

Eastern Mediterranean University Department of Mechanical Engineering Laboratory Handout

<u>COURSE:</u> Thermodynamics I (MENG 245)

Semester: Fall (2018-2019)

Name of Experiment: The Electric Boiler- Take home experiment

Lab Assistant: Marzieh Rezaei

Instructor: Prof. Dr. Uğur Atikol

Submitted by: Student No: Group No: Date of experiment: Date of submission:

EVALUATION

Data , Results & Graphs (50%)	
Discussion, Conclusion & Answer to Questions (30%)	
Neat and tidy report writing (20%)	
Overall Mark	

Honor Pledge:

By submitting this report I pledge that I have neither given nor received unauthorized assistance on this assignment.

Date

Signature

1. Objective and Introduction

The objective of the steam generator experiment is to practice thermodynamics of evaporation of water and to analyze energy requirement for liquid-gas phase change of saturated steam.

2. Experimental procedure

- 1. Use an electric kettle for boiling the water.
- 2. Fill the kettle up to a certain volume (between 1-2 liter)
- 3. Turn on the electricity
- 4. Measure and record the operational time of the kettle till boiling.

3. Activities

3.1. Determination of the power rating of the kettle

- Measure the initial (T₁-before boiling) and final (T₂-after boiling) temperatures of water. If you do not have temperature sensor/measurement sensor, please assume T₁=20 °C and T₂= 100 °C.
- Assume P=constant at 1 atm during the boiling process.
- Assume that in the final state, water is in saturated mixture state and the quality X=10%.
- Calculate specific enthalpy of compressed liquid water for initial state (h_1) by using equation h = m. c_p . T, and calculate the enthalpy of saturated mixture by reading h_f and h_g values from Thermodynamic Property Tables for the given quality value.
- Measure the kettle operational time during the boiling process.

1) Calculate the power rating of kettle by using the equation below; Please show / describe all steps used for determination of initial and final enthalpies, measurement of time and calculation of water mass.

 $w_{electric} = \frac{m_{water} \times (h_2 - h_1)}{\Delta t}$

2) Show the process on a T-v diagram. Please insert the T, P and v values in the diagram