
ITEC243 – Lecture Session – Dynamic Memory Allocation

C Language: malloc() / malloc free(), calloc()

C++ Language: OPERATORS new (memory allocation), delete (memory deallocation)

 new/delete invokes constructor/destructor. Malloc/free will not.

 new does not need typecasting. Malloc requires typecasting that retruns the pointer.

 new/delete operators can be overloaded, malloc/free cannot.

 new does not require you to explicitely calculate the quantity of the memory required. (unlike malloc.)

Rather than allocating FIXED size to handle large size of storage, we may dynamically allocate the memory using

(new) operator.

We will be creating dynamic objects (new) in order to allocate memory dynamically. You don’t have to wait

until end of the block/code to destroy the dynamic object. You have right to destroy dynamic objects any part

of your block/code.

WARNING: If you forget using delete operator for dynamically created objects, those objects will reside in the

memory.

How to create a dynamic object- Syntax: (we have to work along with pointers to create dynamic objects!!!!!)

Class_name *ptr;

1. ptr=new class_name; //to invoke the default constructor

2. ptr=new class_name(list of parameters); //to invoke the parameterized constructor

3. ptr=new class_name[size]; //to create a dynamic array object that invokes the default constructor

Then you should not forget to use delete operator to destroy the dynamic objects.

Example:

//time.h
class time{
private:
 int hour, minute;
public:
/* time()
 {
 this->minute = 0;
 this->hour = 0;
 }
 time(int hour, int minute)
 {
 this->minute = minute;
 this->hour = hour;
 }*/
//Instead of creating two constructors (default and parameterized) we can do it in the
following way
 time(int hour=0, int minute=0)
 {
 this->minute = minute;
 this->hour = hour;
 }
 ~time() //user-defined destructor
 {
 cout << "The time object with hour and minute values:" << this->hour << ":"
 << this->minute << " has been destroyed." << endl;
 }
 void settime(int hour=0, int minute=0)
 {
 this->hour = hour;
 this->minute = minute;
 }
 void printTime()
 {
 cout << this->hour << ":" << this->minute << endl;
 }
};

First main() function
//time.cpp
#include<iostream>
using namespace std;
#include"time.h"
void main()
{
 {
//let's create an automatic object that will invoke the default constructor
 time school;
//let's create a dynamic object that will invoke the default constructor
 time *tptr1;
 tptr1 = new time;
 (*tptr1).printTime();
 //tptr1->printtime();
//let's create another dynamic object that will invoke the parameterized constructor
 time *tptr2 = new time(8, 30);

 delete tptr1; //first dynamic object is deleted here!!!

 tptr2->settime(12, 45);
 tptr2->printTime();

 delete tptr2; //second dynamicv object is deleted here!!!

 school.settime(9, 0);
 school.printTime();
 }
 system("pause");
}

//Second main() function
#include<iostream>
using namespace std;
#include"time.h"
void main()
{
//let's create a dynamic array object for time class that the default constructor is invoked
 time *arrptr = new time[5];
 for (int i = 0; i < 5; i++)
 arrptr[i].printTime();
 delete[]arrptr;
 system("pause");
}

