CHAPTER
 2

Properties of Pure Substances

A Pure Substance

Is a substance that is chemically homogenous and fixed in chemical composition.(e.g. water, nitrogen, air \& etc.)
\rightarrow mixture of oil and water is not a pure substance.
\rightarrow a mixture of two or more phases of a pure substance is still a pure substance.

Phase of a Pure Substance

The phase of a substance is the homogeneous, chemical, and physical of aggregation of its molecules.

The molecules in a solid are kept at their positions by the large spring like inter-molecular forces.

At high temperature, molecules overcome the inter molecules forces and break away.

In the liquid phase the molecules are no longer at fixed positions, and chunks of the molecules float about each other.

In the gas phase the molecules are far apart from each other, irregular and move about at random colliding with each other. Molecules are higher energy level than they are in liquid or solid phases.

Phase Change of Pure Substances

Attention will be focused on liquid and vapor phases in this section. All substances exhibit general behavior. Water will be used in the following example.

compressed liquid or subcooled liquid
At 1 atm and $20^{\circ} \mathrm{C}$, water exists in the liquid phase(i.e. not about to vaporize).

As heat added the temperature increases and water expands.(i.e. v increases)

[^0]

Saturated liquid-vapor mixture

The state at which the liquid and vapor phases coexist in equilibrium.

Once boiling starts, the temperature will not rise until the liquid completely vaporizes.

Saturated vapor

A vapor that is about to condense.

Heat

Superheated vapor

A vapor that is not about to condense (i.e., not a saturated vapor).

FIGURE 2-1

T-v diagram for the heating process of water at constant pressure.

v

FIGURE 2-2 Liquid-vapor saturation curve

Holding the pressure constanta $1 \mathbf{~ a t m}$, boiling takes place at $100^{\circ} \mathrm{C}$. By changing the pressure we can change the boiling temperature of water.

Saturation temperature $T_{\text {sat }}$

The temperature at which a pure substance starts boiling.

Saturation pressure $P_{\text {sat }}$

The pressure at which a pure substance starts boiling.

Property Diagrams for phase-Change Processes

FIGURE 2-3 T-V Diagram of a Pure Substance
P-v diagram of a pure substance.

T-v diagram of constantpressure phase-change processes of a pure substance at various pressures (numerical values are for water).

P-v diagram of a substance that contracts on freezing.

P - v diagram
of a
substance
that expands
on freezing
(such as
water).

When all three phases of a substance co-exist in equilibrium under some conditions, it is called triple phase.

On P-v or T-v diagrams \longrightarrow Triple line
On P-T or T-v diagrams \longrightarrow Triple point

P-T diagram of pure substances.

$P-v-T$ surface of a substance that contracts on freezing.

P-v-T surface of a substance that expands on freezing (like water).

PROPERTY TABLES

Enthalpy $\rightarrow H=U+P V \quad(\mathrm{~kJ}) \quad$ or $\quad h=u+P V \quad(\mathrm{~kJ} / \mathrm{kg})$
If u is not listed $\rightarrow u=h-P v$

Saturated Liquid and Saturated Vapor States

(Tables A4 and A5 in Çengel)
Subscripts
f - saturated liquid
g - saturated vapor
$f g$ - the difference between saturated vapor and saturated liquid
For example:
$v_{f}=$ specific volume of saturated liquid
$v_{g}=$ specific volume of saturated vapor

$$
v_{f g}=v_{g}-v_{f}
$$

A partial list of Table A-5.

		Enthalpy kJ/kg		
Press. $P \mathrm{kPa}$	Sat temp. $T_{\text {sat }}{ }^{\circ} \mathrm{C}$		Sat. liquid h_{f}	Evap. $h_{f g}$	Sat. Vapor h_{g}
20	60.06		251.42	2357.5	2608.9
25	64.94		271.96	2345.5	2617.5
30	69.09		289.27	2335.3	2624.6
40	75.86		317.62	2318.4	2636.1
50	81.32		340.54	2304.7	2645.2
75	91.76		384.44	2278.0	2662.4

Enthalpy of vaporization, $h_{f g}$ (Latent heat of vaporization): The amount of energy needed to vaporize a unit mass of saturated liquid at a given temperature or pressure.

Saturated Liquid-Vapor Mixture

In order to know the properties of the liquid and vapor phase in the mixture a new property is defined:

Quality, x : The ratio of the mass of vapor to the total mass of the mixture. Quality is between 0 and $1 \quad 0$: sat. liquid, 1: sat. vapor.

$$
x=\frac{m_{\mathrm{vapor}}}{m_{\mathrm{total}}} \quad m_{\mathrm{total}}=m_{\mathrm{liquid}}+m_{\mathrm{vapor}}=m_{f}+m_{g}
$$

$$
\boldsymbol{V}=\boldsymbol{V}_{\boldsymbol{f}}+\boldsymbol{V}_{\boldsymbol{g}}
$$

$$
V=m v \rightarrow m_{t} v_{a v}=m_{f} v_{f}+m_{g} v_{g}
$$

$$
m_{f}=m_{t}-m_{g} \rightarrow m_{t} v_{a v}=\left(m_{t}-m_{g}\right) v_{f}+m_{g} v_{l}
$$

$$
\div m_{t} \rightarrow v_{a v}=(1-x) v_{f}+x v_{g}
$$

or

$$
v_{a v}=v_{f}+x v_{f g} \quad x=\frac{v_{a v}-v_{f}}{v_{f g}}
$$

Similar equations can be derived for u or $\mathbf{h}: \quad u_{\mathrm{avg}}=u_{f}+x u_{f g}$

$$
\begin{equation*}
h_{\mathrm{avg}}=h_{f}+x h_{f g} \tag{kJ/kg}
\end{equation*}
$$

Example 5 kg of steam at 200 kPa occupied a volume of $2.60 \mathrm{~m}^{3}$. Determine temperature and quality.

$$
v_{a v} \rightarrow v=\frac{\text { volume }}{\text { mass }}=\frac{2.60}{5}=0.52 \mathrm{~m}^{3} / \mathrm{kg}
$$

Compare this with the values given in Table A-5
Note : $T_{\text {sat }}=120.23{ }^{\circ} \mathrm{C}$ at $200 \mathrm{kPa}(=0.200 \mathrm{Mpa})$

$$
v_{f}=0.001061 \text { and } v_{g}=0.8857
$$

$$
x=\frac{v_{a v}-v_{f}}{v_{f g}}=\frac{v-v_{f}}{v_{g}-v_{f}}=\frac{0.52-0.001061}{0.8857-0.001061}=0.587
$$

A partial listing of Table A-6.

	\checkmark	u	h
$T,{ }^{\circ} \mathrm{C}$	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/kg	$\mathrm{kJ} / \mathrm{kg}$
	$P=0.1 \mathrm{MPa}\left(99.61{ }^{\circ} \mathrm{C}\right)$		
Sat.	1.6941	2505.6	2675.0
100	1.6959	2506.2	2675.8
150	1.9367	2582.9	2776.6
1300	7.26005	4687.2	5413.3
	$P=0.5 \mathrm{MPa}\left(151.83{ }^{\circ} \mathrm{C}\right)$		
Sat.	0.37483	2560.7	2748.1
200	0.42503	2643.3	2855.8
250	0.47443	2723.8	2961.0

Superheated Vapor (Table A-6)

$$
\text { characterized by } \quad \text { Lower pressures }\left(P<P_{\text {sat }} \text { at a given } T\right)
$$

Higher tempreatures $\left(T>T_{\text {sat }}\right.$ at a given $\left.P\right)$
Higher specific volumes $\left(v>v_{g}\right.$ at a given P or $\left.T\right)$
Higher internal energies $\left(u>u_{g}\right.$ at a given P or $\left.T\right)$
Higher enthalpies $\left(h>h_{g}\right.$ at a given P or $\left.T\right)$
Example

$$
\begin{aligned}
& \text { at } 0.5 \mathrm{MPa} \rightarrow \mathrm{~h}_{g}=2748.7^{\mathrm{kJ}} / \mathrm{kg} \\
& T_{\text {sat }}=151.86{ }^{\circ} \mathrm{C} \\
& \text { However at the same pressure, } \\
& \text { if } T=200{ }^{\circ} \mathrm{C} \rightarrow h=2855.4 \mathrm{~kJ} / \mathrm{kg} \\
& \qquad \rightarrow h>h_{g}
\end{aligned}
$$

Compressed Liquid

characterized by Higher pressures $\left(P>P_{\text {sat }}\right.$ at a given $\left.T\right)$
Lower tempreatures $\left(T<T_{\text {sat }}\right.$ at a given $\left.P\right)$
Lower specific volumes $\left(v<v_{f}\right.$ at a given P or $\left.T\right)$
Lower internal energies $\left(u<u_{f}\right.$ at a given P or $\left.T\right)$
Lower enthalpies ($h<h_{f}$ at a given P or T)
In the absence of data a compressed liquid is approximated as a saturated liquid at the given temperature.

Given: P and T

$$
\begin{aligned}
& v \cong v_{f @ T} \\
& u \cong u_{f} @ T \\
& h \cong h_{f @ T}
\end{aligned}
$$

Example

Example

State	1	2	3	4	5
$\boldsymbol{P}, \mathrm{kPa}$	200	300	2000	476.1	5000
T, ${ }^{\circ} \mathrm{C}$	120.23	133.56	300	150	100
x, \%	80	1	M	92	M
$v,{ }^{m^{3} / k g}$	0.709	I	0.125	0.361	0.00104

state $1($ table $A-5) \rightarrow T=T_{\text {sat@200kPa }}=120.23^{\circ} \mathrm{C}$

$$
\begin{aligned}
v & =v_{f}+x v_{f g} \\
& =\mathbf{y} \\
& =0.01061+0.8(0.8857-0.001061)=0.709
\end{aligned}
$$

state $2 \rightarrow$ at $300 \mathrm{kPa} T_{\text {sat }}=133.55^{\circ} \mathrm{C}$ $x=$ indeterminate $=I$
$v=$ indeterminate $=I$
either saturated liquid or saturated vapor or saturated liquid-vapor mixture
state $3 \rightarrow$ at $2000 \mathrm{kPa} T_{\text {sat }}=212.42^{\circ} \mathrm{C}$
\therefore Superheated (Table A-6)
$\mathrm{x}=$ meaning less $=\mathrm{M}$
$\mathrm{v}=012547 \mathrm{~m}^{3} / \mathrm{kg}$
state $4 \rightarrow$ at $150^{\circ} \mathrm{C} \quad P_{\text {sat }}=0.4758 M P a \quad v_{f}=0.001091 \quad v_{g}=0.3928 \mathrm{~m}^{3} / \mathrm{kg}$

$$
x=\frac{v-v_{f}}{v_{g}-v_{f}}=\frac{0.361-0.001091}{0.3928-0.001091}=0.919(\text { or } 92 \%)
$$

state $5 \rightarrow$ at $5000 \mathrm{kPa} \quad T_{\text {sat }}=263.99^{\circ} \mathrm{C} \quad \xrightarrow{\text { Compressed liquid }} \quad \mathrm{x}=$ meaningless $=\mathbf{M}$ Table $(A-7)$ at 5 MPa and $100^{\circ} \mathrm{C} \quad v=0.001041 \mathrm{~m}^{3} / \mathrm{kg}$

The Ideal Gas Equation of State

Equation of State: any equation that relates the pressure, temperature, and specific of a substance.

Specific volume
 Absolute pressure Gas constant

Ideal gas \longrightarrow is a gas which obeys the above relation. The gas constant R is different for each gas.

$$
R=\frac{R_{u}}{M} k J / k g \cdot K
$$

$$
\begin{aligned}
& R_{u}=\text { universal gas constant } \\
& \text { M=molar mass(molecules weight) }
\end{aligned}
$$

$R_{u}=8.314{ }^{\mathrm{kJ}} /{ }_{(\text {kmol. } \text { K })} \quad$ or $1.986^{\mathrm{Btu} /(\text { lbmol.R) } \quad \text { (same for all substances) }) ~}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ideal Gas Equation in different forms:
State 1
State 2

$$
V=m \vee \longrightarrow P V=m R T \quad \rightarrow \boldsymbol{P}_{1} \boldsymbol{V}_{1}=\boldsymbol{m} \boldsymbol{R} \boldsymbol{T}_{1} \quad \boldsymbol{P}_{2} \boldsymbol{V}_{2}=\boldsymbol{m} \boldsymbol{R} \boldsymbol{T}_{2}
$$

$$
\begin{gathered}
m R=(M N) R=N R_{u} \longrightarrow P V=N R_{u} T \\
\vee=N \bar{v} \longrightarrow P \bar{\vee}=R_{u} T \\
\downarrow \\
\text { Molar specific volume }
\end{gathered}
$$

$$
\frac{P_{1} \vee_{1}}{T_{1}}=\frac{P_{2} \bigvee_{2}}{T_{2}}=\mathrm{mR}
$$

Example
Determine the density and specific volume of air at room temperature.
Room temperature $=20^{\circ} \mathrm{C}$
$273+20=293 \mathrm{~K}$
$\rightarrow \boldsymbol{P V}=\boldsymbol{m} \boldsymbol{R T}$

$$
P^{1} / \rho=R T
$$

$$
\rho=\frac{P}{R T}=\frac{101(k P a)}{0.287(\mathrm{~kJ} / \mathrm{kg}) 293(\mathrm{~K})}=1.2^{\mathrm{kg}} / \mathrm{m}^{3}
$$

$$
v=\frac{1}{\rho}=0.83 \mathrm{~m}^{3} / \mathrm{kg}
$$

FIGURE 2-14
Percentage of error
involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

COMPRESSIBILITY FACTOR

Gases deviate from ideal-gas behavior significantly at state near saturation region and the critical point.
Hence a correction is introduced:
\longrightarrow compressibility factor $=Z=\frac{P V}{R T}$ (for ideal gases $\mathrm{Z}=1$)
\mathbf{Z} is an indication of deviation from ideal gas behavior.
Gases behave differently at a given temperature and pressure.

$$
\underset{\downarrow}{P_{R}}=\frac{P}{P_{\mathrm{cr}}} \quad \underset{\downarrow}{T_{R}=\frac{T}{T_{\mathrm{cr}}}}
$$

Reduced Pressure

Reduced Temperature

The Z - factor is approximately the same for all gases at the same reduced temperature and pressure.

FIGURE 2-13
Comparison of Z factors for various gases.

1) $\quad P_{R} \ll 1$, gases behave as an ideal gas regardless of T.
2) $\quad T_{R}>2$, ideal gas assumed regardless of $\mathrm{P}\left(\right.$ except $\left.P_{R} \gg 1\right)$
3) The deviation from ideal-gas is greatest around critical point (i.e. $T_{R}=1, P_{R}=1$)

Example

Determine the specific volume of R -134-a at 1 MPa and $50^{\circ} \mathrm{C}$.
\longrightarrow if ideal gas equation used
$\rightarrow v=\frac{R T}{P}=\frac{0.08149 \times 323}{1000}=0.02632 \mathrm{~m}^{3} / \mathrm{kg}$

Z can be determined:

$$
\begin{aligned}
& P_{R}=\frac{P}{P_{c r}}=\frac{1 M P a}{4.067 M P a}=0.245 \\
& T_{R}=\frac{T}{T_{c r}}=\frac{323 K}{374.3 K}=0.862
\end{aligned} \quad\left[\begin{array}{r}
Z=0.835 \rightarrow v=Z v_{\text {ideal }} \\
v=0.835 \times 0.02632 \\
=0.02197 \mathrm{~m}^{3} / \mathrm{kg}
\end{array}\right.
$$

OTHER EQUATIONS OF STATE

Several equations have been proposed to represent the $P-v-T$ behavior of substances accurately over a larger region with no limitations.

Van der Waals
 Equation of State

$$
\begin{aligned}
& \left(P+\frac{a}{v^{2}}\right)(v-b)=R T \\
& a=\frac{27 R^{2} T_{\mathrm{cr}}^{2}}{64 P_{\mathrm{cr}}} b=\frac{R T_{\mathrm{cr}}}{8 P_{\mathrm{cr}}}
\end{aligned}
$$

Critical isotherm of a pure substance has an inflection point at the critical state.

Beattie-Bridgeman Equation of State

$$
\begin{aligned}
P=\frac{R_{u} T}{\bar{V}^{2}}\left(1-\frac{c}{\bar{V} T^{3}}\right)(\bar{V}+B)-\frac{A}{\bar{V}^{2}} & \begin{array}{l}
\text { The constants are given in } \\
\text { Table 3-4 for various } \\
\text { substances. It is known to be }
\end{array} \\
A=A_{0}\left(1-\frac{a}{\bar{V}}\right) B=B_{0}\left(1-\frac{b}{\bar{V}}\right) & \begin{array}{l}
\text { reasonably accurate for } \\
\text { densities up to about } 0.8 \rho_{\mathrm{cr}}
\end{array}
\end{aligned}
$$

Benedict-Webb-Rubin Equation of State
$P=\frac{R_{u} T}{\bar{V}}+\left(B_{0} R_{u} T-A_{0}-\frac{C_{0}}{T^{2}}\right) \frac{1}{\bar{v}^{2}}+\frac{b R_{u} T-a}{\bar{v}^{3}}+\frac{a \alpha}{\bar{v}^{6}}+\frac{c}{\bar{V}^{3} T^{2}}\left(1+\frac{\gamma}{\bar{v}^{2}}\right) e^{-\gamma / 0^{2}}$
The constants are given in Table 3-4. This equation can handle substances at densities up to about $2.5 \rho_{\text {cr }}$

Virial Equation of State

$P=\frac{R T}{v}+\frac{a(T)}{v^{2}}+\frac{b(T)}{v^{3}}+\frac{c(T)}{v^{4}}+\frac{d(T)}{v^{5}}+\ldots$
The coefficients $a(T), b(T), c(T)$, and so on, that are functions of temperature alone are called virial coefficients.

Percentage of error involved in various equations of state for nitrogen
$\left(\%\right.$ error $\left.=\left[\left(\left|v_{\text {table }}-v_{\text {equation }}\right|\right) / v_{\text {table }}\right] \times 100\right)$.

[^0]: Heat

