	MENG303 – Principles of Computer Aided Engineering					
		Eastern 1	Mediterranean	Unive	rsity	<u> </u>
		Fac	culty of Enginee	ring		
Department:						
Mechanical Eng	gineering					
Program Name	e:		D	a a		
Mechanical Eng	gineering	а т и	Program Code	:23		
Course Code: Course Title:				•	Credits:	Year/Semester:
MENG303		Principles of Compute	er Alded Enginee	ring	3 Cr	2019-2020 Fall
					(2/3/0)3	
Area Core	-					
Alea Elective	с :sə					
University F	lective					
	offered by oth	ner academic units)				
Prorequisite(s)	• MENG104	ter deddenne units)				
Cotolog Dogori	ntion.					
Latalog Descri	puon:	the design avale. Interes	ativa agmantar m	o dalia	a and analysis C	a comparison and aling with
wire frame surf	Simplifiers into i	models. Finite element	modeling and an		Curves and surf	bees and CAD/CAM data
exchange The i	ntegration of (TAD CAF and CAM s	vstems	la1y515		ices and CAD/CAW data
Instructor No-		Criff, Criff and Crives	Office net	Off	ico Tol·	
Assoc Prof Dr	Oasim Zeesh	an	ME141	630	1361	
Assoc. 1101. DI	. Qashin Zeesha		IVIL:141	050	1501	
Course Web Pa	age:	1				
https://staff.emu	i.edu.tr/qasimz	<u>eeshan/en</u>				
Textbook(s): I	David G. ULL	MAN, The Mechanica	al Design Proces	s, 4th	edition, Mc Grav	w Hill, 2010
Indicative Basi	c Reading Lis				a	
Anupam Saxen	<u>ia, Birendra S</u>	Sahay, Computer Aide	ed Engineering I	Jesign	, Springer, Anan	naya, 2003
Topics Covered	d and Class So	chedule:				
(2 nours of lect	HEDILE	5 hours Lab)				
Week 1-3	Mechanical I	Design Process				
Week 4	Understandir	ng Mechanical Design				
Week 5	Designers an	d Design Teams				
Week 6	Design Process and Product Discovery					
Week 7	Planning for	Design	5			
Week 8	MIDTERM I	EXAMINATION				
Week 9	Developmen	t of Engineering Specif	ications			
Week 10	Concept Generation					
Week 11	Concept Evaluation and Selection					
Week 12	Product Generation					
Week 13	Product Evaluation for Performance and the Effects of Variation					
Week 14	Product Evaluation					
Week 15	Optimization					
Week 16	FINAL					
Wook 1 3	LE Machina Dar	t Drawings: (3 wooks)				
WEEK 1-3	Threads nir	ne keve enringe fite a	nd tolerance			
Week 4-5	Basic concer	its of Graphics Program	ming [.] (2 week)			
Week 15	Coordinate	systems, graphics libr	aries. Transforn	natior	n Matrix.	
Week 6-7	SW Part Dra	wings: (2 weeks)				
	Introduction	n to Solid works, basic	applications, 31	D drav	wings.	
Week 8	MIDTERM EXAMINATION					
Week 9	Introduction to MATLAB					
Week 10-11-	Integration of CAD, CAM, and CAE systems (3 weeks)					
12	Design and	manufacturing interfa	ice, Classificatio	n for	coding.	
Week 13-14	SW Assembl	y drawing (2 weeks) &	k submission of T	Ferm H	Project	
	Each studen	t either individually o	or as a group wo	rk wil	l be given a desig	gn project.
Week 15-16	SW FEA Mo	deling and Analysis (2 weeks)			
	Formulation	of the FAE method, A	Automatic Mesh	gene	ration, analysis w	vith COSMOS Program and
	Case study					

Lecture and Tutorial Learning Outcome	Student Outcomes	Performed Assessments and Percentage		ents and
1. recognize all mechanical design components				
2. draw 3D solid models	1, 2, 3, 4, 5, 6			
3. draw mechanical assemblies		Quiz	(1)	5%
4. analyze mechanical components		Midterm Exam	(1)	10.0/
5. learn how to write design objectives		Ineroy	(1)	10 %
6. learn how to communicate with other disciplines		Ouiz	(2)	5%
7. write design criteria		Final Examinati	on	- / -
8. establish design teams		(Theory)	(1)	20 %
9. learn basic actions of problem solving				
10. manage product generation		Design Project	(1)	30 %
11. learn project definition and planning		(15% Theory Report + 15%		
12. manage concept generation and concept evaluation		CAD Models)		

and Lab. Equipment Used		Outcomes	Performed Assessments and Percentage	
1. SolidWorks • draw 3 • draw r	ize all mechanical design onents 3D solid models nechanical assemblies	7	Midterm ExamLab(1)10 %Final Examination(Lab)20 %	

Student Outcomes

\square	1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering,
	science, and mathematics
\boxtimes	2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public
	health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
\boxtimes	3. an ability to communicate effectively with a range of audiences
\boxtimes	4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed
	judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal
	contexts
\boxtimes	5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and
	inclusive environment, establish goals, plan tasks, and meet objectives
\boxtimes	6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering
	judgment to draw conclusions
\boxtimes	7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Contribution of Course to Criterion 5

Credit Hours for: Mathematics & Basic Science : 0 Engineering Sciences and Design : 3 General Education : 0

Important Notes:

University rules and regulations are applied to this course. For details, please see <u>http://mevzuat.emu.edu.tr</u>

- 1. "NG" Nil Grade/ Failing from Absenteeism: Students who do not comply with the required level attendance and/or not fulfilling the requirements for the evaluation of the course are given the "NG" grade by the Instructor of the Course based on the criteria determined by the Faculty/School Academic Council. Students are informed about the criteria for receiving the "NG" grade by the related course instructor at the beginning of the semester. "NG" grade is included in the computation of GPA and CGPA.
- 2. Student attendance is monitored and assessed by the course instructor. A student who fails to meet the requirements of a course or who is absent more than the limit specified by the Faculty or School is considered to be unsuccessful in that course.
- 3. Students who do not attend any of the above assessment activities (such as mid-term exam, lab exam, homework, design project report etc.) will be given NG (Nil Grade).
- 4. Late Submissions of the Assignments, Lab Reports and Project will be graded as zero.

MAKE-UP Exam

- 1. There is no make up or resit for the Quiz and Lab Exam.
- 2. A student who fails to sit for an examination for a valid reason is given a make-up exam. Within three working days after the examination, students who wish to take a make-up must submit a **written statement** to the course instructor explaining the reason(s) for his/her request.
- 3. Eligibility to take a **Make-Up Exam**:
 - a. Student must contact the Instructor immediately within "**three working days**" after the examination when (s)he has missed the mid-term exam or final exam and to discuss with the faculty about the date and time to take the make-up exam.
 - b. Student must secure a "**Make-Up Exam Form**" from the department Office or from instructor website & fill-out the Form. For each Make-Up Exam, please use separate Form.
 - c. Student must secure the approval from the instructor for taking the Make-Up Exam.
 - d. Failure to take the Make-Up Exam at the agreed date and time will lead to a "NG" Grade for the Make-Up Exam, midterm or final.