

Oracle Database 11g: SQL Fundamentals I 6 - 2

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view information

from multiple tables. Therefore, you can join tables together to view information from more than one

table.

Note: Information on joins is found in the section on SQL Queries and Subqueries: Joins in

Oracle Database SQL Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals I 6 - 3

Oracle Database 11g: SQL Fundamentals I 6 - 4

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the example in the slide, the report

displays data from two separate tables:
• Employee IDs exist in the EMPLOYEES table.

• Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

• Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and access data

from both of them.

Oracle Database 11g: SQL Fundamentals I 6 - 5

Types of Joins

To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note: Before the Oracle9i release, the join syntax was different from the American National

Standards Institute (ANSI) standards. The SQL:1999–compliant join syntax does not offer any

performance benefits over the Oracle-proprietary join syntax that existed in the prior releases. For

detailed information about the proprietary join syntax, see Appendix C: Oracle Join Syntax.

Note: The following slide discusses the SQL:1999 join syntax.

Oracle Database 11g: SQL Fundamentals I 6 - 6

Joining Tables Using SQL:1999 Syntax

In the syntax:

table1.column denotes the table and the column from which data is retrieved

NATURAL JOIN joins two tables based on the same column name

JOIN table2 USING column_name performs an equijoin based on the column name

JOIN table2 ON table1.column_name = table2.column_name performs an equijoin
based on the condition in the ON clause

LEFT/RIGHT/FULL OUTER is used to perform outer joins

CROSS JOIN returns a Cartesian product from the two tables

For more information, see the section titled SELECT in Oracle Database SQL Language Reference

11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals I 6 - 7

Qualifying Ambiguous Column Names

When joining two or more tables, you need to qualify the names of the columns with the table name
to avoid ambiguity. Without the table prefixes, the DEPARTMENT_ID column in the SELECT list

could be from either the DEPARTMENTS table or the EMPLOYEES table. It is necessary to add the

table prefix to execute your query. If there are no common column names between the two tables,

there is no need to qualify the columns. However, using the table prefix improves performance,

because you tell the Oracle server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if the table

names are lengthy. Instead, you can use table aliases. Just as a column alias gives a column another

name, a table alias gives a table another name. Table aliases help to keep SQL code smaller, therefore

using less memory.

The table name is specified in full, followed by a space and then the table alias. For example, the
EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines

• Table aliases can be up to 30 characters in length, but shorter aliases are better than longer ones.
• If a table alias is used for a particular table name in the FROM clause, then that table alias must

be substituted for the table name throughout the SELECT statement.

• Table aliases should be meaningful.

• The table alias is valid for only the current SELECT statement.

Oracle Database 11g: SQL Fundamentals I 6 - 7

Oracle Database 11g: SQL Fundamentals I 6 - 8

Oracle Database 11g: SQL Fundamentals I 6 - 9

Creating Natural Joins

You can join tables automatically based on the columns in the two tables that have matching data
types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types in both
tables. If the columns have the same name but different data types, then the NATURAL JOIN syntax

causes an error.

Oracle Database 11g: SQL Fundamentals I 6 - 10

Retrieving Records with Natural Joins

In the example in the slide, the LOCATIONS table is joined to the DEPARTMENT table by the

LOCATION_ID column, which is the only column of the same name in both tables. If other common

columns were present, the join would have used them all.

Natural Joins with a WHERE Clause

Additional restrictions on a natural join are implemented by using a WHERE clause. The following

example limits the rows of output to those with a department ID equal to 20 or 50:

 SELECT department_id, department_name,

 location_id, city

 FROM departments

 NATURAL JOIN locations

 WHERE department_id IN (20, 50);

Oracle Database 11g: SQL Fundamentals I 6 - 11

Creating Joins with the USING Clause

Natural joins use all columns with matching names and data types to join the tables. The USING

clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database 11g: SQL Fundamentals I 6 - 12

Joining Column Names

To determine an employee’s department name, you compare the value in the DEPARTMENT_ID

column in the EMPLOYEES table with the DEPARTMENT_ID values in the DEPARTMENTS table.

The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values

in the DEPARTMENT_ID column in both the tables must be equal. Frequently, this type of join

involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 11g: SQL Fundamentals I 6 - 13

Retrieving Records with the USING Clause

In the example in the slide, the DEPARTMENT_ID columns in the EMPLOYEES and

DEPARTMENTS tables are joined and thus the LOCATION_ID of the department where an

employee works is shown.

Oracle Database 11g: SQL Fundamentals I 6 - 14

Using Table Aliases with the USING clause

When joining with the USING clause, you cannot qualify a column that is used in the USING clause

itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot alias it. For
example, in the query mentioned in the slide, you should not alias the location_id column in the

WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name or

alias) anywhere in the SQL statement. For example, the following statement is valid:
SELECT l.city, d.department_name

FROM locations l JOIN departments d USING (location_id)

WHERE location_id = 1400;

Because, other columns that are common in both the tables, but not used in the USING clause, must

be prefixed with a table alias otherwise you get the “column ambiguously defined” error.

In the following statement, manager_id is present in both the employees and departments

table and if manager_id is not prefixed with a table alias, it gives a “column ambiguously

defined” error.

The following statement is valid:
SELECT first_name, d.department_name, d.manager_id

FROM employees e JOIN departments d USING (department_id)

WHERE department_id = 50;

Oracle Database 11g: SQL Fundamentals I 6 - 14

Oracle Database 11g: SQL Fundamentals I 6 - 15

Creating Joins with the ON Clause

Use the ON clause to specify a join condition. With this, you can specify join conditions separate

from any search or filter conditions in the WHERE clause.

Oracle Database 11g: SQL Fundamentals I 6 - 16

Retrieving Records with the ON Clause

In this example, the DEPARTMENT_ID columns in the EMPLOYEES and DEPARTMENTS table are

joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a department

ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to qualify the

matching column_names.

You can also use the ON clause to join columns that have different names. The parenthesis around
the joined columns as in the slide example, (e.department_id = d.department_id) is

optional. So, even ON e.department_id = d.department_id will work.

Note: SQL Developer suffixes a ‘_1’ to differentiate between the two department_ids.

Oracle Database 11g: SQL Fundamentals I 6 - 17

Creating Three-Way Joins with the ON Clause

A three-way join is a join of three tables. In SQL:1999–compliant syntax, joins are performed from
left to right. So, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS. The first join

condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns

in LOCATIONS. The second join condition can reference columns from all three tables.

Note: The code example in the slide can also be accomplished with the USING clause:

SELECT e.employee_id, l.city, d.department_name

FROM employees e

JOIN departments d

USING (department_id)

JOIN locations l

USING (location_id)

Oracle Database 11g: SQL Fundamentals I 6 - 18

Applying Additional Conditions to a Join

You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in

addition, displays only employees who have a manager ID of 149. To add additional conditions to the
ON clause, you can add AND clauses. Alternatively, you can use a WHERE clause to apply additional

conditions.

Oracle Database 11g: SQL Fundamentals I 6 - 19

Oracle Database 11g: SQL Fundamentals I 6 - 20

Joining a Table to Itself

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need
to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the name of

Lorentz’s manager, you need to:
• Find Lorentz in the EMPLOYEES table by looking at the LAST_NAME column

• Find the manager number for Lorentz by looking at the MANAGER_ID column. Lorentz’s

manager number is 103.
• Find the name of the manager with EMPLOYEE_ID 103 by looking at the LAST_NAME column.

Hunold’s employee number is 103, so Hunold is Lorentz’s manager.

In this process, you look in the table twice. The first time you look in the table to find Lorentz in the
LAST_NAME column and the MANAGER_ID value of 103. The second time you look in the

EMPLOYEE_ID column to find 103 and the LAST_NAME column to find Hunold.

Oracle Database 11g: SQL Fundamentals I 6 - 21

Self-Joins Using the ON Clause

The ON clause can also be used to join columns that have different names, within the same table or in

a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE_ID and

MANAGER_ID columns.

Note: The parenthesis around the joined columns as in the slide example, (e.manager_id =

m.employee_id) is optional. So, even ON e.manager_id = m.employee_id will work.

Oracle Database 11g: SQL Fundamentals I 6 - 22

Oracle Database 11g: SQL Fundamentals I 6 - 23

Nonequijoins

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of a

nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the

LOWEST_SAL and HIGHEST_SAL columns of the JOB_GRADES table. Hence, each employee can

be graded based on their salary. The relationship is obtained using an operator other than the equality
(=) operator.

Oracle Database 11g: SQL Fundamentals I 6 - 24

Retrieving Records with Nonequijoins

The slide example creates a nonequijoin to evaluate an employee’s salary grade. The salary must be

between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No

employee is repeated in the list. There are two reasons for this:
• None of the rows in the JOB_GRADES table contain grades that overlap. That is, the salary

value for an employee can lie only between the low salary and high salary values of one of the

rows in the salary grade table.

• All of the employees’ salaries lie within the limits provided by the job grade table. That is, no
employee earns less than the lowest value contained in the LOWEST_SAL column or more than

the highest value contained in the HIGHEST_SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest. Remember

to specify the low value first and the high value last when using the BETWEEN condition. The Oracle

server translates the BETWEEN condition to a pair of AND conditions. Therefore, using BETWEEN has

no performance benefits, but should be used only for logical simplicity.

Table aliases have been specified in the slide example for performance reasons, not because of

possible ambiguity.

Oracle Database 11g: SQL Fundamentals I 6 - 25

Oracle Database 11g: SQL Fundamentals I 6 - 26

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row does not appear in the query result. For example, in
the equijoin condition of EMPLOYEES and DEPARTMENTS tables, department ID 190 does not

appear because there are no employees with that department ID recorded in the EMPLOYEES table.

Therefore, instead of seeing 20 employees in the result set, you see 19 records.

To return the department record that does not have any employees, you can use an outer join.

Oracle Database 11g: SQL Fundamentals I 6 - 27

INNER Versus OUTER Joins

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an inner join. Any

unmatched rows are not displayed in the output. To return the unmatched rows, you can use an outer

join. An outer join returns all rows that satisfy the join condition and also returns some or all of those

rows from one table for which no rows from the other table satisfy the join condition.

There are three types of outer joins:
• LEFT OUTER

• RIGHT OUTER

• FULL OUTER

Oracle Database 11g: SQL Fundamentals I 6 - 28

LEFT OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, which is the left table, even if there is no

match in the DEPARTMENTS table.

Oracle Database 11g: SQL Fundamentals I 6 - 29

RIGHT OUTER JOIN

This query retrieves all rows in the DEPARTMENTS table, which is the right table, even if there is no

match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals I 6 - 30

FULL OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the

DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no

match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals I 6 - 31

Oracle Database 11g: SQL Fundamentals I 6 - 32

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all

combinations of rows are displayed. All rows in the first table are joined to all rows in the second

table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful. You

should, therefore, always include a valid join condition unless you have a specific need to combine

all rows from all tables.

However, Cartesian products are useful for some tests when you need to generate a large number of

rows to simulate a reasonable amount of data.

Oracle Database 11g: SQL Fundamentals I 6 - 33

Generating a Cartesian Product

A Cartesian product is generated if a join condition is omitted. The example in the slide displays the
employee last name and the department name from the EMPLOYEES and DEPARTMENTS tables.

Because no join condition was specified, all rows (20 rows) from the EMPLOYEES table are joined

with all rows (8 rows) in the DEPARTMENTS table, thereby generating 160 rows in the output.

Oracle Database 11g: SQL Fundamentals I 6 - 34

Creating Cross Joins

The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS

tables.

Oracle Database 11g: SQL Fundamentals I 6 - 35

Summary

There are multiple ways to join tables.

Types of Joins

• Equijoins

• Nonequijoins

• Outer joins

• Self-joins

• Cross joins

• Natural joins

• Full (or two-sided) outer joins

Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either omitting
the WHERE clause or by specifying the CROSS JOIN clause.

Table Aliases

• Table aliases speed up database access.

• Table aliases can help to keep SQL code smaller by conserving memory.

• Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database 11g: SQL Fundamentals I 6 - 36

Practice 6: Overview

This practice is intended to give you experience in extracting data from more than one table using the

SQL:1999–compliant joins.

