IENG/MANE112

Scheduling Theory

Scheduling is a decision making process that is used to on a regular basis in many manufacturing and services industries. It deals with the allocation resources to task over given time periods and its goal to optimize one or more objectives.

1. Gantt chart: It is the visualization of scheduling production. Every machine has its time axis. Production and idle periods are showed on the axis.

Necessary conditions

- **a.** The machine must finish the previous operation.
- **b.** The task must be finished on the previous machine.
- **c.** Example: F2

	Task 1	Task 2
Machine 1	2	1
Machine 2	2	1

Orders: (Task 1, Task 2); (Task 2, Task 1)

2. Parameters of scheduling problems:

Parameter	Notation
Processing time:	p_j or p_{ij}
The time of an operation	
Completion time: the time when the	$C_{\rm j}$
production of a job is finished	
Arrival time of job j	\mathbf{r}_{j}
Due-date: the time when the production	d_j
of a job should be finished	
Set-up time between job j and k	set-up _{jk} or s _{jk}
Lateness: C _j - d _j	$L_{\rm j}$
Tardiness: $max\{0, C_j - d_j\}$	T_{j}
Unit penalty: $max\{0, sgn(T_j)\}$	$U_{\rm j}$
Earliness: $max\{0, d_j - C_j\}$	$\mathrm{E_{j}}$

3. Compact description of scheduling problems: $\alpha\mid\beta\mid\gamma$

a. Field α : Machine environment (m = # of Machines)

Notation	Description	
1	Single machine problem	
Any number	The number of machines	
P	Identical parallel machines	
R	Unrelated parallel machines	
F	Flow shop: jobs visit the machines	
	in the same machine order	
J	Job shop: jobs visit the machines	
	in the different machine order	

b. Field β : Job environment (n = # of jobs)

Notation	Description	Default
prmp	Preemption: a process can be stopped and be	Not allowed.
	continued later without any loss.	
overlap	Several machines may work on a job at the same time.	Not allowed.
idle	The machine may not work although at least one job	Not allowed.
	waits for processing.	
\mathbf{r}_{j}	The jobs have release times, i.e. they become at	All jobs are available for
	different times available for processing.	processing at time 0.
prec	There is precedence relation among jobs.	No precedence relation.
tree	The structure of the precedence relation is tree-like.	No special structure.
res	There are resource constraints.	No resource constraints.
res1	There is one resource constraints.	No resource constraints.
set-up	There is set-up time between two jobs.	No set-up.
no-wait	The jobs cannot wait before the machines.	The jobs can wait before
(nwt)		the machines.
$p_{j}=1, 2$	Special properties of the processing times. In this	No special property. All
	example each processing time is either 1, or 2.	processing times are
		positive.
d _j =d	Special properties of due-dates. In this example all	No special property. All
	due-dates are equal.	due-dates are positive.

c. Field γ : Objective function

Created functions			
Cmax	Σ_{C_j}	$\sum_{\mathbf{w_j} \mathbf{C_j}}$	
L _{max}	$\Sigma_{ m L_j}$	$\sum_{\mathbf{W_j}} \mathbf{L_j}$	
Tmax	$\Sigma_{\mathrm{T_{j}}}$	$\sum_{\mathbf{W_j}T_{\mathbf{j}}}$	
Umax	$\Sigma_{ m U_j}$	$\sum_{\mathbf{W_j}} \mathbf{U_j}$	
	$\Sigma(T_j+E_j)$		

Remarks. All weights w_j are positive. All objective functions are to be minimized.

The engineering meaning of the objective functions:

- C_{max} is the <u>makespan</u>: the completion time of the last job.
- ΣC_j is the total <u>Work-In-Process</u> quantity.
- $\sum w_i C_i$ is the total WIP taking into account the different values of the items.
- L_{max} is the maximal lateness.
- U_{max} is 0 if all items are completed in time, and 1 if at least one tardy job.
- ΣT_i is the number of tardy jobs.

Relations of objective functions:

- The optimal value of L_{max} gives the optimal value of T_{max} . If $L_{max} < 0$ then the optimal value T_{max} is 0, otherwise the two optimal values are equal.
- The optimal value of L_{max} gives the optimal value of U_{max} . If $L_{max} \le 0$ then the optimal value U_{max} is 0, otherwise the optimal value of U_{max} is 1.

4. Examples

• $1||\Sigma C_j||$

- o Single machine problem.
- No preemption
- No overlap (As a matter of fact it has no meaning, because it needs at least two machines.)
- The jobs are available for processing at time=0.
- o No precedence relation among jobs.
- o No resource constraint.
- o There is no set-up between two jobs.
- o Jobs can wait before machines.
- No special properties of properties of processing times.
- o No due-dates.
- o The objective is to minimize the WIP.

• P|r_j, set-up |C_{max}

- Identical parallel machines
- No preemption
- No overlap (Overlap makes sense here as one operation could be divided among several machines.)
- o The jobs arrive at different times.
- o No precedence relation among jobs.
- o No resource constraint.
- o There is set-up between two jobs.
- o Jobs can wait before machines.
- o No special properties of properties of processing times.
- o No due-dates.
- o The objective is to minimize the makespan.

5. Important orders of jobs

- Shortest Processing Time (SPT) order: is the increasing order of the processing times.
- Longest Processing Time (LPT) order: is the decreasing order of the processing times.
- Earliest Due-Date (EDD) order: is the increasing order of the due-dates.

6. Exactly solved cases

- The optimal solution of the problem $1||\Sigma C_j|$ is given by the SPT order.
- The optimal solution of the problem $1||L_{max}, 1||T_{max}$ is given by the EDD order.

7. List scheduling for P||Cmax

- The algorithm.
 - o **STEP 1:** Prepare the list of jobs, e.g. LPT order.
 - o **STEP 2:** Assign the jobs in the order of the list to machines. Each job must be assigned to the least loaded machine.

8. Flow shop

• In general it is difficult.

9. Job shop

• Dispatching rules are applied: SPT, LPT, EDD, FIFO, LIFO, etc.