CHAPTER
 3

The First Law of Thermodynamics:

 Closed SystemsClosed system
Energy can cross the boundary of a closed system in two forms: Heat and work

Surroundings

FIGURE 3-1 Specifying the directions of heat and work.

ENERGY TRANSFER BY HEAT

Heat: The form of energy that is transferred between two systems (or a system and its surroundings) by virtue of a temperature difference.

FIGURE 2-13

Energy can cross the boundaries of a closed system in the form of heat and work.

FIGURE 2-14

Temperature difference is the driving force for heat transfer. The larger the temperature difference, the higher is the rate of heat transfer.

$$
\begin{array}{lll}
q=\frac{Q}{m} & (\mathrm{~kJ} / \mathrm{kg}) & \begin{array}{l}
\text { Heat transfer per } \\
\text { unit mass }
\end{array} \\
Q=\dot{Q} \Delta t \quad(\mathrm{~kJ}) & \begin{array}{l}
\text { Amount of heat transfer } \\
\text { when heat transfer rate is } \\
\text { constant }
\end{array} \\
Q & =\int_{t_{1}}^{t_{2}} \dot{Q} d t & (\mathrm{~kJ}) \begin{array}{l}
\text { Amount of heat transfer } \\
\text { when heat transfer rate } \\
\text { changes with time }
\end{array}
\end{array}
$$

$$
\begin{gathered}
Q=30 \mathrm{~kJ} \\
m=2 \mathrm{~kg} \\
\Delta t=5 \mathrm{~s} \\
\square \\
\dot{Q}=6 \mathrm{~kW} \\
q=15 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

30 kJ
heat

Energy is recognized as heat transfer only as it crosses the system boundary.

During an adiabatic process, a system exchanges no heat with its surroundings.

Sign Convention for Heat

$(+)$ ve if to the system
$(-)$ ve if from the system

ENERGY TRANSFER BY WORK

- Work: The energy transfer associated with a force acting through a distance.
- Or an energy interaction which is not caused by a temperature difference between a system and its surroundings
- A rising piston, a rotating shaft, and an electric wire crossing the system boundaries are all associated with work interactions

$$
w=\frac{W}{m} \quad(\mathrm{~kJ} / \mathrm{kg}) \quad \begin{aligned}
& \text { Work done } \\
& \text { per unit mass }
\end{aligned}
$$

Power is the work done per unit time (kW)

Moving a positive charge from one place to another requires work

A spring is doing work on the surroundings

Sign Convention of Work

(+)ve if work done by a system
$(-) v e$ if work done on a system

Moving boundary work ($P d V$ work):
The expansion and compression work in a piston-cylinder device.

$$
\begin{gather*}
\delta W_{b}=F d s=P A d s=P d V \\
W_{b}=\int_{1}^{2} P d V \quad(\mathrm{~kJ}) \tag{kI}
\end{gather*}
$$

FIGURE 3-2

A gas does a differential amount of work $\mathbf{d} W_{b}$ as it forces the piston to move by a differential amount de.

The area under curve on a P-V diagram represents the boundary work.

First Law of Thermodynamics or the Conservation of energy Principle:

Net energy transfer to (or from) the system As heat and work

Net increase (or decrease)
İn the total energy
of the system
$Q_{\text {net,in }}-W_{\text {net,out }}=\Delta E_{\text {systen }}$ or $\quad Q-W=\Delta E$
$($ Remember from chapter 1: $\quad \Delta E=\Delta U+\Delta K E+\Delta P E)$
\(\left.\begin{array}{ll} \& Q-W=\Delta U+\Delta K E+\Delta P E \quad(\mathrm{~kJ})

where \& \Delta \mathrm{U}=\mathrm{m}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right)

\& \Delta K E=1 / 2 \mathrm{~m}\left(V_{2}^{2}-V_{1}^{2}\right)

\& \Delta P E=m g\left(\mathbf{Z}_{2}-\mathbf{Z}_{1}\right)\end{array}\right] \quad\)| Most closed systems |
| :--- |
| encountered in |
| practice are stationary |
| i.e. $\Delta P E=0 \Delta K E=0$ |

$$
Q-W=\Delta U
$$

Example:

$$
\begin{gathered}
Q-W=\Delta U+\Delta K E+\Delta P E \\
\rightarrow \Delta \mathbf{U}=\mathbf{m}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right) \\
\rightarrow \mathbf{W}=\mathbf{W}_{\mathrm{pw}}+\mathbf{W}_{\text {piston }} \\
\mathbf{Q}-(\mathbf{W} p \mathrm{w}+\mathbf{W} \text { piston })=\mathbf{m}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right)
\end{gathered}
$$

$$
Q=80 \mathrm{~kJ}
$$

$$
\begin{aligned}
& u_{1}=2709.9 \mathrm{~kJ} / \mathrm{kg} \\
& u_{2}=2659.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
(+80 \mathrm{~kJ})-((-18.5 \mathrm{~kJ})+\text { Wpiston=(5kg)(2659.6-2709.9)kJ/kg }
$$

$$
\longrightarrow \quad \text { Wpiston }=\mathbf{3 5 0 k} \mathbf{J}
$$

Example: constant-pressure process, initially saturated water vapor $\mathbf{T}_{2}=$?

 $Q-W_{\mathrm{el}}=m\left(\mathbf{h}_{2}-\mathbf{h}_{1}\right)=$
$-3.7 \mathrm{~kJ}-(-7.2 \mathrm{~kJ})=0.025 \mathrm{~kg}\left(\mathrm{~h}_{2}-2725.3 \mathrm{~kJ} / \mathrm{kg}\right)$
$Q-W_{\text {other }}=H_{2}-H_{1}$ $\mathbf{h}_{2}=2865.3 \mathrm{~kJ} / \mathrm{kg}$

$$
\left.\begin{array}{l}
\mathbf{P}_{2}=300 \mathrm{kPa} \\
\mathbf{h}_{2}=2865.3
\end{array}\right\} \quad \mathrm{T}_{2}=200^{\circ} \mathrm{C} \quad \text { Table A-6 }
$$

Note: for constant pressure case: $Q-W_{\text {other }}=\Delta H \quad$ and $W=W_{\text {boundary }}+W_{\text {other }}$

Example: constant volume

Q

$$
\begin{aligned}
& Q=m\left(u_{2}-u_{1}\right)
\end{aligned}
$$

Note: for constant volume case: $\quad Q-W_{\text {other }}=\Delta U+\Delta K E+\triangle P E$

Example: changing volume and pressure

$$
Q=m\left(u_{2}-u_{1}\right)
$$

note: $\boldsymbol{U}_{1} \approx \boldsymbol{U}_{\mathrm{f}} @$ Tsat
$u_{2}=u_{\mathrm{f}}+\boldsymbol{x}_{2} \boldsymbol{u}_{\mathrm{fg}}$

Specific Heats

\longrightarrow The energy required to raise the temperature of a unit of a substance by one degree.
$\longrightarrow C_{\mathrm{v}}$: specific heat at constant volume
$\longrightarrow C_{\mathrm{p}}$: specific heat at constant pressure

Helium gas:

3.13 kJ

5.2 kJ
$C_{\mathrm{p}}>\boldsymbol{C}_{\mathrm{v}}$
Because at constant pressure, the energy required for expansion work must also be supplied to system.

First law for constant volume:

$$
\begin{aligned}
\left(\mathbf{w}_{\mathbf{b}}=\mathbf{0}\right) \rightarrow \underbrace{\delta \mathbf{q}-\delta \mathbf{w}_{\text {other }}}_{C_{v} d T} & =\mathbf{d u} \\
& \rightarrow \mathbf{d u}=\mathbf{C}_{\mathbf{v}} \mathbf{d T} \text { or } \mathbf{C}_{\mathbf{v}}=\left(\frac{\partial \mathbf{u}}{\partial T}\right)_{\mathbf{v}}
\end{aligned}
$$

First law for constant pressure:

$$
\begin{aligned}
\left(\mathbf{w}_{\mathbf{b}} \neq \mathbf{0}\right) \rightarrow \underbrace{\delta \mathbf{q}-\delta \mathbf{w}_{\text {other }}}_{C_{p} d T} & =\mathbf{d h} \\
& \rightarrow \mathbf{d h}=\mathbf{C}_{\mathbf{p}} \mathbf{d T} \text { or } \mathbf{C}_{\mathbf{p}}=\left(\frac{\partial \mathbf{\partial h}}{\partial T}\right)_{\mathbf{h}}
\end{aligned}
$$

Ideal Gases:

$$
P v=R T
$$

Joule demonstrated that for ideal
gases $\rightarrow u=u(T) \rightarrow C_{v}=C_{v}(T)$

$$
\left.\begin{array}{c}
h=u+P v \\
P v=R T
\end{array}\right\} \quad h=u+R T
$$

Since R is constant and $u=u(T) \rightarrow h=h(T) \rightarrow C_{\mathrm{p}}=C_{\mathrm{p}}(T)$

$$
\mathbf{d u}=\mathbf{C}_{\mathrm{v}} \mathbf{d T} \quad \text { and } \quad \mathbf{d h}=\mathbf{C}_{\mathrm{p}} \mathbf{d T}
$$

Three ways of calculating Δu and Δh
$\Delta h=h_{2}-h_{1} \leftarrow$ from tables
$\Delta h=\int_{1}^{2} c_{p}(T) d T$
$\Delta h \cong c_{p, a v g} \Delta T$

Similarly:

$\Delta u=u_{2}-u_{1}$ (table)
$\Delta u=\int_{1}^{2} c_{V}(T) d T$
$\Delta u \cong c_{\mathrm{V}, \text { avg }} \Delta T$

$$
\begin{gathered}
\Delta u=u_{2}-u_{1}=\int_{1}^{2} c_{v}(T) d T \\
\Delta h=h_{2}-h_{1}=\int_{1}^{2} c_{p}(T) d T \\
h=u+R T, \xrightarrow{\longrightarrow} c_{p} d T=c_{v} d T+R d T \\
\div d T \\
\text { On a molar basis } \longrightarrow c_{p}=c_{v}+R \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \\
\text { Specific heat ratio } \quad \bar{c}_{v}+R_{u} \quad(\mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}) \\
k=\frac{c_{p}}{c_{v}}
\end{gathered}
$$

Solids and Liquids:

Can be approximated as incompressible: $\quad c_{p} \cong c_{v}=c$
Again, specific heats depend on temperature only.

$$
\mathbf{d u}=\mathbf{C}_{\mathbf{v}} \mathbf{d T}=\mathbf{C}(\mathbf{T}) \mathbf{d} \mathbf{T}
$$

The change in internal energy between states 1 and 2:

$$
\begin{aligned}
& \Delta u=u_{2}-u_{1}=\int_{1}^{2} c(T) d T \\
& \Delta u=c_{\text {avg }}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

$\mathrm{Q}-\mathrm{W}=\Delta \mathrm{U}$ or $\Delta \mathrm{U}=\mathbf{0}$

$$
\begin{aligned}
& \Delta U=\Delta U_{\text {iron }}+\Delta U_{\text {water }}=0 \\
& {\left[m C\left(T_{2}-T_{1}\right)\right]_{\text {iron }}+\left[m C\left(T_{2}-T_{1}\right)\right]_{\text {water }}=0} \\
& m_{\text {water }}=\frac{V}{v_{25 \mathrm{C}}}=\frac{0.5 \mathrm{~m}^{3}}{0.001 \mathrm{~m}^{3} / \mathrm{kg}}=500 \mathrm{~kg}
\end{aligned}
$$

Specific heats are determined from table A-3.

$$
\begin{aligned}
& 50 \mathrm{~kg}\left(0.45 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C} \mathrm{C}^{)}\left(T_{2}-80^{\circ} \mathrm{C}\right)+500 \mathrm{~kg}\left(4.18 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}\right)\left(T_{2}-25^{\circ} \mathrm{C}\right)=0\right. \\
& T_{2}=25.6^{\circ} \mathrm{C}
\end{aligned}
$$

Example 1 - Class Work

- Radon gas initially at $65 \mathrm{kPa}, 200^{\circ} \mathrm{C}$ is to be heated in a closed, rigid container until it is at $400^{\circ} \mathrm{C}$. The mass of the radon is 0.393 kg .
- A table of properties shows that at $200^{\circ} \mathrm{C}$, the internal energy of radon is $26.6 \mathrm{~kJ} / \mathrm{kg}$; at $400^{\circ} \mathrm{C}$ it is $37.8 \mathrm{~kJ} / \mathrm{kg}$.
- Determine the amount of heat required.
- Determine the final pressure
(Draw a simple diagram and put the information on it)

Example 2
Air at a temperature of $500^{\circ} \mathrm{C}$ is compressed in a pistoncylinder arrangement at a constant pressure of 1.2 MPa from a volume of $2 \mathrm{~m}^{3}$ to a volume of $0.4 \mathrm{~m}^{3}$. if the internal energy decrease is 4820 kJ , find
a. the work done during the reversible compression
b. The heat transferred
c. The change of enthalpy
d. The average specific heat at constant pressure.
a) $W_{1-2}=P\left(V_{2}-V_{1}\right)=1.2 \times 10^{3} \mathrm{kPa}\left\lfloor(0.4-2) \mathrm{m}^{3}\right\rfloor=-1920 \mathrm{~kJ}$
b) $Q_{1-2}-W_{1-2}=U_{2}-U_{1} \rightarrow Q_{1-2}-(-1920 \mathrm{~kJ})=-4820 \mathrm{~kJ} \rightarrow Q_{1-2}=-6740 \mathrm{~kJ}$

Example 3

The radiator of a steam heating system is filled with superheated vapor. The volume of the radiator is 15 L and the inlet and outlet valves are closed. The pressure inside the radiator drops from 200 kPa to 100 kPa while dissipating heat into a room. If the initial temperature of the steam is $200^{\circ} \mathrm{C}$ determine the heat transferred to the room.

$$
\begin{aligned}
& Q-W=\Delta U \\
& Q=m\left(u_{2}-u_{1}\right)=\frac{V}{v}\left(u_{2}-u_{1}\right) \\
& Q=\frac{15 \times 10^{-3} \mathrm{~m}^{3}}{1.0803 \mathrm{~m}^{3} / \mathrm{kg}}\left(u_{2}-2654.4 \mathrm{kj} / \mathrm{kg}\right)
\end{aligned}
$$

In order to find u_{2} we need to find the quality at state 2

$$
\rightarrow x=\frac{v-v_{f}}{v_{f g}} \text { then use } u_{2}=u_{f}+x u_{f g}
$$

