
 1

CCMMPPEE –– 221111
PPrreelliimmiinnaarryy WWoorrkk ((PPrree--LLaabb AAccttiivviittyy))

LLaabboorraattoorryy EExxppeerriimmeenntt ## 33

TTeexxttbbooookk MMaatteerriiaall:: Chapters 5- 6 pp.87-155 [see Laboratory Experiments #2]

Chapter 7 «Pointers and References» pp.156-182
Chapter 8 «C-Strings» pp.183-196

 TTAASSKK 11

WWrite, CCompile and EExecute a C++ program that enters a string from the user (a full stop ‘.’ indicates the end

of the input string) and finds and displays the vowel characters (‘a’, ‘e’, ‘i’, ‘u’, ‘o’) contained in it (both

upper- and lowercase characters are processed). The program includes the following function prototypes:

void read_str (char str[], int & n); // enters the characters from the user

int display_vowels (char str[], int n); // returns the number of vowels

Example: For the input string “This is the next lab experiment”, the program outputs:

iieeaeeie

 NNOOTTEE:: For this and all following tasks You are free to use any basic constructions and data

 types (scalar, i.e. integral, floating-point, pointers; compound, e.g. enumerations,

 arrays) of C++ the most appropriate for the implementation. We assume that a core of these

topics is already known from previous C language-based courses – the task uses so-called

C-string(s).

 TTAASSKK 22

WWrite, CCompile and EExecute a C++ program that enters a string from the user (a full stop ‘.’ indicates the end

of the input string), removes all vowels and prints out the resulting string. The program includes the

following function prototypes:

void remove_vowels (char str[], int & n); // removes the punctuation marks

void print_str (char str[], int n = 0); // prints out the resulting string

Example: for the input string “Hi? How’s the life?”, the program outputs: H? Hw’s th lf?

 TTAASSKK 33

Many computerized check-writing systems do not print the amount of the check in words. Perhaps the main

reason for this omission is the fact that most high-level computer languages used in commercial applications do

not contain adequate string manipulation features. Another reason is that the logic for writing word equivalents

of check amounts is somewhat involved.

WWrite, CCompile and EExecute a C++ program that inputs a numeric check amount and writes the word equivalent

of the amount. For example, the amount 2112 should be written as

TWO THOUSAND ONE HUNDRED TWELVE

The initial part of the program may look as follows:

#include <iostream >

using namespace std;

int main()

{

 const char * digits[10] = { " ", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX",

 "SEVEN", "EIGHT", "NINE" };

 const char * teens[10] = { " ", "ELEVEN", "TWELVE", "THIRTEEN", "FOURTEEN",

 "FIFTEEN", "SIXTEEN", "SEVENTEEN", "EIGHTEEN", "NINETEEN" };

 const char * hundred = "HUNDRED";

 const char * thousand = "THOUSAND";

 const char * tens[10] = { " ", "TEN", "TWENTY", "THIRTY", "FOURTY", "FIFTY", "SIXTY",

 "SEVENTY", "EIGHTY", "NINETY" };

 int yeni_TL; - continued next page –

 2

 HHIINNTT:: Most of calculations in the program are based on division / and modulus division % operators

Hypothetical dialogue may have the form given below:

Enter the check amount (0 to 9999): 2555

The check amount in words is:

TWO THOUSAND FIVE HUNDRED and FIFTY FIVE YTL

 TTAASSKK 44

WWrite, CCompile and EExecute a C++ program that performs encryption/decryption operations. User-defined

function encrypt() takes a character pointer as a parameter and uses array-subscript notation to change

values in the character array by adding 1 (one) to each entry. Function decrypt() takes a character pointer

as a parameter and uses pointer notation to change values in the character array by subtracting 1 (one) from

each entry. Function main() calls functions encrypt() and decrypt() and prints the encrypted string.

The initial part of the program may look as follows:

#include <iostream >

using std :: cout;

using std :: endl;

void encrypt(char []); // prototypes of functions in use

void decrypt(char * ePtr);

int main()

{

// create a string to encrypt

char string[] = "this is a secret!";
cout << "Original string is: " << string << endl;
encrypt(string);

// call to the function encrypt()

cout << "Encrypted string is: " << string << endl;
decrypt(string);

// call to the function decrypt()

cout << "Decrypted string is: " << string << endl;
return 0;

}

Example: Original string is: this is a secret!

 Encrypted string is: uijt!jt!b!tfdsfu”

 Decrypted string is: this is a secret!

 AAppppeennddiixx

 CCheck Review Questions at the end of textbook’s Chapters 5- 8 (pp. 112, 142, 172 and 200) and review

pointer arithmetic rules and C-string processing

 SSoouurrcceess

 John R.Hubbard. Schaum's Outline of Programming with C++, 2nd edition, McGraw-Hill, 422 p., 2000

 Harvey M.Deitel, Paul J.Deitel. C++ How To Program, 4th edition, Prentice Hall, 1320 p., 2002

 Harvey M.Deitel, Paul J.Deitel. C++ in the Lab (Lab Manual to Accompany C++ How To Program, 4th

 edition), 629 p., 2003

