Displaying Data
from Multiple Tables

Copyright © 2007, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* Write SELECT statements to access data from more than
one table using equijoins and nonequijoins

+ Join a table to itself by using a self-join

* View data that generally does not meet a join condition by
using outer joins

* Generate a Cartesian product of all rows from two or more
tables

6-2 Copyright © 2007, Oracle. All rights reserved.

Objectives

This lesson explains how to obtain data from more than one table. A join is used to view information
from multiple tables. Therefore, you can join tables together to view information from more than one
table.

Note: Information on joins is found in the section on SQL Queries and Subqueries: Joins in
Oracle Database SQL Language Reference 11g, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals | 6-2

Lesson Agenda

Types of JOINS and its syntax
Natural join:

— USING clause

— ON clause
Self-join
Nonequijoins
OUTER join:

— LEFT OUTER join

— RIGHT OUTER join

— FULL OUTER join
Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6-3

Obtaining Data from Multiple Tables
EMPLOYEES DEPARTMENTS
|8 empoveeo|@ Last_name|l oEparTMENT D B oerarTmenT_D|E DEPARTMENT NAME E LOCATION_ID
1 100{King 90| 1 10§ Administration 1700
2 101|Kochhar 90| 2 Marketing 1800
3 102De Haan 90| 3 Shipping 1500
4 0 1400
el 5 Sales 2500
18 202Fay 20 & Executive 1700
19 205Higgins 110 7 110y Accounting 1700
20 206{Gietz 110 l l 8 190lcontracting 1700
B empLoveED Hﬂ DEPARTMENT_ID [[ﬂ DEPARTMENT_NAME |
1 200 10 Administration
2 20 20 Marketing
3 202 20 Marketing
4 124 50 Shipping
5 144 50 Shipping
18 205 110 Accounting
18 206 110 Accounting
6-4 Copyright © 2007, Oracle. All rights reserved.

Obtaining Data from Multiple Tables

Sometimes you need to use data from more than one table. In the example in the slide, the report
displays data from two separate tables:

« Employee IDs exist in the EMPLOYEES table.

« Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

« Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and access data
from both of them.

Oracle Database 11g: SQL Fundamentals| 6-4

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:
* Natural joins:

— NATURAL JOIN clause
— USING clause
— ON clause

* Quter joins:
— LEFT OUTER JOIN
— RIGHT OUTER JOIN
— FULL OUTER JOIN

» Cross joins

6-5 Copyright © 2007, Oracle. All rights reserved.

Types of Joins
To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note: Before the Oracle9i release, the join syntax was different from the American National
Standards Institute (ANSI) standards. The SQL:1999—compliant join syntax does not offer any
performance benefits over the Oracle-proprietary join syntax that existed in the prior releases. For
detailed information about the proprietary join syntax, see Appendix C: Oracle Join Syntax.

Note: The following slide discusses the SQL:1999 join syntax.

Oracle Database 11g: SQL Fundamentals| 6-5

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT tablel.column, tablel.column
FROM tablel
[NATURAL JOIN tablel] |
[JOIN table2 USING (column name)] |
[JOIN tableZ2
ON (tablel.column name = table2.column name)] |
[LEFT |RIGHT | FULL OUTER JOIN tableZ2
ON (tablel.column name = table2.column name)] |
[CROSS JOIN table?];

6-6 Copyright © 2007, Oracle. All rights reserved.

Joining Tables Using SQL:1999 Syntax
In the syntax:
tablel.column denotes the table and the column from which data is retrieved
NATURAL JOIN joins two tables based on the same column name
JOIN table2 USING column name performs an equijoin based on the column name

JOIN table2 ON tablel.column name = table2.column name performs an equijoin
based on the condition in the ON clause

LEFT/RIGHT/FULL OUTER is used to perform outer joins

CROSS JOIN returns a Cartesian product from the two tables
For more information, see the section titled SELECT in Oracle Database SQL Language Reference
119, Release 1 (11.1).

Oracle Database 11g: SQL Fundamentals| 6-6

Qualifying Ambiguous
Column Names

Use table prefixes to qualify column names that are in
multiple tables.

Use table prefixes to improve performance.
Instead of full table name prefixes, use table aliases.
Table alias gives a table a shorter name:

— Keeps SQL code smaller, uses less memory

Use column aliases to distinguish columns that have
identical names, but reside in different tables.

L]

L]

6-7 Copyright © 2007, Oracle. All rights reserved.

Qualifying Ambiguous Column Names

When joining two or more tables, you need to qualify the names of the columns with the table name
to avoid ambiguity. Without the table prefixes, the DEPARTMENT ID column inthe SELECT list
could be from either the DEPARTMENTS table or the EMPLOYEES table. It is necessary to add the
table prefix to execute your query. If there are no common column names between the two tables,
there is no need to qualify the columns. However, using the table prefix improves performance,
because you tell the Oracle server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if the table
names are lengthy. Instead, you can use table aliases. Just as a column alias gives a column another
name, a table alias gives a table another name. Table aliases help to keep SQL code smaller, therefore
using less memory.

The table name is specified in full, followed by a space and then the table alias. For example, the
EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
+ Table aliases can be up to 30 characters in length, but shorter aliases are better than longer ones.
« If atable alias is used for a particular table name in the FROM clause, then that table alias must
be substituted for the table name throughout the SELECT statement.
 Table aliases should be meaningful.

Oracle Database 11g: SQL Fundamentals| 6-7

» The table alias is valid for only the current SELECT statement.

Oracle Database 11g: SQL Fundamentals| 6-7

Lesson Agenda

Types of JOINS and its syntax
Natural join:

— USING clause

— ON clause
Self-join
Nonequijoins
OUTER join:

— LEFT OUTER join

— RIGHT OUTER join

— FULL OUTER join
Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals| 6-8

Creating Natural Joins

* The NATURAL JOIN clause is based on all columns in the
two tables that have the same name.

* |t selects rows from the two tables that have equal values in
all matched columns.

* If the columns having the same names have different data
types, an error is returned.

6-9 Copyright © 2007, Oracle. All rights reserved.

Creating Natural Joins

You can join tables automatically based on the columns in the two tables that have matching data
types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types in both
tables. If the columns have the same name but different data types, then the NATURAL JOIN syntax
causes an error.

Oracle Database 11g: SQL Fundamentals| 6-9

Retrieving Records with Natural Joins

SELECT department id, department name,
location_id, city

FROM departments

NATURAL JOIN locations|;

@ DEPARTMENTID |l DEPARTMENT_NAME]}] Locamiono | ary
1 80IT ' 1400 Southlake
2 50 Shipping 1500 South San Francisco
3 10 Administration 1700 Seattle
4 90 Executive 1700 Seattle
5 110 Accounting 1700 Seattle
6 190 Contracting 1700 Seattle
7 20 Marketing 1800 Toronto
8 80 Sales 2500 Oxford
6-10 Copyright © 2007, Oracle. All rights reserved.

Retrieving Records with Natural Joins

In the example in the slide, the LOCATTIONS table is joined to the DEPARTMENT table by the
LOCATION ID column, which is the only column of the same name in both tables. If other common
columns were present, the join would have used them all.
Natural Joins with a WHERE Clause
Additional restrictions on a natural join are implemented by using a WHERE clause. The following
example limits the rows of output to those with a department ID equal to 20 or 50:

SELECT department id, department name,

location id, city
FROM departments

NATURAL JOIN locations
WHERE department id IN (20, 50);

Oracle Database 11g: SQL Fundamentals | 6 -10

Creating Joins with the USING Clause

« If several columns have the same names but the data types
do not match, natural join can be applied using the USING

clause to specify the columns that should be used for an
equijoin.

* Use the USING clause to match only one column when more
than one column matches.

* The NATURAL JOIN and USING clauses are mutually
exclusive.

6- 11 Copyright © 2007, Oracle. All rights reserved.

Creating Joins with the USING Clause

Natural joins use all columns with matching names and data types to join the tables. The USING
clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database 11g: SQL Fundamentals | 6-11

Joining Column Names

EMPLOYEES DEPARTMENTS

§ empLovee D [§ DEPARTMENT ID @ DEPARTMENT D |l DEPARTMENT_NAME |
100 %0 1 10 Administration
101 %0 2 20 Marketing
102 20 3 50 Shipping
103 80 4 80T
104 60 5 80 Sales
107 60 6 90 Executive
124 50 7 110 Accounting
141 50 8 190 Contracting
142 50
143 50
144 50
149 80 .
174 00 Primary key
176 80

Foreign key

6-12 Copyright © 2007, Oracle. All rights reserved.

Joining Column Names

To determine an employee’s department name, you compare the value in the DEPARTMENT ID
column in the EMPLOYEES table with the DEPARTMENT ID values in the DEPARTMENTS table.
The relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values
in the DEPARTMENT ID column in both the tables must be equal. Frequently, this type of join
involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 11g: SQL Fundamentals | 6-12

Retrieving Records with the USING Clause

SELECT employee id, last name,
location_id, department id

FROM employees JOIN departments

USING (depart.ment id) |;

@ empovee o | LasT_name @ Locamonp | DEPARTMENT_ID

1 200 Vhalen 1700 10

2 201 Hartstein 1800 20

3 202 Fay 1800 20

4 124 Mourgos 1500 50

5 144 Vargas 1500 50

6 143 Matos 1500 50

7 142 Davies 1500 50

8 141 Rajs 1500 50

9 107 Lorentz 1400 60

10 104 Ernst 1400 60

T
[19 205 Higgins 1700 10|
6-13 Copyright © 2007, Oracle. All rights reserved.

Retrieving Records with the USING Clause

In the example in the slide, the DEPARTMENT ID columns in the EMPLOYEES and
DEPARTMENTS tables are joined and thus the LOCATION ID of the department where an
employee works is shown.

Oracle Database 11g: SQL Fundamentals | 6-13

Using Table Aliases with the USING Clause

* Do not qualify a column that is used in the USING clause.

« |f the same column is used elsewhere in the SQL statement,
do not alias it.

SELECT l.city, d.department name
FROM locations 1 JOIN departments d
USING (location_id)

WHERE d.location_id = 1400;

"ORA-25154: column part of USING clause cannot have qualifierc "

o An error was encountered performing the requested operation:

ORA-25154: column part of USING clause cannot have qualifier

25154. 00000 - “"column part of USING clause cannot have qualifier”

*Cause: Columns that are used for a named-join (either a NATURAL join
or & join with a USING clause) cannot have an explicit qualifier.

*Action: Remove the qualifier.

Error at Line:4 Column:6

6-14 Copyright © 2007, Oracle. All rights reserved.

Using Table Aliases with the USING clause

When joining with the USTNG clause, you cannot qualify a column that is used in the USING clause

itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot alias it. For
example, in the query mentioned in the slide, you should not alias the 1ocation id columninthe
WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name or
alias) anywhere in the SQL statement. For example, the following statement is valid:

SELECT l.city, d.department name

FROM locations 1 JOIN departments d USING (location id)

WHERE location id = 1400;
Because, other columns that are common in both the tables, but not used in the USING clause, must
be prefixed with a table alias otherwise you get the “column ambiguously defined” error.
In the following statement, manager id is present in both the employees and departments
table and if manager id is not prefixed with a table alias, it gives a “column ambiguously
defined” error.
The following statement is valid:

SELECT first name, d.department name, d.manager id

FROM employees e JOIN departments d USING (department id)

Oracle Database 11g: SQL Fundamentals | 6 - 14

WHERE department id = 50;

Oracle Database 11g: SQL Fundamentals | 6 - 14

Creating Joins with the oN Clause

* The join condition for the natural join is basically an equijoin
of all columns with the same name.

» Use the ON clause to specify arbitrary conditions or specify
columns to join.

* The join condition is separated from other search conditions.
* The ON clause makes code easy to understand.

6-15 Copyright © 2007, Oracle. All rights reserved.

Creating Joins with the ON Clause

Use the ON clause to specify a join condition. With this, you can specify join conditions separate
from any search or filter conditions in the WHERE clause.

Oracle Database 11g: SQL Fundamentals | 6 -15

Retrieving Records with the oN Clause

SELECT e.employee_ id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

e.department id = d.department id

B empLovee_D |[§ LasT_namE DEPARTMENT_ID I@ DEPARTMENT _ID_1 B LOCATION_ID

1 200 VWhalen 10 10 1700

2 201 Hartstein 20 20 1800

3 202 Fay 20 20 1800

4 124 Mourgos 50 50 1500

5 144 Vargas 50 50 1500

6 143 Matos 50 50 1500

7 142 Davies 50 S0 1500

8 141 Rajs 50 50 1500

9 107 Lorentz 60 60 1400

10 104 Ernst 60 60 1400

e
6-16 Copyright © 2007, Oracle. All rights reserved.

Retrieving Records with the ON Clause

In this example, the DEPARTMENT ID columns in the EMPLOYEES and DEPARTMENTS table are
joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a department
ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to qualify the
matching column names.

You can also use the ON clause to join columns that have different names. The parenthesis around
the joined columns as in the slide example, (e.department id = d.department id) is
optional. So, even ON e.department id = d.department id will work.

Note: SQL Developer suffixes a *_1’ to differentiate between the two department ids.

Oracle Database 11g: SQL Fundamentals | 6-16

Creating Three-Way Joins with
the oN Clause

SELECT employee id, city, department name
FROM employees e

JOIN departments d
ON d.department_id = e.department_id
JOIN locations 1
ON d.location id = l1l.location id;
— —
@ ewroveeo |§ ary |8 DEPARTMENT_NAME

1 100 Seattle Executive

2 101 Seattle Executive

3 102 Seattle Executive

4 103 Southlake T

5 104 Southlake I

6 107 Southlake IT

7 124 South San Francisco Shipping

8 141 South San Francisco Shipping

6-17 Copyright © 2007, Oracle. All rights reserved.

Creating Three-Way Joins with the ON Clause

A three-way join is a join of three tables. In SQL:1999—compliant syntax, joins are performed from
left to right. So, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS. The first join
condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns
in LOCATIONS. The second join condition can reference columns from all three tables.

Note: The code example in the slide can also be accomplished with the USING clause:

SELECT e.employee id, l.city, d.department name
FROM employees e

JOIN departments d

USING (department id)

JOIN locations 1

USING (location id)

Oracle Database 11g: SQL Fundamentals | 6-17

Applying Additional Conditions
to a Join

Use the AND clause or the WHERE clause to apply additional
conditions:

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

ON (e.department id = d.department id)
AND e.manager id = 149!;
Or

SELECT e.employee id, e.last name, e.department id,
d.department_id, d.location_id
FROM employees e JOIN departments d

ON (e.department id = d.department id)
WHERE e.manager id = 149 |;
—
6-18 Copyright © 2007, Oracle. All rights reserved.

Applying Additional Conditions to a Join
You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in
addition, displays only employees who have a manager 1D of 149. To add additional conditions to the
ON clause, you can add AND clauses. Alternatively, you can use a WHERE clause to apply additional

conditions.

EMPLOYEE_ID | LAST_N.&.ME| DEP&RTMENT _ID | DEPARTMENT ID_1 | LOCATION_ID
1 174 Al an an 2500
2 176 Taylor an an 2500

Oracle Database 11g: SQL Fundamentals | 6-18

Lesson Agenda

Types of JOINS and its syntax
Natural join:

— USING clause

— ON clause
Self-join
Nonequijoins
OUTER join:

— LEFT OUTER join

— RIGHT QOUTER join

— FULL OUTER join
Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6-19

Joining a Table to Itself

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)
B empLoveeo [vrasT_name | manscer_D § ewpLoveeo | LasT_Name
1 1DUAK|‘ng 4 (nuIIJ‘ 1DD‘King
2 101 Kochhar 100 101 Kochhar
3 102 De Haan 100 102 De Haan
4 103 Hunold 102 103 Hunold
5 104 Ernst 103 104 Ernst
6 107 Lorentz 103 107 Lorentz
7 124 Mourgos 100 124 Mourgos
3 141 Rajs 124 141 Rajs
9 142 Davies 124 142 Davies
10 143 Matos 124 143 Matos

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

6-20 Copyright © 2007, Oracle. All rights reserved.

Joining a Table to Itself
Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need
to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the name of
Lorentz’s manager, you need to:
 Find Lorentz in the EMPLOYEES table by looking at the LAST NAME column
+ Find the manager number for Lorentz by looking at the MANAGER ID column. Lorentz’s
manager number is 103.
+ Find the name of the manager with EMPLOYEE ID 103 by looking at the LAST NAME column.
Hunold’s employee number is 103, so Hunold is Lorentz’s manager.
In this process, you look in the table twice. The first time you look in the table to find Lorentz in the
LAST NAME column and the MANAGER ID value of 103. The second time you look in the
EMPLOYEE_ ID column to find 103 and the LAST NAME column to find Hunold.

Oracle Database 11g: SQL Fundamentals | 6 - 20

Self-Joins Using the oN Clause
SELECT worker.last name emp, manager.last name mgr
FROM employees worker JOIN employees manager
ON (worker .manager id = manager.employee id) ;
B ew @ wmor

1 Hunold De Haan

2 Fay Hartstein

3 Gietz Higgins

4 Lorentz Hunold

5 Ernst Hunold

6 Zlotkey King

7 Mourgos King

8 Kochhar King

9 Hartstein King

10 De Haan King

6-21 Copyright © 2007, Oracle. All rights reserved.

Self-Joins Using the ON Clause

The ON clause can also be used to join columns that have different names, within the same table or in
a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE ID and
MANAGER ID columns.

Note: The parenthesis around the joined columns as in the slide example, (e.manager id =
m.employee id) isoptional. So,even ON e.manager id = m.employee id will work.

Oracle Database 11g: SQL Fundamentals | 6-21

Lesson Agenda

Types of JOINS and its syntax
Natural join:

— USING clause

— ON clause
Self-join
Nonequijoins
OUTER join:

— LEFT OUTER join

— RIGHT QOUTER join

— FULL OUTER join
Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6 -22

JOB_GRADES

@ LowesT_saL [§ HGHEST_sAL

Nonequijoins
EMPLOYEES

B vast_name] saLary
1 King 24000 @ oRaDE_LEVEL
2 Kochhar 17000 1A
3 De Haan 17000 2B
4 Hunold 9000 3C
5 Ernst 6000 4D
6 Lorentz 4200 5E
7 Mourgos 5800 6F
8 Rajs 3500
9 Davies 3100 .
20 natos 2600 JOB GRADES table defines the
19 Higgins 12000
20 Gietz 8300

employee.
6-23 Copyright © 2007, Oracle. All rights reserved.

1000
3000
6000
10000
15000
25000

2999
5999
9999
14999
24999
40000

LOWEST SAL and HIGHEST SAL range

of values for each GRADE LEVEL.

Hence, the GRADE LEVEL column can

be used to assign grades to each

Nonequijoins

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB GRADES table is an example of a
nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the
LOWEST SAL and HIGHEST SAL columns of the JOB GRADES table. Hence, each employee can
be graded based on their salary. The relationship is obtained using an operator other than the equality

(=) operator.

Oracle Database 11g: SQL Fundamentals | 6 -23

Retrieving Records
with Nonequijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e JOIN job grades jJj

ON e. sal-ary

BETWEEN j.lowest sal AND j.highest salj;

@ Last_name|l saLary | GRADE_LEVEL
1 Vargas 2500 A
2 Matos 2600 A
3 Davies 31008
4 Rajs 35008
5 Lorentz 42008
6 Whalen 44008B
7 Mourgos 5800 B
8 Ernst 6000 C
9 Fay 6000 C
10 Grant 7000 C
6-24 Copyright © 2007, Oracle. All rights reserved.

Retrieving Records with Nonequijoins

The slide example creates a nonequijoin to evaluate an employee’s salary grade. The salary must be
between any pair of the low and high salary ranges.
It is important to note that all employees appear exactly once when this query is executed. No

employee is repeated in the list. There are two reasons for this:

* None of the rows in the JOB GRADES table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of one of the
rows in the salary grade table.

» All of the employees’ salaries lie within the limits provided by the job grade table. That is, no
employee earns less than the lowest value contained in the LOWEST SAL column or more than
the highest value contained in the HIGHEST SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest. Remember
to specify the low value first and the high value last when using the BETWEEN condition. The Oracle
server translates the BETWEEN condition to a pair of AND conditions. Therefore, using BETWEEN has
no performance benefits, but should be used only for logical simplicity.

Table aliases have been specified in the slide example for performance reasons, not because of
possible ambiguity.

Oracle Database 11g: SQL Fundamentals | 6 - 24

Lesson Agenda

Types of JOINS and its syntax

Natural join:

— USING clause

— ON clause
Self-join
Nonequijoins
OUTER join:

— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6 -25

Returning Records with No Direct Match
with Outer Joins

DEPARTMENTS EMPLOYEES
@ oeparTMENT NamE | DEPARTMENT_ID | @ oerartveEnT D | LAST_NaME
;B.dminisiraﬂion - 10 1 90 King
Marketing 20 2 90 Kochhar
Shipping 50 3 90 De Haan
m 60 4 60 Hunold
Sales 80 5 60 Ernst
Executive 90 6 60 Lorentz
Accounting 110 7 50 Mourgos
Contracting I 190 8 50 Rajs
3 50 Davies
10 50 Matos
19 110 Higgins
20 110 Gietz

There are no employees in
department 190.

6-26 Copyright © 2007, Oracle. All rights reserved.

Returning Records with No Direct Match with Outer Joins

If a row does not satisfy a join condition, the row does not appear in the query result. For example, in
the equijoin condition of EMPLOYEES and DEPARTMENTS tables, department ID 190 does not
appear because there are no employees with that department ID recorded in the EMPLOYEES table.

Therefore, instead of seeing 20 employees in the result set, you see 19 records.
To return the department record that does not have any employees, you can use an outer join.

Oracle Database 11g: SQL Fundamentals | 6 - 26

INNER Versus OUTER Joins

* In SQL:1999, the join of two tables returning only matched
rows is called an inner join.

* A join between two tables that returns the results of the inner
join as well as the unmatched rows from the left (or right)
table is called a left (or right) outer join.

* A join between two tables that returns the results of an inner
join as well as the results of a left and right join is a full outer
join.

6-27 Copyright © 2007, Oracle. All rights reserved.

INNER Versus OUTER Joins

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an inner join. Any
unmatched rows are not displayed in the output. To return the unmatched rows, you can use an outer
join. An outer join returns all rows that satisfy the join condition and also returns some or all of those
rows from one table for which no rows from the other table satisfy the join condition.

There are three types of outer joins:
LEFT OUTER
- RIGHT OUTER
FULL OUTER

Oracle Database 11g: SQL Fundamentals | 6 - 27

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees el LEFT OUTER JOIN departments cﬂ
ON (e.department id = d.department id) ;

@ vast_name [DEpARTMENTID [DEPARTMENT NAME
1 Whalen 10 Administration
2 Fay 20 Marketing
3 Hartstein 20 Marketing
4 Vargas 50 Shipping
5 Matos 50 Shipping
17 King 90 Executive
18 Gietz 110 Accounting
19 Hig;ins 110 Accounting
20 Grant (null) (null)
6-28 Copyright © 2007, Oracle. All rights reserved.

LEFT OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, which is the left table, even if there is no
match in the DEPARTMENTS table.

Oracle Database 11g: SQL Fundamentals | 6 -28

RIGHT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e| RIGHT OUTER JOIN departments d |

ON (e.department_id = d.department_id) ;
LasT_NaMe @ DEPARTMENT_ID | DEPARTMENT_NAME
1 Whalen 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Higgins 110 Accounting
19 Taylor 80 Sales
20 Grant (rnull) ()
21 (null) 190 Contracting
6-29 Copyright © 2007, Oracle. All rights reserved.

RIGHT OUTER JOIN

This query retrieves all rows in the DEPARTMENTS table, which is the right table, even if there is no
match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals | 6 -29

FULL OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e |FULL OUTER JOIN departments d|
ON (e.department id = d.department id) ;

B rast_name |§ oeparTMENTD | DEPARTMENT NAME
1 Malen - 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Higgins 110 Accourting
19 Taylor 80 Sales
20 Grant (null) (rll)
21 (null) 190 Contracting

6-30 Copyright © 2007, Oracle. All rights reserved.

FULL OUTER JOIN

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no
match in the EMPLOYEES table.

Oracle Database 11g: SQL Fundamentals | 6 - 30

L

- 31

Lesson Agenda

Types of JOINS and its syntax

Natural join:

— USING clause

— ON clause
Self-join
Nonequiijoin
OUTER join:

— LEFT OUTER join

— RIGHT QOUTER join

— FULL OUTER join
Cartesian product

— Cross join

Copyright © 2007, Oracle. All rights reserved.

Oracle Database 11g: SQL Fundamentals | 6-31

Cartesian Products

* A Cartesian product is formed when:
— Ajoin condition is omitted
— A join condition is invalid
— All rows in the first table are joined to all rows in the second

table
* To avoid a Cartesian product, always include a valid join
condition.
6-32 Copyright © 2007, Oracle. All rights reserved.

Cartesian Products

When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all
combinations of rows are displayed. All rows in the first table are joined to all rows in the second
table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful. You
should, therefore, always include a valid join condition unless you have a specific need to combine
all rows from all tables.

However, Cartesian products are useful for some tests when you need to generate a large number of
rows to simulate a reasonable amount of data.

Oracle Database 11g: SQL Fundamentals | 6 -32

Generating a Cartesian Product

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
EMPLOYEE_ID » LAST_NAMEMQ DEPARTMENT_ID | ~ DEPARTMENT_ID ‘ DEPARTMENT_NAME @ LOCATION_ID |
1 100 King 90 1 10 Administration 1700
2 101 Kochhar S0 2 20 Marketing 1800
3 102 De Haan 90 3 50 Shipping 1500
4 103 Hunold 60 4 80IT 1400
5 80 Sales 2500

L

19 205 Higgins 110 6 S0 Executwle 1700
20 206 Gietz 110 7 110 Accounting 1700
8 190 Contracting 1700

c . s @ ewpLovee o @ oerarTMENT D (@ LocaTIOND |
artesian product: - = = e
20 x 8 =160 rows 2 10 30 1700
3 102 a0 1700
4 103 60 1700
159 205 110 1700
160 206 110 1700
6-33 Copyright © 2007, Oracle. All rights reserved.

Generating a Cartesian Product

A Cartesian product is generated if a join condition is omitted. The example in the slide displays the
employee last name and the department name from the EMPLOYEES and DEPARTMENTS tables.
Because no join condition was specified, all rows (20 rows) from the EMPLOYEES table are joined
with all rows (8 rows) in the DEPARTMENTS table, thereby generating 160 rows in the output.

Oracle Database 11g: SQL Fundamentals | 6 -33

Creating Cross Joins

* The CROSS JOIN clause produces the cross-product of two
tables.

* This is also called a Cartesian product between the two
tables.

SELECT last name, department name
FROM employees

|CROSS JOIN deEartmentsl;

B vrast_name |§ DEPARTMENT NaME
1 Abel .Administra!ion
2 Davies Administration
3 De Haan Administration
4 Ernst Administration
5 Fay Administration
"
159 Whalen Contracting
160 Zlotkey Contracting
6-34 Copyright © 2007, Oracle. All rights reserved.

Creating Cross Joins

The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS
tables.

Oracle Database 11g: SQL Fundamentals | 6 - 34

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

* Equijoins

* Nonequijoins

* Quter joins

Self-joins

» Cross joins

Natural joins

Full (or two-sided) outer joins

[]

6-35 Copyright © 2007, Oracle. All rights reserved.

Summary
There are multiple ways to join tables.

Types of Joins

+ Equijoins

» Nonequijoins

+ Outer joins

+ Self-joins

» Cross joins

» Natural joins

 Full (or two-sided) outer joins

Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either omitting
the WHERE clause or by specifying the CROSS JOIN clause.

Table Aliases
+ Table aliases speed up database access.
+ Table aliases can help to keep SQL code smaller by conserving memory.
+ Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database 11g: SQL Fundamentals | 6 -35

Practice 6: Overview

This practice covers the following topics:
 Joining tables using an equijoin
» Performing outer and self-joins
* Adding conditions

6-36 Copyright © 2007, Oracle. All rights reserved.

Practice 6: Overview

This practice is intended to give you experience in extracting data from more than one table using the
SQL:1999—compliant joins.

Oracle Database 11g: SQL Fundamentals | 6 - 36

