
An Investigation of the Course-Section

Assignment Problem

Zeki Bayram

Eastern Mediterranean University,
Computer Engineering Department,

Famagusta, T.R.N. Cyprus
zeki.bayram@emu.edu.tr

http://cmpe.emu.edu.tr/bayram

Abstract. We investigate the problem of enumerating schedules, con-
sisting of course-section assignments, in increasing order of the number of
conflicts they contain. We define the problem formally, and then present
an algorithm that systematically enumerates solutions for it. The algo-
rithm uses backtracking to perform a depth-first search of the implicit
search space defined by the problem, pruning the search space when pos-
sible. We derive a mathematical formula for the algorithm’s average-case
time complexity using a probabilistic approach, and also give a brief
overview of its implementation in a WEB application.

1 Introduction

In this paper we deal with the course-section assignment problem that arises
in university settings. Although the investigated problem is specific to Eastern
Mediterranean University (North Cyprus), the results can easily be generalized
to other university contexts.

At Eastern Mediterranean University, classes are taught Mondays through
Fridays, between 8:30 a.m. and 4:30 p.m. A given course is opened in one or more
sections. Each section of a course meets for 3 or 4 hours each week. The job of
the student advisor during the registration period is to decide which courses the
student should take, and find a set of sections for those courses such that the
number of conflicts is minimized.

The problem we investigate is enumerating, in increasing order of the number
of conflicts, course-section assignment schedules, given an initial list of courses
that the student should take. The student advisor can then select the schedule
s/he sees fit.

Course scheduling problems, when formulated as decision problems, are known
to be NP-complete or even NP-hard [1], and finding the optimal solution to the
problem is computationally intractable as the input sizes become large. The
course-section assignment variation of the course scheduling problem is a func-
tion problem, and is at least as hard as the decision version (“Is there a course
section assignment with k conflicts or less?”). However, in the real-life case we
handle here, the maximum input sizes to the problem have a reasonable upper

bound (i.e. a student can take only a limited number of courses which the ad-
visor selects for him/her, and each course has a limited number of sections that
are open at any one time) and an approach that systematically but intelligently
and incrementally searches the full space of possibilities becomes feasible.

Assuming that the maximum number of courses a student takes is N and
the maximum number of sections a course can have is K, then at most KN

combinations of course sections must be considered. But even then, generating
all combinations of course groups at one time and then sorting them by the
number of conflicts they contain can be prohibitively expensive, both in terms
of time and space. Instead, the search space should be pruned when possible,
and the solutions must be incrementally generated, in increasing order of the
number of conflicts they contain. When enough solutions (defined as the best X
solutions, where X is specified by the user) have been generated, the algorithm
should stop.

The algorithm we describe does precisely that, and it is fast enough to be
executed in a WEB browser’s JavaScript engine.

The remainder of this paper is organized as follows. Section 2 formally de-
fines the “course-section assignment problem.” Section 3 contains an algorithm
that systematically generates course-section assignments in increasing order of
the number of conflicts. In section 4 we perform a mathematical analysis of the
worst-case and average-case time complexity of this algorithm using combina-
torial arguments. Section 5 gives a brief discussion of the issues concerning the
JavaScript implementation of the algorithm. This is followed in section 6 by a
representative survey of other approaches to course scheduling, and finally in
section 7 we have the conclusion and future research directions.

2 Formal Definition of the Course-Section Assignment
Problem

In this section we formally define what we mean by the “course-section assign-
ment problem.”

Definition 1. A meeting-time is a day-period pair, such as < Monday, 3 >,
meaning the third period (i.e. 10:30) on Monday.

Definition 2. The function rep(D,P) is defined as (val(D) ∗ 8) + P , where <
D, P > is a meeting-time and val is a function mapping each working day to its
position in the week, starting from 0, e.g. val(Monday) = 0, val(Tuesday) = 1
etc. Consequently, rep(D,P) is a unique integer representation of a meeting-time
< D, P >. No two distinct meeting-times have the same integer representation,
since there are exactly 8 periods every day.

Definition 3. A course-section assignment is a function that maps a course
to one of its sections.

Definition 4. The function meetingTimes(C,S) returns the set of meeting times
of section S of course C. Formally, x ∈ meetingT imes(C, S) iff < D, P > is a
meeting-time of section S of course C and x = rep(D, P).

Definition 5. The function nconf(assign) takes a course-section assignment
as an argument and returns the number of conflicts it contains. Specifically, let
< C1, . . . , Cn > be a list of courses and assign be a course-section assignment.
nconf(assign) is defined as

|meetingT imes(C1, assign(C1))| + . . . + |meetingT imes(Cn, assign(Cn))| −
|meetingT imes(C1, assign(C1)) ∪ . . . ∪ meetingT imes(Cn, assign(Cn))|

Definition 6. Given a list of courses < C1, . . . , Cn >, the course-section
assignment problem is to generate a sequence < ass1, ass2, . . . > of course-
section assignments in such a way that every assignment appears exactly once in
the sequence, and if assi comes before assj in the sequence, then nconf(assi) ≤
nconf(assj).

3 The Scheduling Algorithm

3.1 Data Representation

We represent the times at which a course section is taught with a bitmap consist-
ing of 40 bits (5 days, 8 periods, one bit for each Day − Period combination).
A “1” in a position means that the course is taught at that time slot, and a
“0” that it is not. The first 8 bits in the bitmap are used for the 8 time slots
on Monday, the next 8 bits for Tuesday etc. To determine whether two course
sections conflict, we just

∧
(logical “and”) the corresponding bitmaps, and if

the result is other than 0, then they conflict. Using this representation, we can
also determine the number of conflicts by counting the number of 1’s in the
result (this can be done in constant time using using a lookup table t where t[i]
contains the number of 1’s in the binary representation of i [2]). Using bitmaps
with logical “or” and “and” operations, determining whether n course sections
conflict has O(n) time complexity.

3.2 The Algorithm in Pseudo-code

The algorithm in figure 1 finds course-section assignments in increasing order
of the number of conflicts by traversing in a depth-first fashion an implicit tree
whose nodes consist of a bitmap representing the day-time slots taken up by the
courses considered so far. The root of this tree is always a bitmap of 40 bits that
contains all “0”s.

The main identifiers in the algorithm are as follows. current[i] contains the
bitmap of slots taken up by course1 through coursei. The sections of courses
that are selected as we travel down the implicit tree are stored in the result
array, i.e. result[i] contains the section selected for coursei. next[i] contains the

Input:

1. C, the maximum number of conflicts that can be tolerated.
2. List of courses course1, course2, . . . , courseL for which we need to find schedules

with at most C conflicts.
3. K, the number of sections per course.
4. The function meeting times(i, j) that gives the bitmap for course i, section j.
5. max solutions, the maximum number of solutions that should be generated

Output: All combinations of course sections such that the number of conflicts does not
exceed C and solutions are generated in increasing order of the number of conflicts
they contain, up to a maximum of max solutions solutions

declare current as an array[0..L] of bitmaps // each one 40 bits long
declare nc as an array[0..L] of integer // to store the number of conflicts
declare next as an array[1..L + 1] of integer // to store the choice points for backtracking
declare result as an array[1..L] of integer // to store the selected sections
ns← 0 // number of solutions generated so far
for c← 0 to C

i← 1 // the next course to process
next[1]← 1 // section 1 of course 1 to be processed first
current[0]← (000000 . . .) // bitmap of forty zeroes
nc[0]← 0 // initial node contains no conflicts
loop

if ns > max solutions then exit program end if
if i = 0 then exit loop end if // traversed whole tree for current value of c
if next[i] > K then

i← i− 1 // backtrack to previous course
continue loop

end if
if i = L + 1 then // processed all courses

if c = nc[i− 1] then // check for exact number of conflicts
print the result array
ns← ns + 1 // update number of solutions found

end if
i← i− 1 // backtrack
continue loop

end if
new conflicts ← count ones(meeting times(i, next[i])

∧
current[i− 1])

if (new conflicts + nc[i− 1]) ≤ c then // move forward
nc[i]← nc[i− 1] + new conflicts
current[i]← current[i− 1]

∨
meeting times(i, next[i])

result[i]← next[i] // store section
next[i]← next[i] + 1 // prepare next section for backtracking
next[i + 1]← 1 // start at section 1 for next course
i← i + 1 // go on to the next course
continue loop

end if
next[i]← next[i] + 1 // else try next section for current course

end loop
end for

Fig. 1. Backtracking algorithm for generating course-section assignment schedules in
increasing order of the number of conflicts

next section to try for coursei upon backtracking, or when going forward “down
the tree.” The function meeting times(i, j) returns a bitmap of 40 bits which
depicts the meeting times during the week of section j of coursei. nc[i] contains
the number of conflicts in the schedule up to and including coursei. The function
count ones(bitmap) counts the number of “1”s in its argument.

The algorithm assumes that each section meets the same number of times
(i.e. K) during the week. This simplification does not affect the core of the
algorithm and makes the ensuing mathematical analysis tractable.

4 Time-Complexity of the Algorithm

In the following discussion, let us assume that a student takes N courses, each
course has K sections (for uniformity), and each section meets R times per week.
Let us also ignore the maximum number of results requested by the user, as this
can only improve the performance of the algorithm.

The number nodes that are “generated” in the implicit tree is an accurate
measure of the time complexity of the algorithm.

4.1 Worst-Case Time-Complexity Analysis

If the root has level 0, then the level of the leaf nodes in the full implicit tree is
N , the branching factor of each inner node is K and the full tree has

N∑

i=0

Ki . (1)

nodes. In the worst case, all these nodes are visited. Furthermore, if C is the
maximum number of conflicts that are tolerated, then the algorithm makes C+1
passes over the tree (although each distinct solution is printed exactly once), and
the number of generated (and re-generated) nodes becomes

C∑

j=0

N∑

i=0

Ki . (2)

The above formula is an upper bound on the number of nodes that are visited.
However, if a node contains more conflicts than can be tolerated, it is not visited.
In a sense, the tree is pruned. We explore that case below.

4.2 Average-Case Time-Complexity Analysis

For a specific number of conflicts that we can tolerate, we can compute the
probability that a node in the implicit tree will be visited by the algorithm. Let
P (Y @Lb) denote the probability that a node at level b with exactly Y number
of conflicts will be visited. Let c′ be the maximum number of conflicts we can
tolerate in a specific iteration of the algorithm. Then, the expected number of

visited nodes for c′ or less number of conflicts in an iteration of the algorithm
is given by:

c′∑

j=0

N∑

i=0

KiP (j@Li) . (3)

However, the algorithm, in order to list solutions in increasing number of conflicts
(i.e. those solutions with no conflicts, followed by those with exactly one conflict,
followed by those solutions with exactly two conflicts etc.), makes multiple passes
of the virtual tree. For example, the leaf node that represents a solution with
0 conflicts will be generated (visited) three times if we can tolerate 2 conflicts.
The average time complexity of the algorithm in that case is:

C∑

c′=0

c′∑

j=0

N∑

i=0

KiP (j@Li) . (4)

Computing P (j@Li) The root of the implicit tree is always visited, so are
the nodes at level 1, since there cannot be any conflicts with no courses selected,
or with one course selected only. Thus,

P (0@L0) = 1 .
P (0@L1) = 1 .
P (j@L0) = 0 for j ≥ 1 .
P (j@L1) = 0 for j ≥ 1 .

(5)

For nodes at level 2 we have

P (j@L2) =

(
40
j

)(
40−j
R−j

)(
40−R
R−j

)

(
40
R

)2 . (6)

This formula can be justified as follows.
(
40
R

)2
is the total space of possibilities

for the slots that can be taken by any two distinct courses (each course takes
R slots). j slots are common to both courses, and these j slots can be taken in(
40
j

)
ways. That leaves the first course

(
40−j
R−j

)
ways to choose its remaining R− j

slots, and the second course
(
40−R
R−j

)
ways to choose its R − j slots.

For values of i greater than 2, we need a recursive definition of P (j@Li). Let
the notation Li−1

k=⇒ Li mean that k new conflicts are introduced by the move
from a node at level i− 1 to a node at level i, and P (Li−1

k=⇒ Li, e) denote the
probability that k new conflicts are introduced on the move from a node at level
i − 1 to a node at level i, if at node i − 1 we already have e conflicts. Then, for
i > 2,

P (j@Li) = Σj
e=0P (e@Li−1)P (Li−1

j−e
=⇒ Li, e) . (7)

where

P (Li−1
k=⇒ Li, e) =

(
(i−1)R−e

k

)(
40−((i−1)R−e)

R−k

)
(
40
R

) . (8)

The justification for Formula (8) is as follows. At level i − 1 we have made
assignments to i−1 courses, and since they have e conflicts, they use (i − 1)R − e
slots. If we introduce k new conflicts, then surely these conflicts should be caused
by the slots already taken up, hence the term

(
(i−1)R−e

k

)
. The remaining R − k

slots should come from slots not already taken up, which is 40 − ((i − 1)R − e),
hence the term

(
40−((i−1)R−e)

R−k

)
.
(
40
R

)
is just all possible ways of selecting R slots

out of 40 slots.

5 The Implemented Solution

The implemented solution is a WEB application with a three tier architecture.
The user of the application (the student advisor) fills out an HTML form con-
cerning the courses to be taken. He has the option of specifying which sections
of a course to choose from, or alternatively which sections of a course to ex-
clude (for example, a student might insist on taking a section which is taught by
his/her favorite instructor, or s/he might insist on not taking a section taught by
a disliked instructor). An example form is shown in figure 2. The form is sent to

Fig. 2. The form for choosing courses

an Active Server Pages (ASP) application on the server, which, after querying a
courses database, generates and sends back an HTML page with the necessary
course information and the scheduling algorithm as a JavaScript program. The

course information is hard-wired into the algorithm, so that each time a user
makes a request with different courses, a different JavaScript code is sent to
him/her. The JavaScript code then runs on the client, generating schedules (up
to a “reasonable” maximum number hard-coded in the program), in order from
the least number of conflicts (ideally 0) to the most number of conflicts.

Figure 3 shows part of the result returned by the scheduler. The scheduler
WEB application is available at [3].

Fig. 3. Part of the result returned by the scheduler

6 Related Work

There have been a few major venues of attack against course scheduling (some-
times called “timetabling”) problems. These include constraint logic program-
ming, genetic algorithms, simulated annealing, tabu search or some combination
of these.

In [4] the authors use the Eclipse constraint logic programming system to con-
struct optimum timetables for university courses. The application of combined
deductive and object-oriented technologies to a “complex scheduling problem”
which emphasizes local propagation of constraints performed with deductive
rules is presented in [5].

Use of genetic algorithms for the solution of the timetabling problem is in-
vestigated in [6].

In [7] the authors investigate a variety of approaches based on simulated
annealing for the course scheduling problem, including mean-field annealing,
simulated annealing with three different cooling schedules, and the use of a rule-
based preprocessor to provide a good initial solution for annealing.

An expert system solution to the timetabling problem is given in [8]. The
expert system is written using a CLP(FD) system that extends the CHIP con-
straint logic system with heuristics.

In [9] the authors formulate course scheduling as a constraint satisfaction
problem and apply various optimization techniques to solve it. A similar ap-
proach is taken in [10] where the potential of constraint satisfaction techniques
to handle deterministic scheduling problems is investigated.

In [11], the authors present graph colouring and room allocation algorithms
and show how the two can be combined together to provide the basis of a “widely
applicable” timetabling system.

Tabu search algorithms for solving scheduling problems in school environ-
ments are investigated in [1] and [12].

Our literature search has not revealed any direct investigation of the course-
section assignment problem, the way we have presented it here. Our approach
used in the mathematical analysis of the average-case time complexity of the
backtracking tree-search algorithm also appears to be novel.

7 Conclusion and Future Research Directions

We formally defined the course-section assignment problem, presented an algo-
rithm that solves instances of it by performing a depth-first search of the implicit
search space defined by the problem, and analyzed the time complexity of the
algorithm using a probabilistic approach.

The search algorithm for a solution to the course-section assignment problem
can be generalized to solve other kinds of scheduling problems. The mathematical
approach we used here can be applied to analyze those algorithms also. Future
work might include the extension of the presented framework to handle such
more general scheduling problems.

References

1. Schaerf, A.: Tabu search techniques for large high-school timetabling problems.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence,
Portland, Oregon, USA (1996) 363–368

2. Silberchatz, Korth, S.: Database System Concepts. 4 edn. McGraw Hill (2002)
3. Bayram, Z.: Course scheduling web application, available at web site.

http://cmpe.emu.edu.tr/bayram/VRegistration/form.asp (2003)
4. Frangouli, H., Harmandas, V., Stamatopoulos, P.: UTSE: Construction of optimum

timetables for university courses - A CLP based approach. In: Proceedings of the

3rd International Conference on the Practical Applications of Prolog PAP’95, Paris
(1995) 225–243

5. Y., C., Guillo, P., Levenez, E.: A deductive and object-oriented approach to a
complex scheduling problem. In: Proceedings of Deductive and Object-Oriented
Databases: Third International Conference, Phoenix, Arizona, USA (1993) 67–80

6. Colorni, A., Dorigo, M., Maniezzo, V.: Genetic algorithms - A new approach to
the timetable problem. Lecture Notes in Computer Science - NATO ASI Series ,
Combinatorial Optimization, (Akgul et al eds) F 82 (1990) 235–239

7. Elmohamed, M.A.S., Coddington, P., Fox, G.: A comparison of annealing tech-
niques for academic course scheduling. Lecture Notes in Computer Science 1408
(1988) 92–114

8. Azevedo, F., Barahona, P.: Timetabling in constraint logic programming. In: Pro-
ceedings of the 2nd World Congress on Expert Systems, Lisbon, Portugal (January
1994)

9. Blanco, J., Khatib, L.: Course scheduling as a constraint satisfaction problem.
In: Proceedings of the Fourth International Conference and Exhibition on The
Practical Application of Constraint Technology, London, England (1998)

10. Dignum, F.W.N., Janssen, L.: Solving a time tabling problem by constraint satis-
faction. Technical report, Eindhoven University of Technology (1995)

11. Burke, E.K., Elliman, D.G., Weare, R.F.: A university timetabling system based on
graph colouring and constraint manipulation. Journal of Research on Computing
in Education 27(1) (1994) 1–18

12. Gaspero, L.D., Schaerf, A.: Tabu search techniques for examination timetabling.
Lecture Notes in Computer Science 2079 (2001) 104–108

