contains tools used to build
designs.

Driver: This is a source on a signal. If a signal is driven by two sources, then when
both sources are active, the signal will have two drivers.

Bus: The term “bus” usually brings to mind a group of signals or a particular method
of communication used in the design of hardware. In VHDL, a bus is a special kind
of signal that may have its drivers turned off.

Attribute: An attribute is data that are attached to VHDL objects or predefined data
about VHDL objects. Examples are the current drive capability of a buffer or the
maximum operating temperature of the device.

Generic: A generic is VHDL’s term for a parameter that passes information to an
entity. For instance, if an entity is a gate level model with a rise and a fall delay,
values for the rise and fall delays could be passed into the entity with generics.
Process: A process is the basic unit of execution in VHDL. All operations that are
performed in a simulation of a

Thus, let us get our feet wet and look at VHDL structure briefly as follow:

ENTITY entity_name IS
GENERIC (
generic_l_name : generic_1l_type;
generic_Z2_name : generic_2_type;
generic_n_name : generic_n_type
)i
PORT (
port_1_name : port_1l_dir port_1_type;
port_2_ name : port_2_dir port_2_ type;
port_n_name : port_n_dir port_n_ type
) ;
END entity_name;

IN Input port
OUT Qutput port
INOUT Bidirectional port

BUFFER Buffered output port

ARCHITECTURE architecture_name OF entity_name IS

BEGIN
—— Insert VHDL statements to assign outputs to

—— each of the output signals defined in the
—— entity declaration.
END architecture name;

This is a simple example of VHDL code that just work as buffer and send input to

output after 10 ns:

Consider the following VHDL code:

LIBEARY ieese;
USE ieee.std logic 1164.ALL;

ENTITY simple buffer IS
FPORT | din
dout
END simple buffer;

: IN
: OUT

BEGIN
dout din AFTER 10 ns;
END behawviourall;

std_legic;
std_legic };

ARCHITECTURE behavicurall OF simple_buffer IS

First simple program using VHDL.:

Step 1. Create a Project: Every new design you make in the Quartus program must

be under a project name. After opening the program, to create a project, click on:

[File] -> [New Project Wizard]

@ Quartus Prime Lite Edition

File Edit Wiew Project Assig
D Mew. ..
F~ ©Open._.
Close
Mew Project Wizard...
Sl
&' Open Project...
Save Project
Close Project
Sawve
Sawe As.
M save All

File Properties._.

—__ & fwes_ 0 _=»_

nments Processing Tools Window Ha

Cirl+M
Ctrl+O

(-

Cirl+F4

Cirl+.

Q

Cormpare Editions

Ctri+5

Cirl+Shift+5

After this stage you will see the following project builder screen.

i Mew Project Wizard X

Introduction

The Mew Project Wizard helps you create a new project and preliminary project settings, including the following:

Project name and directory

Name of the top-level design entity
Project files and libraries

Target device family and device
EDA tool settings

* 4+ 9+ 4+

You can change the settings for an existing project and specify additional project-wide settings with the Settings command (Assignments
menu). You can use the various pages of the Settings dialog box to add functionality to the project.

[pon't show me this introduction again

< Back Einish Cancel Help

This screen is the home screen of the project builder. Here you will see which stages

of your project are formed and what you can organize.

Here, press [Next >] button to continue.

On the new screen, you will see the input sections that ask us to enter the directory
and the name of the related project. Please fill in the appropriate information here.

(Project names for the Quartus program is very important.)

il Mew Project Wizard >

Directory, Name, Top-Level Entity

What is the working directory for this project?

‘C:}'Q_Projects,l'Project_’l |

What is the name of this project?

‘Project_‘] |

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity name in the

design file.

‘Project_‘l |

Use Existing Project Settings...

< Back Finish Cancel Help

The project type display gives you additional setting options for what hardware the
project will be compiled and implemented. Since, we'll simulate our projects on the
program and we won't run on any real hardware, we'll choose the [Empty Project]

option here, and then click the [Finish] button to create our project.

o MNew Project Wizard =
Project Type
Select the type of project to create.
(O] Empty project
Create new project by specifying project files and libraries, target device family and device, and EDA tool settings.
O Project template
Create a project from an existing design template. You can choose from design templates installed with the Quartus Prime software, or
download design templates from the Design Store.
| < Back | I Mext = | | Einish | | Cancel | | Help
Once your project is created, you will see a screen like this:
a Quartus Prime Lite Edition - C:/Q_Projects/Project_1/Project_1 - Project_1 - X
File Edit View Project Assignments Processing Tools Window Help .
O d 0|7 C [et NG CL DrFESSLVE!
Project Navigamr{ Hierarchy - |Q pax ||F'Calal°s e x
Entity:Instance ‘ . ad ‘ﬂ
4% Cyclone V: SCGXFCTCTF23C8 ¥ 3 Installed 1P
* Pproject 1 B ¥ Project Directory
No Selection Available
¥ Library
7 Basic Functions
> DSP
7 Interface Protocols
> Memory Interfaces and Controllers
m
Quartus Prime
Tasks Compilation v =g * 7 University Program

Task "

¥ P Compile Design
> P Analysis & Synthesis
> Fitter [Place & Route)
> P Assembler (Generate programr

> P Timine Analusic v

‘= Buy Software

. Search for Partner IP

> + add
; Al @ @ @ “i’ <<Filters> | ‘ 88 Eind. ‘ ‘ﬂ rm.duqt|
; Type ID Message
:
_g System Processing

0% 00:00:00

Step2: Look at the program using VHDL code, here we have a practical circuit,
implement it in Quartus (destine / compile/ simulate/show waveform), you can

review pervious lab experiment and follow the steps.

R e S 21 ”Cbc LN S

g
o

o
: i i .
2 X2 D Ve ; &

6 ;

—_eLeLx

: NPUT ¢
5 X o=V

i

AND3
)X XILXO
)

XXX

4 N o

Step3: In order to create a VHDL file follow the steps:
File=>New->VHDL File

10

This is the VHDL code of above program:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY lab6 IS

PORT (x0, x1, x2,X3 : IN STD_LOGIC;

F : OUT STD_LOGIC);

END lab6;

ARCHITECTURE Arch_NelistStruct of lab6 is

SIGNAL X3L, X2L, X1L, X3L_X0, X3L_X2L_X1, X2L_X1_X0, X2_X1L_X0:STD_LOGIC;
BEGIN

X3L <= not X3;

X2L <= not X2;

X1L <= not X1;

X3L_X0 <= X3L and X0;

X3L_X2L_X1 <= X3L and X2L and X1;

X2L_X1_X0 <= X2L and X1 and X0;

X2_X1L X0 <= X2 and X1 and XO0;

F <= x3L_X0 or X3L_X2L_X1 or X2L_X1_X0 or x2_X1L_X0;

END Arch_NelistStruct;

Note: Trace the program line by line, now you are ready to learn single cycle data

path using VHDL code.

11

1. Experimental Practice

Note that our instructions have no mnemonics at this stage, because an assembler
has not been written yet for this brand new processor. We use the binary codes of
the instructions to write them into the instruction memory.

The VHDL code for the MIPS Processor will be presented. A simple VHDL

testbench for the MIPS processor will be also provided for simulation purposes.

MIPS Processor

PC Register File
Data
Memory
Instruction ALU
Memory

Note: Be careful in your project name and VHDL file name and entity name must

be same.

12

VHDL code for Data Memory of the MIPS processor:

-— fpgaédstudent.com: FPGA projects, Verilog projects,
VHDL projects
—-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC 1164 .ALL;
USE IEEE.numeric_std.all;
—-— VHDL code for the data Memory of the MIPS Processor
entity Data Memory VHDL is
port (
clk: in std _logic;
mem access addr: in std logic Vector (15 downto O0);
mem write data: in std logic Vector (15 downto 0);
mem write en,mem read:in std logic;
mem read data: out std logic Vector (15 downto 0)
) 7
end Data Memory VHDL;

architecture Behavioral of Data Memory VHDL is

signal 1i: integer;

signal ram addr: std logic vector (7 downto 0);

type data mem is array (0 to 255) of std logic vector
(15 downto 0);

signal RAM: data mem :=((others=> (others=>'0")));
begin

ram_addr <= mem_access_addr (8 downto 1);
process (clk)

begin

if (rising edge(clk)) then

if (mem write en='1l') then

ram(to integer (unsigned(ram addr))) <=
mem write data;

end if;

end if;

13

https://www.fpga4student.com/p/fpga-projects.html
https://www.fpga4student.com/p/verilog-project.html
https://www.fpga4student.com/p/vhdl-project.html

end process;
mem read data <= ram(to integer (unsigned(ram addr)))
when (mem read='1l"') else x"0000";

end Behavioral;

VHDL code for ALU of the MIPS processor:

-- fpgadstudent.com: FPGA projects, Verilog projects,
VHDL projects
-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC 1164 .ALL;
use IEEE.STD LOGIC signed.all;
-— VHDL code for ALU of the MIPS Processor
entity ALU VHDL is
port (
a,b : in std logic_vector (15 downto 0); -- srcl, src?
alu control : in std logic_vector (2 downto 0); --
function select

alu result: out std logic_vector (15 downto 0); -- ALU
Output Result
zero: out std logic -- Zero Flag

) ;
end ALU VHDL;

architecture Behavioral of ALU VHDL is
signal result: std logic_vector (15 downto 0);
begin
process (alu control, a,b)
begin

case alu control is

when "000" =>

result <= a + b; —-- add
when "001" =>
result <= a - b; —-- sub

14

https://www.fpga4student.com/2017/06/vhdl-code-for-arithmetic-logic-unit-alu.html

when "010" =>

result <= a and b; - and
when "Q011" =>
result <= a or b; —- or

when "100" =>
if (a<b) then
result <= x"0001";

else
result <= x"0000";
end if;
when others => result <= a + b; —-- add
end case;

end process;
zero <= 'l' when result=x"0000" else '0';
alu result <= result;

end Behavioral;

VHDL code for ALU Control Unit of the MIPS processor:

-—- fpgadstudent.com: FPGA projects, Verilog projects,
VHDL projects
—-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC 1164 .ALL;
-— VHDL code for ALU Control Unit of the MIPS Processor
entity ALU Control VHDL is
port (
ALU Control: out std logic_vector (2 downto 0);
ALUOp : in std logic_vector (1l downto 0);
ALU Funct : in std logic_vector (2 downto 0)
) ;
end ALU Control VHDL;

architecture Behavioral of ALU_Control_VHDL is
begin

15

https://www.fpga4student.com/2017/01/basic-digital-blocks-in-verilog.html

process (ALUOp, ALU Funct)

begin

case ALUOp is

when "00" =>

ALU Control <= ALU Funct (2 downto 0);
when "01" =>

ALU Control <= "001";

when "10" =>

ALU Control <= "100";
when "11" =>

ALU Control <= "000";
when others => ALU Control <= "000";
end case;

end process;

end Behavioral;

VHDL code for Register File of the MIPS processor:

-- fpgadstudent.com: FPGA projects, Verilog projects,
VHDL projects
—-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC 1164 .ALL;
USE IEEE.numeric_std.all;
—-— VHDL code for the register file of the MIPS
Processor
entity register file VHDL is
port (
clk,rst: in std _logic;
reg write en: in std logic;
reg write dest: in std logic vector (2 downto O0);
reg write data: in std _logic_vector (15 downto 0);
reg read addr _1: in std logic_vector (2 downto 0)

’

16

reg read data 1:
reg read addr 2:
reg read data 2:

) ;

out std logic vector (15 downto 0);
in std_logic _vector (2 downto 0);
out std logic_vector (15 downto 0)

end register file VHDL;

architecture Behavioral of register file VHDL is
type reg type is array (0 to 7) of std logic_vector

(15 downto O0);

signal reg array: reg type;

begin

process (clk, rst)

begin

if(rst='1"') then

= x"0001";
= x"0002";
= x"0003";
= x"0004";
= x"0005";
= x"0006";
= x"0007";
= x"0008";

elsif (rising edge(clk)) then

if (reg write en='1") then
reg array(to integer (unsigned(reg write dest))) <=
reg write data;
end if;
end if;

end process;

reg read data 1 <= x"0000" when reg read addr 1 =

"O00" else

reg array(to integer (unsigned(reg read addr 1)));
reg read data 2 <= x"0000" when reg read addr 2 =

"O00" else

reg array(to integer (unsigned(reg read addr 2)));

17

end Behavioral;

VHDL code for Control Unit of the MIPS processor:

- fpgadstudent.com: FPGA projects, Verilog projects,
VHDL projects
—-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC 1164 .ALL;
-— VHDL code for Control Unit of the MIPS Processor
entity control unit VHDL is
port (

opcode: in std logic_vector (2 downto 0);

reset: in std logic;

reg dst,mem to reg,alu op: out std logic_vector (1l
downto 0);

jump, branch, mem read,mem write,alu src,reg write,sign o
r zero: out std logic

) ;
end control unit VHDL;

architecture Behavioral of control unit VHDL is

begin
process (reset, opcode)
begin

if (reset = '1') then

reg dst <= "00";
mem to reg <= "00";
alu op <= "00";
Jjump <= '0';
branch <= '0';

mem read <= '0';
mem write <= '0';
alu src <= '0';

18

reg write <= '0';

sign or zero <= 'l';

else

case opcode is

when "000" => -- add
reg dst <= "01";
mem to reg <= "00";

alu op <= "00";
jump <= '0';
branch <= '0";

mem read <= '0';
mem write <= '0';
alu src <= '0";
reg write <= '1";
sign or zero <= 'l';
when "001" => -- sliu
reg dst <= "00";
mem to reg <= "00";

alu op <= "10";
Jjump <= '0';
branch <= '0"'";

mem read <= '0';
mem write <= '0';
alu src <= '1";
reg write <= '1";
sign or zero <= '0';
when "010" => —--]
reg dst <= "00";
mem to reg <= "00";

alu op <= "00";
jump <= '1';
branch <= '0';

mem read <= '0';
mem write <= '0';
alu src <= '0';

reg write <= '0';
sign or zero <= 'l1";

19

when "011" =>-- jal
reg dst <= "10";
mem to reg <= "10";
alu op <= "00";
Jump <= '1"';

branch <= '0"';

mem read <= '0';
mem write <= '0';
alu src <= '0";

reg write <= '1';
sign or zero <= 'l';

when "100" =>-- 1w
reg dst <= "00";
mem to reg <= "01";
alu op <= "11";
Jjump <= '0';
branch <= '0"';

mem read <= 'l1';
mem write <= '0';
alu src <= '1";
reg write <= '1";
sign or zero <= 'l"';
when "101" => -- sw
reg dst <= "00";
mem to reg <= "00";

alu op <= "11";
Jjump <= '0';
branch <= '0';

mem read <= '0';
mem write <= '1'";
alu src <= '1";
reg write <= '0';
sign or zero <= 'l';
when "110" => -- beq
reg dst <= "00";
mem to reg <= "00";

alu op <= "01";

20

Jjump <= '0';
branch <= '1";

mem read <= '0';
mem write <= '0';
alu src <= '0';

reg write <= '0';
sign or zero <= 'l1';

when "111" =>-- addi
reg dst <= "00";
mem to reg <= "00";
alu op <= "11";
Jjump <= '0';
branch <= '0";

mem read <= '0';
mem write <= '0';
alu src <= '1";

reg write <= '1";
sign or zero <= 'l';

when others =>
reg dst <= "01";
mem to reg <= "00";
alu op <= "00";
Jjump <= '0';
branch <= '0"';
mem read <= '0';
mem write <= '0';
alu src <= '0';
reg write <= '1";
sign or zero <= 'l1';
end case;
end if;
end process;

end Behavioral;

VHDL code for Instruction Memory of the MIPS processor:

21

-- fpgadstudent.com: FPGA projects, Verilog projects,
VHDL projects
-— VHDL project: VHDL code for single-cycle MIPS
Processor
library IEEE;
use IEEE.STD LOGIC_ 1164.ALL;
USE IEEE.numeric_std.all;
-— VHDL code for the Instruction Memory of the MIPS
Processor
entity Instruction Memory VHDL is
port (
pc: in std logic_vector (15 downto 0);
instruction: out std logic vector (15 downto 0)
) 7

end Instruction Memory VHDL;

architecture Behavioral of Instruction Memory VHDL is
signal rom addr: std logic vector (3 downto 0);
-— 1w $3, 0($0) -- pc=0
-- Loop: sltiu 81, $3, 1l= pc = 2
-- beqg $1, $0, Skip = 4 --
PCnext=PC current+2+BranchAddr
-- add $4, $4, $3 =6
-- addi 83, $3, 1 = 8
-- beqg $0, $0, Loop--a
-— Skip ¢ =12 =4 + 2 + br
type ROM type is array (0 to 15) of
std logic_vector (15 downto 0);
constant rom data: ROM type:=(
"1000000110000000",
"o0l10110010001011",
"1100010000000011",
"0o01000111000000",
"1110110110000001",
"1100000001111011",
"00000000O0O0O0O0O0O0OOQ™,
"0000000000O0O0OOOOQ™,

22

"00000000000O0O0O0OOQ™,
"00000000O0O00O0O0O0OOQ™,
"0000000000O0O0O0O0OOQ™,
"0000000000O0O0O0O0OOO™,
"0000000000O0O0O0O0O0OO™,
"00000000O0O0O0O0O0O0OOQ™,
"00000000000O0O0O0OOO™,
"00000000000O0O0O0O0OQ"
) ;
begin

rom addr <= pc(4 downto 1);
instruction <=
rom data(to integer (unsigned(rom addr))) when pc <

x"0020" else x"000Q0";

end Behavioral;

2. Reporting

Before the Lab-time is over, show the simulation result to your lab assistant, in order

to grading.

Grading:
Lab Performance:

Asst. Observations:

23

