Energy Management & Utilization

Chapter 6

Demand-Side Management

Prof. Dr. Uğur Atikol, cea

Director of EMU Energy Research Centre

What is Understood from Demand-Side Management?

"Activities that involve actions on the demand or customer side of electric meter, either directly or indirectli stimulated by *the utility*."

Clark Gellings (Electric Power Institute, USA) 1984

What is Understood from Demand-Side Management?

- The adjustment of consumer demand for electricity by means of financial incentives (such as rebates) or education is termed demand-side management (DSM)
- The main objective of DSM is to
 - encourage the consumer to use less energy during the peak hours
 - use different sources of energy replacing electricity during peak hours
 - move the time of energy use to off-peak times (such as after mid-night or weekend)
 - reduce the need for investments in the electricity networks

Typical Daily Demand Curves

Typical Duration Hours for Maximum Peaks

Load Leveling Strategies

Flexible load shape

Strategic load growth

Valley filling

Examples of DSM Technologies: Residential Sector

		Residential measures	Impact on demand curve	
Energy Efficiency		Thermal Insulation	Strategic conservation	
		Double glazing windows	Strategic conservation	/ Strategic conservation
		Energy efficient motors	Strategic conservation	
		Efficient appliances	Strategic conservation	
Time of Use		Heat Storage	Valley filling/Load shifting	Load shifting
		Timers	Valley filling/Load shifting	
		Instantaneous electric water heaters	Load shifting	
isconnect A		DHW cyclic control	Peak clipping/strategic conservation/flexible load	Peak clipping
		Gas heaters	Peak clipping	
D		Photovoltaic systems	Peak clipping/strategic conservation	Y N Flexible load shape

Examples of DSM Technologies: Commercial/Industrial Sectors

Energy Efficiency

Time of Use

Disconnect

D

	Commercial and Industrial measures	Impact on demand curve	
	Insulation/double glazing	Strategic conservation	\bigvee
	Efficient appliances	Strategic conservation	Strategic conservation
$\left\{ \right.$	CFL or LED lamps	Strategic conservation	
	Energy efficient motors	Strategic conservation	
	Heat pump water heaters	Strategic conversation	Load shifting
	Time of use controllers	Load shifting	\bigwedge
$\left\{ \right\}$	Cool storage	Load shifting	
	Gas heaters	Peak clipping	Peak clipping
Į	Industrial process heat exchangers	Peak clipping/strategic conservation	
	Cogeneration	Peak clipping	
			Elexible load shape

A Simple DSM Planning Cycle

Cost Effectiveness Requirement in DSM – *The Traditional Approach*

The costs associated with any DSM program must be less than any «equivalent» supply-side option. (i.e., $NPV = PV_{AS} - PV_{I}$)

Example of a DSM Program for Electric Water Heaters

- Hot water consumption pattern explored
- Two-stage discharging is assumed

D

The Effect of Standing time on Temperature

DSM Program Implimentation Options

Source: Atikol U. *Energy* 62 (2013) 435-440.

Cost-Effectiveness of the Peak-Shifting DSM Program

- Cost of each timer + installation \$42 USD
- ▶ 5667 houses selected (5667 x $3kW \rightarrow 17 MW$)
- Rebate $200 \rightarrow Total cost of program 242$
- Total cost of timer installations = \$1,371,414
- A 17-MW power plant costs \$12,000,000.-
- Avoided cost is <u>\$ 10,628,586</u> USD
- Cost effectiveness is 12.4 W /

Source: Atikol U. Energy 62 (2013) 435-440.

Importance of DSM for Networks

- ► The capacity of network needs to be taken into account →Helps regulating the power in the network.
- Even though the installed power is sufficient for meeting the demand if the network capacity is not good, then demand may not be met.
- DSM needs to be applied

Renewables Complicate the Problem Further

- Renewable energy may be available when there is no demand
- Demand needs to be modified to use the renewable power when it is available DSM needs to be applied !

A Whole-System Management for Lower Prices

Electric energy is volatile

D

Need to use it when it is available

A Whole-System Management for Lower Prices

Future Directions

- Advanced control systems for the network to exchange communication with the end-users
- Smart grid is helpful
- Smart pricing
- Demand response
- Energy storage strategies
- On-site generation of electricity

Demand Response Based on Advanced Control Theory

Energy Controllers on the Demand-Side

Source: Palensky et al. IEEE Transactions on Industrial nformatics. Vol. 7 (2011) 381-388.

Wholesale Electricity Market and Pricing of Electricity

Source: Samadi et al. IEEE Transactions on Smart Grid. Vol. 3 (2012) 1170-1180.

D

Approaches in Pricing of Electricity

- Average pricing
- Peak load pricing
- Adaptive (real-time) pricing

Common Barriers for DSM in Developing Countries

- Lack of finance
- Inadequate incentives
- Inappropriate institutional structure
- Lack of policy framework
- Habits, traditions and cultural issues
- Poor public awareness
- Lack of technical expertise and know-how

