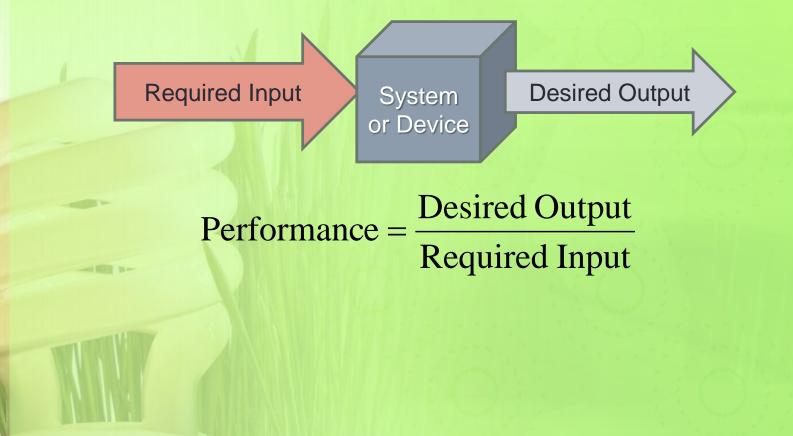
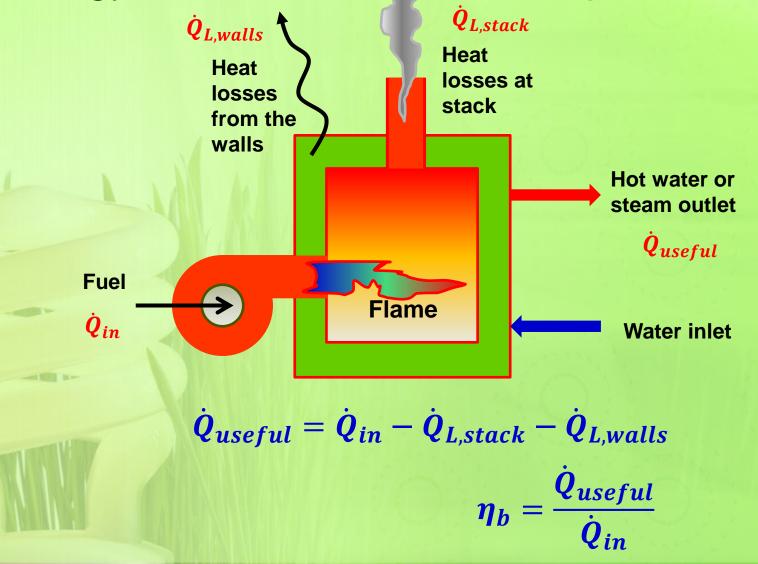
Prof. Dr. Uğur Atikol

MENG449 INTRODUCTION TO ENERGY MANAGEMENT


Chapter 3 – Efficiency Improvement Measures

Coverage:

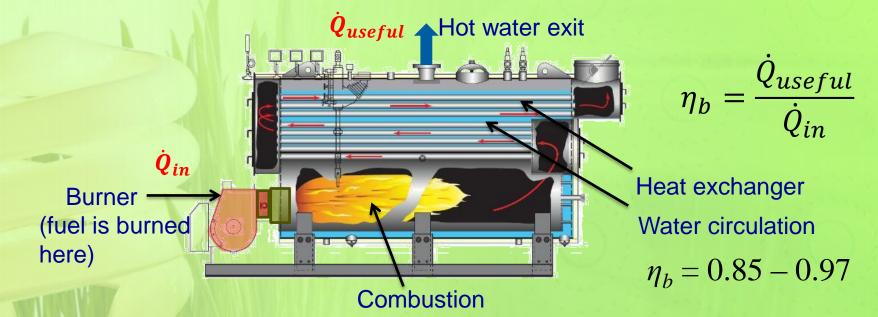

- Definition of performance
- Efficiency of Boilers
- Performance of heat engines
- Performance of refrigeration systems (including air conditioners and heat pumps)
- Efficiency of electric motors
- Efficiency of water pumps
- Energy saving in air compressors
- Performance of electric lights

Performance of Engineering Devices

General definition of performance:

Energy balance for a boiler in operation

4


Boiler efficiency

1. Combustion efficiency

is the indication of burner's ability to burn fuel

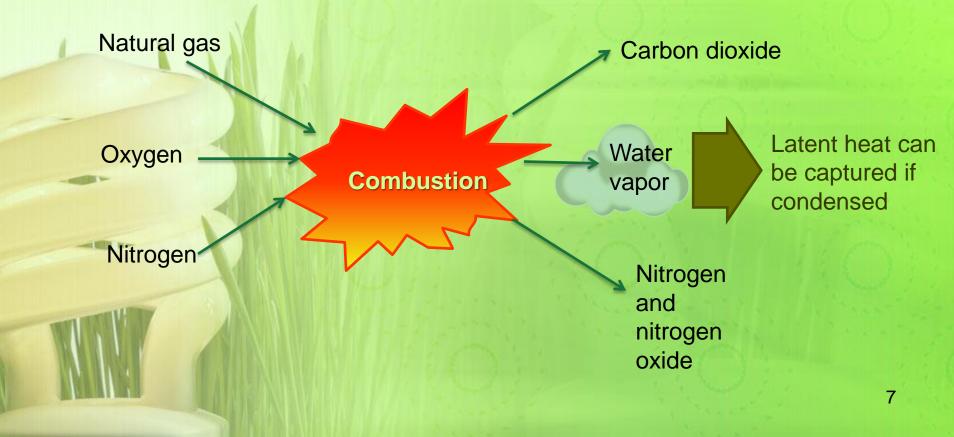
2. Thermal efficiency

specifies the effectiveness of the heat exchanger of the boiler

Boiler efficiency is a combined result of efficiencies of different components of a boiler. A boiler has many sub systems whose efficiency affects the overall boiler 5 efficiency.

Combustion efficiency and excess air in boilers

When fuel and oxygen from the air are in perfect balance - the combustion is said to be **stoichiometric**


Natural Gas		Combustion efficiency (%)				
Excess (%)		Net Stack Temperature* (°C)				
Air	Oxygen	93.3	149	204	260	316
9.5	2.0	85.4	83.1	80.8	78.4	76.0
15	3.0	85.2	82.8	80.4	77.9	75.4
28.1	5.0	84.7	82.1	79.5	76.7	74.0
44.9	7.0	84.1	81.2	78.2	75.2	72.2
81.6	10	82.8	79.8	75.6	71.9	68.2

*Net stack temperature is defined as the temperature difference between flue gas temperature and room temperature

Source: https://www.engineeringtoolbox.com/boiler-combustion-efficiency-d_271.html

Water vapor in flue gases

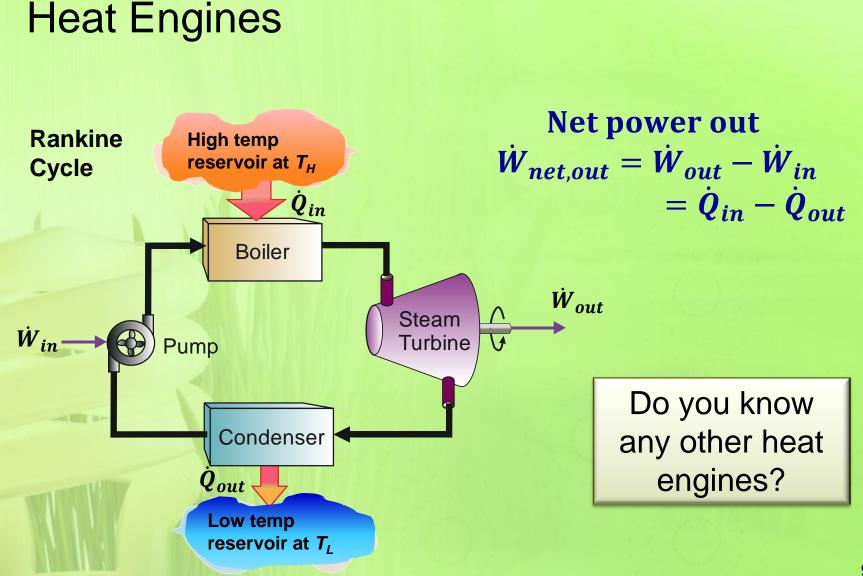
Natural gas combustion: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + energy$

Condensing boilers

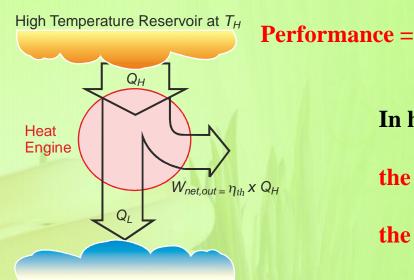
water out

Flame

Efficiencies higher than 90% can be obtained


1600

Flue gases exit from here


Water in Water vapor from the exhaust gas is turned into liquid condensate

Source: https://www.fulton.com/

Thermal efficiency of heat engines

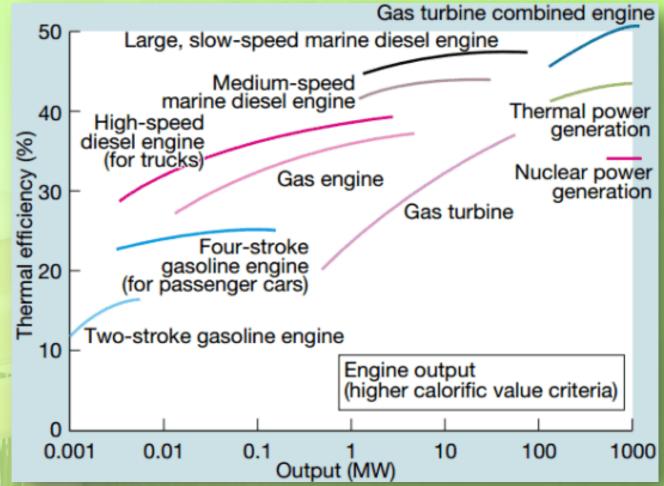
Desired output required input

What I Get What I pay for

In heat engines:

the desired output = net work output = $W_{net,out}$

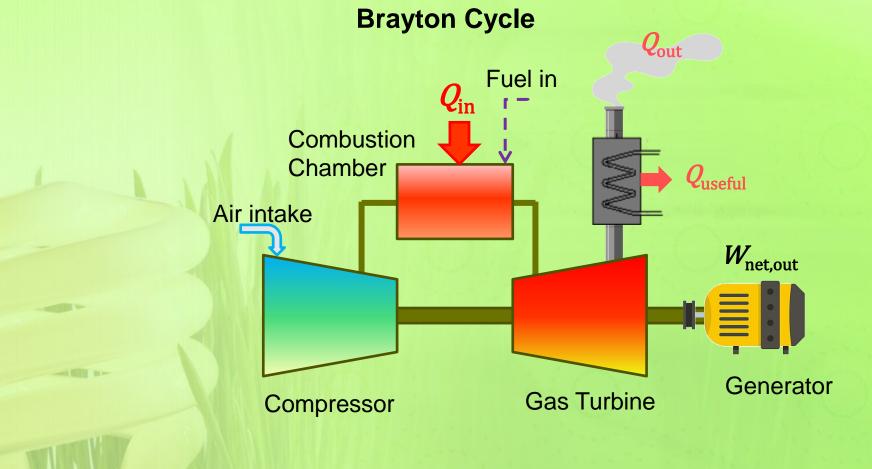
the required input = heat supplied to system = Q_{in}


Low Temperature Reservoir at T_L

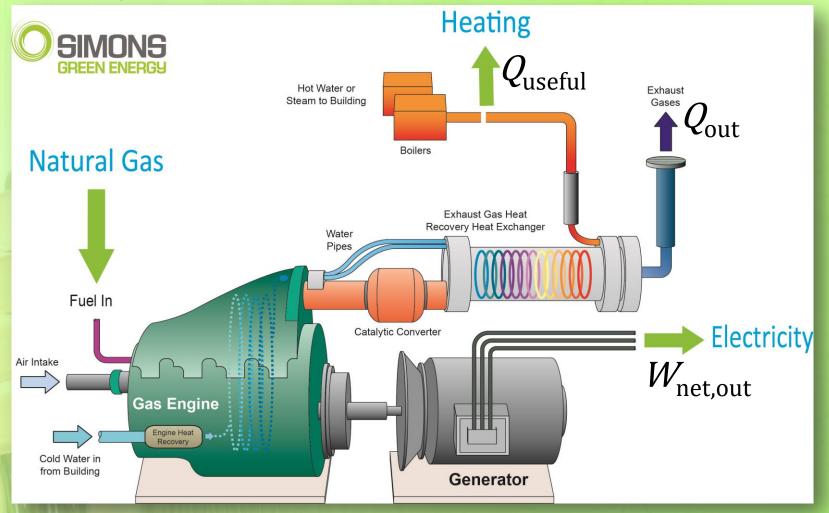
Thermal efficiency

$$\eta_{th} = \frac{W_{net,out}}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}$$

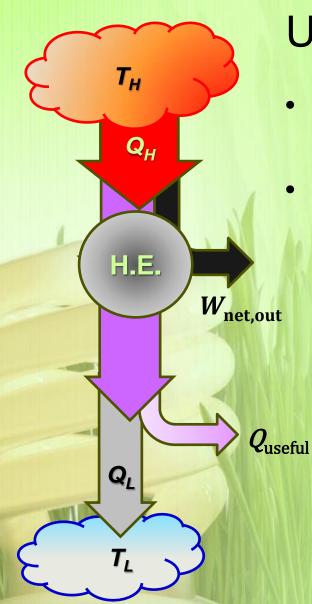
or $\eta_{th} = \frac{W_{net,out}}{Q_H} = 1 - \frac{Q_L}{Q_H}$


10

Efficiencies of different heat engines



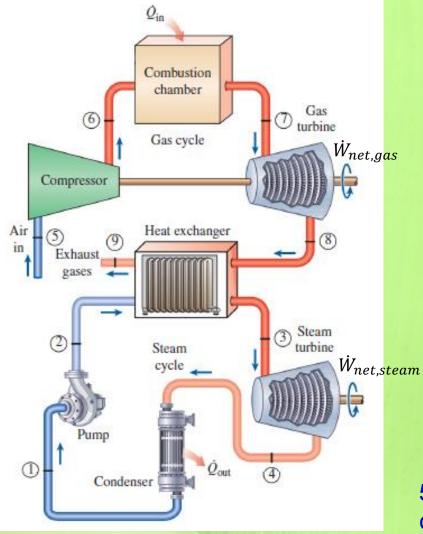
Source: Takaishi, Tatsuo; Numata, Akira; Nakano, Ryouji; Sakaguchi, Katsuhiko (March 2008). "Approach to High Efficiency Diesel and Gas Engines" (PDF). Mitsubishi Heavy Industries Technical Review. 45 (1). ¹¹ Retrieved 2011-02-04.


Cogeneration (or Combined Heat and Power)

Cogeneration (or Combined Heat and Power)

Source: http://simonsboiler.com.au/product/cogeneration-combined-heat-power/ 13

Performance of Cogeneration Units


- Heat rejection from a heat engine can be utilized in heating processes
 - The performance of cogeneration units are expressed as **energy utilization factor**.

Energy Utilization Factor:

$$\varepsilon = \frac{W_{\text{net, out}} + Q_{\text{useful}}}{Q_{\text{H}}}$$

In practice, utilization factors of 80% and above can be achieved.

Combined gas-steam power plant

 $\dot{W}_{net,out} = \dot{W}_{net,gas} + \dot{W}_{net,steam}$

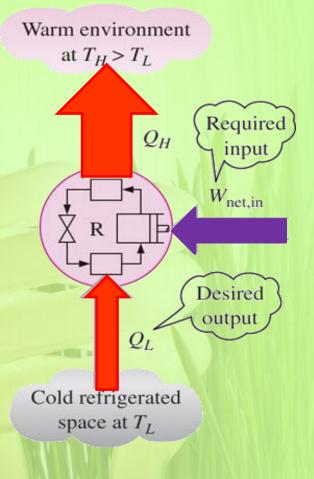
Thermal efficiency of the combined cycle:

$$\gamma = \frac{\dot{W}_{net,out}}{\dot{Q}_{in}}$$

$$=\frac{\dot{W}_{net,gas}+\dot{W}_{net,steam}}{\dot{Q}_{in}}$$

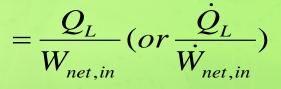
50 – 60% efficiencies can be achieved with combined-cycle power plants.

Refrigerators and Air Conditioners


- They move heat from low-temperature reservoir to high-temperature reservoir
- Different designs of air-conditioners are available:
 - Chillers
 - Single package (roof-top units)
 - Air-to-water heat pumps
 - Variable refrigerant volume (VRV) air conditioners
 Ducted Split-Units

16

Coefficient of Performance (COP) of refrigerators and air conditioners

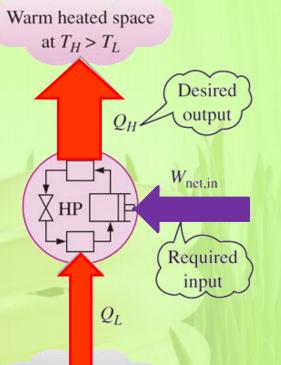

Notice that COP_R , can be greater than unity.

> The *efficiency* of a refrigerator is expressed in terms of the coefficient of performance (*COP*).

> The objective of a refrigerator is to remove heat (Q_L) from the refrigerated space.

For a refrigerator: $COP_{R} =$

Desired output Required input



$$W_{net,in} = Q_H - Q_L \quad (kJ)$$

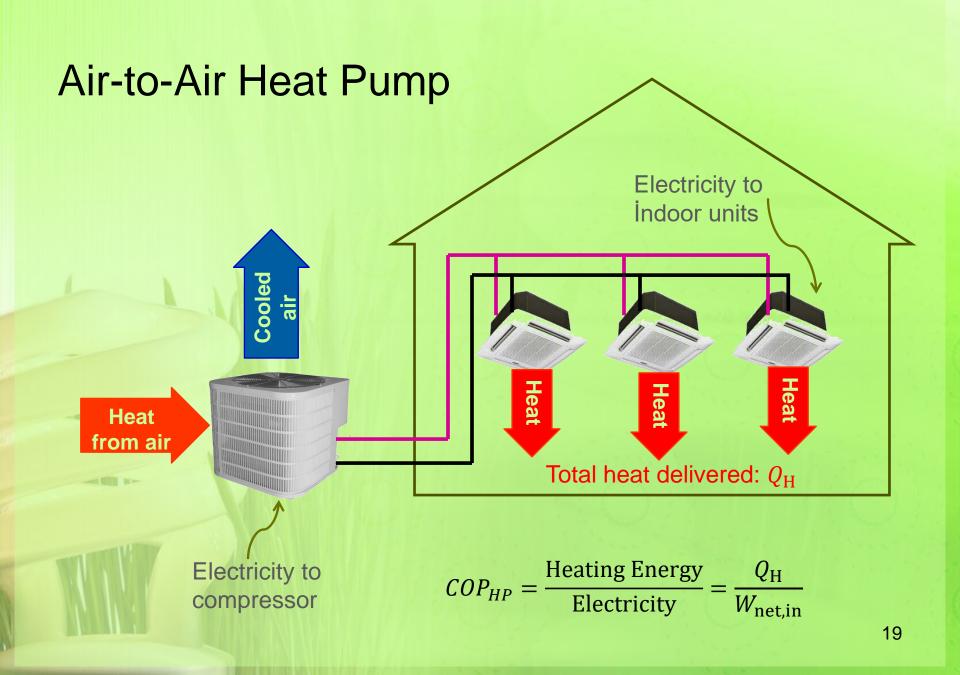
$$COP_{R} = \frac{Q_{L}}{Q_{H} - Q_{L}} = \frac{1}{\frac{Q_{H}}{Q_{L}}}$$

17

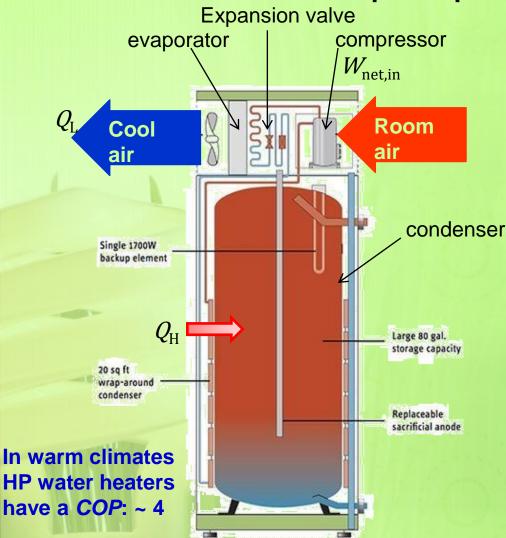
Coefficient of Performance (COP) of heat pumps

> another device that transfer heat from T_L to T_{μ} .

> objective is different : maintain a heated space at high temperature.


 $COP_{HP} =$

Desired output Required input


Cold environment at T_L

The objective of a heat pump is to supply heat Q_H into the warmer space.

$$COP_{HP} = \frac{Q_{H}}{Q_{H} - Q_{L}} = \frac{1}{1 - \frac{Q_{L}}{Q_{H}}}$$

Air-to-water heat pump water heaters

Performance as a water heter:

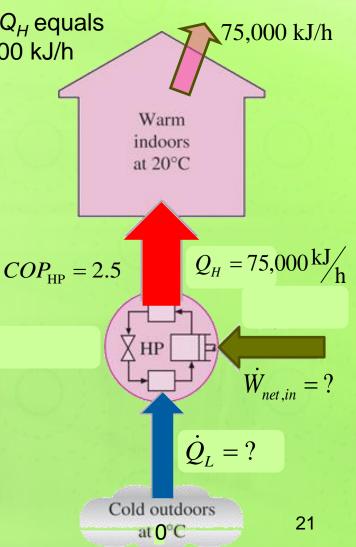
 $COP_{HP} = \frac{Q_H}{W_{net,in}}$

Performance if cool air is utilized while used as a water heater:

 $COP_{R+HP} = \frac{Q_H + Q_L}{W_{net.in}}$

20

Heat Pump Example


For constant indoor temperature it is required that Q_H equals heat losses from the building. Therefore $Q_H = 75,000$ kJ/h

$$COP_{HP} = \frac{\dot{Q}_{H}}{\dot{W}_{net,in}} \rightarrow \dot{W}_{net,in} = \frac{\dot{Q}_{H}}{COP_{HP}} = \frac{75,000}{2.5}$$
$$\dot{W}_{net,in} = 30,000 \text{ kJ/h} \text{ (or 8.33kW)}$$
$$\dot{Q}_{L} = \dot{Q}_{H} - \dot{W}_{net,in} = (75,000 - 30,000)$$
$$= 45,000 \text{ kJ/h}$$

If we replace the heat pump with one that has a COP = 3.5:

$$\dot{W}_{net,in} = \frac{75,000}{3.5} = 21,429 \frac{\text{kJ}}{\text{h}} \text{ or } 5.95 \text{ kW}$$

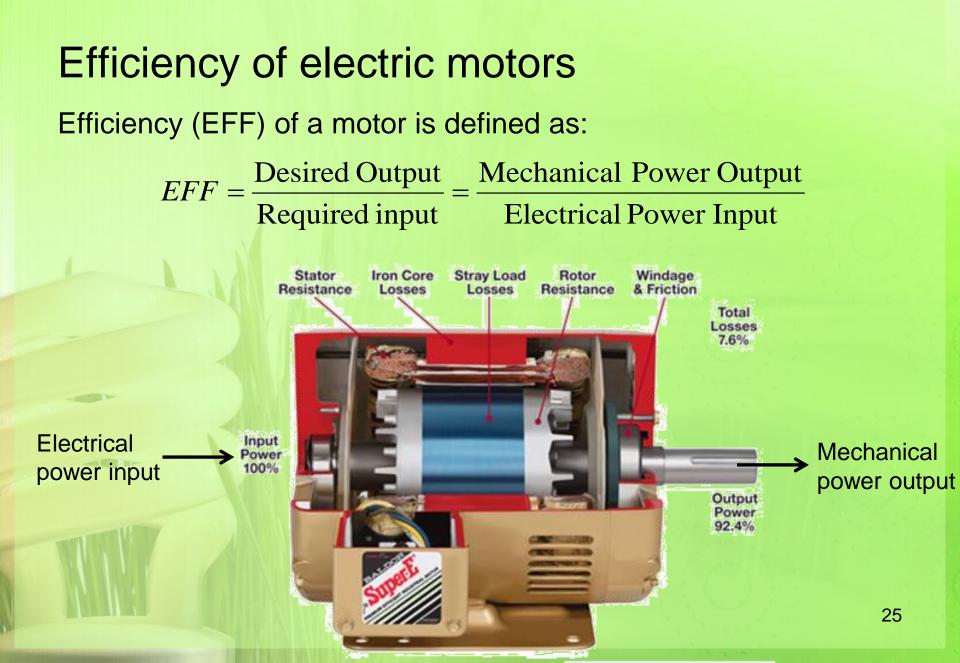
Power saved = 8.33 - 5.95 = 2.38 kW

Energy efficiency ratio (EER)

 $EER = \frac{Output \ cooling \ energy \ in \ BTU}{Input \ electric \ energy \ in \ Wh}$

For example; a 12,000 BTU a/c powered by 1 kW will have an EER rating of 12.

- EER indicates the performance of air conditioners at peak load operations.
- EER rating is mostly used with room air conditioners.
- EER = 3.41 x COP


Seasonal energy efficiency ratio (SEER)

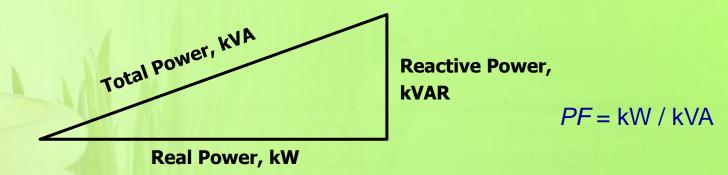
 $SEER = \frac{Output \ cooling \ energy \ in \ BTU \ over \ a \ season}{Input \ electric \ energy \ in \ Wh \ over \ a \ season}$

- The SEER rating is calculated by dividing the total number of BTUs of heat removed in a cooling season from a space by the total amount of energy required in the same season by the air conditioner in watt-hours.
- In energy management calculations, it makes more sense to use SEER as performance parameter in the feasibility estimations.
- Best air conditioners have SEERs over 8.5.
- Although SEER can also be utilized for heat pumps, seasonal coefficient of performance (SCOP) is more commonly used.

Energy labeling and SEER

Cooling			Heating
SEER 🦉		SCOP 🚱	
A***	SEER ≥ 8.50	A***	SCOP ≥ 5.10
A ⁺⁺	6.10 ≤ SEER < 8.50	A**	$4.60 \le \text{SCOP} < 5.10$
A*	5.60 ≤ SEER < 6.10	A [*]	$4.00 \le \text{SCOP} < 4.60$
	$5.10 \le \text{SEER} < 5.60$	A	$3.40 \le \text{SCOP} < 4.00$
В	$4.60 \le SEER < 5.10$	В	3.10 ≤ SCOP < 3.40
С	$4.10 \le \text{SEER} < 4.60$	С	$2.80 \le \text{SCOP} < 3.10$
D	$3.60 \le \text{SEER} < 4.10$	D	$2.50 \leq \text{SCOP} < 2.80$
E	3.10 ≤ SEER < 3.60	E	2.20 ≤ SCOP < 2.50
F	$2.60 \leq \text{SEER} < 3.10$	F	1.90 ≤ SCOP < 2.20
G	SEER < 2.60	G	SCOP < 1.90

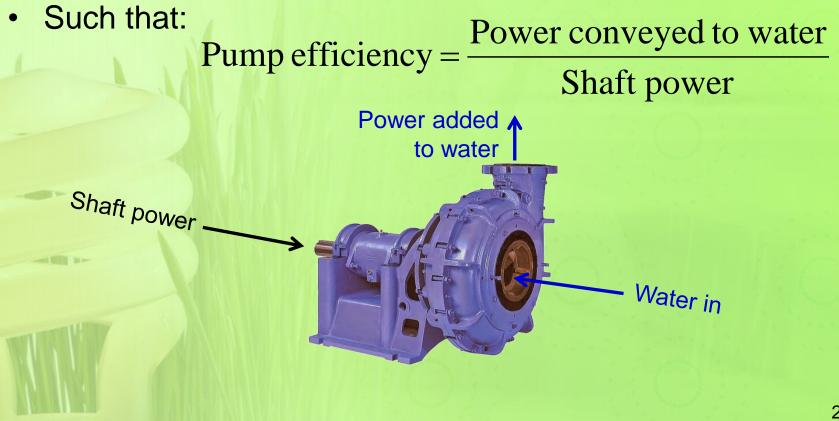
Efficiency of electric motors


Many technological improvements have been made to electric motors. From new materials for inside windings to decreased friction from well-designed ball bearings, the efficiency of new motors increases almost every day.

Example A motor delivers a shaft output power of 10 kW, and has an electrical power input of 12 kW. What is its efficiency? Solution:

$$EFF = \frac{10 \ kW}{12 \ kW} = 83.3\%$$

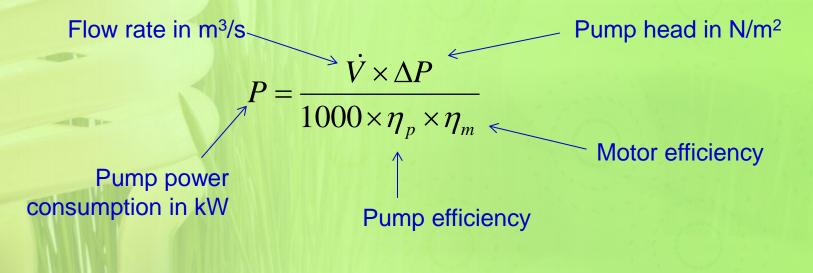
Power factor of electric motors


• **Power Factor** – The power factor is an electrical operating parameter of a motor, and is found from the ratio of the real power input in kW to the total power input in kVA.

- Larger motors usually have higher power factors than smaller motors. Larger motors will usually have power factors around 85%.
- Sometimes, electrical capacitors are installed on motors to provide "power factor correction." This may be cost-effective for the facility if their utility charges a substantial penalty for 27 low power factor.

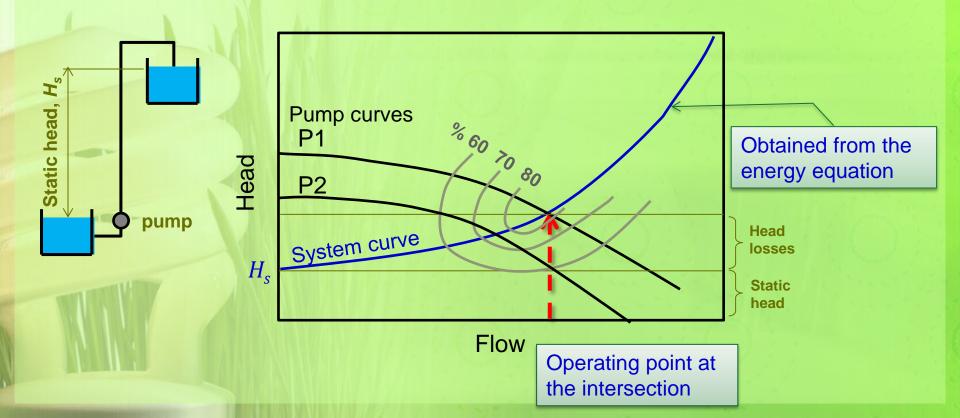
Water pump efficiency

 Defined as the ratio of power delivered on the water by the pump to the shaft power input for the pump



Efficiency of pumping fluids

Pump brake horse power in kW

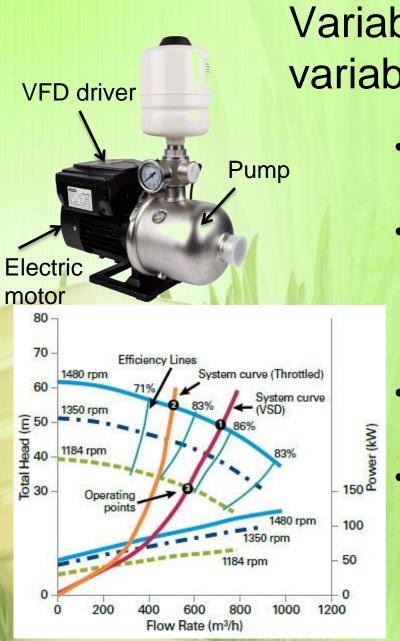

 $P = \frac{\text{flow rate } (\text{m}^3/\text{s}) \times \text{pressure difference } (\text{N/m}^2)}{1000 \times \text{efficiency}}$

The overall pumping efficiency refers to both the pump and motor efficiencies :

Selecting the most efficient water pump

- The duty of the pump is defined by the required flow rate and pressure
- System head is usually in the form: $H_s + k\dot{V}^2$, where k is a constant

Pump Example


Required flow rate is 80 L/s with a head of 150 kN/m². What is the saving in power if a pump efficiency of 90% is preferred instead of 78%. Assume motor efficiency to be 100%.

Pump power :

$$P = \frac{\dot{V} \times \Delta P}{1000 \times \eta_p \times \eta_m}$$

Saving in pump power :

 $=\frac{(\dot{V}\times\Delta P)}{1000}\left(\frac{1}{\eta_{78\%}}-\frac{1}{\eta_{90\%}}\right)=\frac{0.08\times150\times10^3}{1000}\left(\frac{1}{0.78}-\frac{1}{0.9}\right)=2.05\,\mathrm{kW}$

Variable speed drives (VSDs) and variable frequency drives (VFDs)

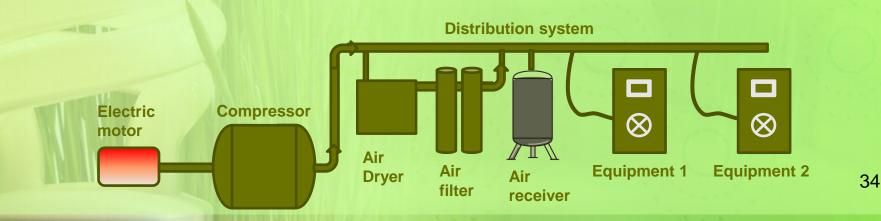
- Devices that can vary speed of a fixed speed motor
- VSDs are used with both direct current (dc) and alternating current (ac) devices, whereas VFDs are used with ac devices only.
- Used in pumps, fans, HVAC systems, compressors etc.
- Cube law: •

Powerold

Power_{new} $(Motor speed_{new})^3$ $(Motor speed_{old})^3$

Source: http://www.gozuk.com/applications/vfd-for-pumps.html

Example of a VSD application in a fan



kW _{new} _	$\left[RPM_{new}\right]^3$		
	$\left[RPM_{old}\right]^3$		

Motor speed (RPM)			Power consumption (W)
(Fixed speed conditions) 1400			800
Part los	ld speed	1000	292
	ion with	700	100
		400	19

Compressors: Improving compressed air energy efficiency

- One of the significant sources of energy use in the industry is compressors
- There are three main factors causing inefficiencies in energy consumption:
 - 1. Oversized compressors: Bigger is not better. Correct sizing is important
 - 2. Fluctuating air demand: Use VSD if demand is changing
 - **3. Air distribution system:** Design shorter lengths of distribution avoiding sharp bends. Check for the leaks.

Recovering heat dissipation from air compressors

- As much as 90% of the input energy to an air compressor becomes waste heat.
- On average 70% of the heat can be recovered from air cooled compressors. Reclaimed heat can be used for:
 - Heating a space
 - Process drying
 - Heating water
 - Bathroom use

Waster heat from compressors can be used to heat the other rooms

Efficiency measures for lighting

- Energy efficient lights should be chosen
- The reflectors should be effective in fixtures
- Timer control can be used if the periods of usage is known
- Motion or occupacy sensors detect the presence of people and turn the lights on
- Daylight control can adjust the amount of light depending on the daylight level in a room

The performance measure of electric lamps: *«Efficacy»*

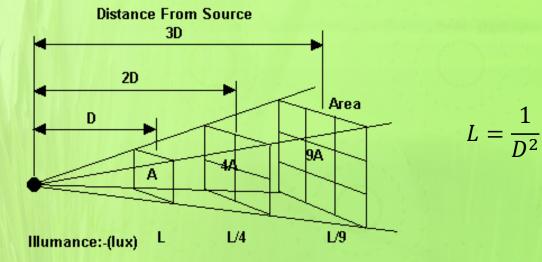
- Efficacy is measured in units of lumens per watt (Lu/W).
- This is not a measure of efficiency since it has units.
 - Efficiency has no units, and is either expressed as a decimal number like 0.90, or is stated in percent, like 90 %.
 - ➢ Efficacy has units of Lu/W.

Example for efficacy

A 60 watt incandescent lamp has an output of 1100 lumens (amount of light). What is the efficacy of this lamp?

The efficacy equals 1100 lumens divided by 60 watts

$$Efficacy = \frac{\text{Light output (lumens)}}{\text{Electricity required (Watts)}}$$


Efficacy =
$$\frac{1100 \text{ lumens (Lu)}}{60 \text{ Watts (W)}} = 18.3 \text{ Lu/W}$$

Task lighting

- Use lower wattage lamps at task
- Reduce number of fixtures
- Save considerable energy
- Better light

-

Light intensity falls off as the "inverse square" of the distance

Improvement of efficiency with thermal insulation

- Thermal insulation can be utilized to reduce the energy losses or gains from energy systems.
- They can be used in:
 - Buildings
 - Hot and chilled water pipes
 - Steam pipes
 - Hot water cylinders
 - Heat exchangers
 - Turbines
 - Chimneys or flue pipes
 - Air ducts

Good practice in thermal insulation

- Correct material with correct application
 - Fiberglass
 - Polystyrene board (EPS, XPS)
 - Rockwool
 - Thermal insulation should cover a building or any other system all around its thermal boundary.
 - Heat bridges should be avoided

41

THERMAL BRIDGE

Suggestion for your term assignment

- One of the measures in your assignment should be insulation of hot water pipes
- Determine the length of hot water pipes
- Estimate the annual heat losses
- Estimate the savings with thermal insulation