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Abstract — In North Cyprus, teacher relocation in State schools 

is handled in a centralized manner. Teachers, if they wish to 

relocate, state which schools they wish to move to, and the 

authorities try to come up with a relocation scheme that 

maximizes the happiness of the teachers, without overlooking the 

needs of the schools involved. This is a classic discrete 

optimization problem, and requires exponential search for its 

solution. We handle this problem using constraint logic 

programming techniques, trying to minimize the search space 

wherever possible. We formulate the problem mathematically, 

model it in the ECLiPSe constraint logic programming language, 

and test our solution under various scenarios. 

 

I.   INTRODUCTION 

 

Many real-life problems need combinatorial search for 

their solution, and the solution time can grow exponentially 

with the size of the problem. The “teacher relocation 

problem,” where each teacher states which set of schools 

would satisfy him/her, and an assignment of teachers to 

schools which tries to maximize the satisfaction of the teachers 

according to certain criteria is made, falls under this class of 

problems.  

Constraint Logic Programming (CLP) has evolved to 

model and solve many hard real-life problems in recent years 

[1]. It is well suited for scheduling problems since it allows the 

formulation of the constraints of the problem in a high-level, 

declarative way. Variables of the problem are mapped to logic 

variables, domains of the variables are specified, and the 

constraints on the variables are stated declaratively [7]. An 

objective function on the variables involved is also specified. 

The goal is to find an assignment of values to the variables, 

without violating any constraints, in such a way that the value 

of the objective function is minimized.  

In this paper, we define the “teacher relocation” problem, 

formulate it mathematically, model it in the ECL
i
PS

e
 (ECRC 

Common Logic Programming System)[2] constraint 

programming language, and test our solution under various 

scenarios. Our results indicate that it is a viable solution which 

can be used in the real-life environment of North Cyprus to 

replace the manual method that is currently in use.   

The rest of the paper is organized as follows. In section II 

we have the description and formal specification of the 

problem. Our CLP solution in ECL
i
PS

e
 is presented in section 

III. Section IV contains the evaluation of our solution with 

simulated input data. In section V we have a brief coverage of 

related work, and section VI is the conclusion and future 

research directions. 

 

II.   DESCRIPTION, FORMAL SPECIFICATION AND 

TIME COMPLEXITY OF THE TEACHER RELOCATION 

PROBLEM 

 

Each teacher who wishes to relocate can state two choices. 

An implicit, but undesirable third choice on the part of the 

teacher is to stay in his/her current school. Teachers who do 

not wish to relocate do not make any choices, and are not 

forcibly relocated.   

Teachers state their choices in order of preference. A 

specific teacher’s happiness is given very naturally by 

order(teacher, assignment(teacher)), where order(t,s) is the 

position (first, second etc.) of school s in the preference 

declaration of teacher t.  Here, smaller numbers mean more 

happiness.  

The goal of the system is to maximize the overall happiness 

of the teachers, which corresponds to minimizing the value of 

the objective function  
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subject to the constraint in each school that the number of 

teachers at the school never exceed its capacity. This is 



modeled by the use of quotas, which specify the teacher 

deficiency (vacant positions) in each school before relocation 

is initiated. So for each school, the following constraint must 

be satisfied in a final solution: 

 

incomingTeachers outgoingTeachers quota≤ +            (2) 

 

Another obvious constraint is that a teacher cannot be 

assigned to more than one school, hence the function 

assignment. 

For N teachers, the best case time complexity is N, where 

each teacher is assigned to his/her first choice without 

violating any constraints. For the worst case analysis, all 

possible combinations of assignments must be considered, 

which gives us 3
N
.  

 

III.   FORMULATON OF THE PROBLEM AS AN 

ECL
i
PS

e
 PROGRAM

 

Data Structures 

To store the information of teachers, we use the structure 

teacher(Teachername, ALSchool) for each teacher. 

Teachername is the name of the teacher and ALSchool is the 

current school of the teacher. Each teacher name is assumed to 

be unique. 

A teacher’s choices are represented as 

choice(Teachername, SchoolName, ChoiceNo, AppYear), 

where Teachername is the name of the teacher, SchoolName 

specifies the name of the school which the teacher wants 

locate, ChoiceNo represents the precedence number of the 

teacher to locate to this school and AppYear is the application 

year of the teacher for relocation.  

Information about schools is given by school(Schoolname, 

Countyname, Quota, MaxCapacity), where SchoolName is the 

name of the school, Countyname specifies the county which 

the school belongs to, Quota is the number of vacancies at  the 

school, and MaxCapacity specifies the maximum number of 

teachers which the school can employ. 

Note that not all the bits of information represented in the 

database are used in the solution that we present, but they are 

included to allow the possibility of different solutions in the 

future. 

The general technique used 

teacher-school pairs are assigned -1 or 0 to indicate 

whether teacher is assigned to school. -1 means that teacher is 

assigned to school, 0 means teacher is not assigned to school. 

This representation allows easy checking of the constraints that 

each teacher is assigned to exactly one school, and school 

quotas are not exceeded. Two techniques are used to prune the 

search space and generate results faster.  

First, just any feasible assignment is generated, which gives 

us a baseline of “happiness” for teachers. If, during the 

optimization phase, this value is exceeded, that branch of the 

search space is pruned.  

Second, the domains are increased gradually – if a solution 

is possible where all teachers are placed to their first choices, 

surely this will result in maximum teacher satisfaction. So a 

solution is attempted where only the first choices are 

considered. If no solution is possible, then the first two choices 

of teachers are considered. If still no solution is possible, then 

all three choices are considered (the last one being the implicit 

“stay in your current school” choice).  

 

The top level predicate “solve” 

 

The main predicate in the program is solve, given in 

Fig. 1. Its output parameter Cost is the minimum cost of the 

solution. The solution itself is printed on the screen. solve 

generates the teacher list using the database, and passes it on to 

the increment_loop predicate, which actually does the 

job. The second parameter of increment_loop denotes 

that only the first choices will be considered when the search 

begins.  

 
solve(Cost):- 

   findall(X,teacher(X,_),Teacherlist), 

   increment_loop(Teacherlist,1,Cost),!. 

Fig. 1: The “solve” predicate 

 

The “increment_loop” predicate 

 

The increment_loop predicate, given in Fig. 2, gets 

Teacherlist and Choicenum as input parameters and 

outputs the Cost. Predicate willbelabeled generates the 

list Clist1, which will be flattened by the flatten 

predicate to generate a list of the form 

[(Teachername,Schoolname,R,Cost),….] in its Clist output 

parameter. The domain of R is [-1,0] if Schoolname is either a 

school preferred by Teachername or it is his/her current 

school. Otherwise the domain of R is [0]. We chose -1, rather 

than 1,  to represent a teacher being assigned to a school, 

because the built-in indomain predicate assigns values to 

variables in increasing numeric order, and in our labeling 



predicate this would result in a teacher not being assigned to a 

school initially (0 would be tried before 1).  

Then each_teacher predicate is called. It gets 

Teacherlist and Clist as input. It is the first constraint 

of the program which constrains a teacher to locate only to one 

school, since a teacher cannot exist in more than one school. In 

order to prevent the relocation of a teacher to more than one 

school , sum of  all  R’s  of each teacher in Clist is 

constrained as to be -1. 

 

                  SumofRs # = -1                                                    (3) 

 

In the next step, the list of schools Schoollist is 

generated and passed  as an input parameter to the 

createoutoflist predicate, together with 

Teacherlist and Clist. The predicate 

createoutoflist generates the Outlist, flattended 

into Outoflist, which has the same structure with 

Clist. However, the R value of a teacher becomes -1 in the 

school which he/she wants to vacate. Outoflist contains 

information about which schools teachers are moving out of. 

 
increment_loop(Teacherlist, 

               Choicenum,Cost):- 

   willbelabeled(Teacherlist,Choicenum, 

             [],Clist1), 

   flatten(Clist1,Clist), 

   each_teacher(Teacherlist,Clist), 

   findall(Y,school(Y,_,_,_),Schoollist),               

   createoutoflist(Teacherlist,Schoollist, 

               [],Outlist,Clist), 

   flatten(Outlist,Outoflist), 

   findinginoutlist(Schoollist,Clist, 

                [],Schoolinlist), 

   findinginoutlist(Schoollist,Outoflist, 

                [],Schooloutlist), 

   quotaconstraint(Schoollist,Schoolinlist, 

                Schooloutlist), 

   solve1(RefCost), 

   length(Teacherlist,LT), 

   bb_min((our_labeling(Clist, 0, RefCost, 

          Cost)), Cost,bb_options with  

          [from:LT]), 

   (nonvar(Cost),lastreplacement(Clist),!); 

   (Choicenum1 is Choicenum+1, 

               increment_loop(Teacherlist,    

               Choicenum1,Cost)). 

Fig. 2: The “increment_loop” predicate 

 

Then findinginoutlist predicate is called two 

times. In first call, it takes Schoollist and Clist as 

input parameters and generates Schoolinlist as output. 

It keeps the information of the number of coming teachers to 

each school and has the structure 

[(Schoolname,NumberOfComingTeachers), …]. In second call 

of the findinginoutlist predicate, Schoollist and 

Outoflist are passed as input parameters to generate 

Schooloutlist which has the same structure with 

Schoolinlist but keeps the number of outgoing teachers 

for each school:  [ ( Schoolname, NumberOfOutgoingTeachers 

) ]. 

The quotaconstraint predicate is our second 

constraint in the program.    It takes Schoollist, 

Schoolinlist, and Schooloutlist as parameters. 

It constrains each school such that the difference between the 

number of coming teachers and outgoing teachers to the school 

are smaller than or equal to the quota of the school. 

 

                  (Incoming-Outgoing)#<=Quota                         (4) 

 

Then, the solve1 predicate is called to get a baseline 

cost in its RefCost parameter. solve1 just finds any 

feasible solution, without any consideration of optimality. We 

use this value to prune the search space when we make 

incremental assignments: if the current “cost” has already 

exceeded the reference cost, that branch of the search space is 

not explored any further. Refcost is passed as a 

parameter to our_labeling predicate. 

Next we have a call to the minimization predicate 

bb_min(Goal,Cost,Options). bb_min/3 is a built-in predicate 

which finds a solution of the Goal that minimizes the value of 

Cost [2]. The goal to be satisfied is 

our_labeling(Clist,0,RefCost,Cost), where 

Cost is to be minimized. Cost is the cumulative happiness 

of teachers, as already discussed in section II, and is computed 

inside our_labeling predicate.  

Then we have an OR (;) structure. If the program has 

already found the minimum  cost, the lastreplacement 

predicate is called, which prints the teacher names, their 

assigned schools, as well as the rank of the school in the 

preference order of the teachers. If no solution was found, the 

Cost variable will be free, Choicenum is incremented by 

1 and increment_loop is called recursively to try to 

find a solution by including one more preference of the 

teachers to the search space. 

 

Labeling 

 

Rather than relying on the built-in labeling predicate of 

ECL
i
PS

e
, we wrote our own our_labeling predicate 

given in Figure 3, which gave us the possibility of pruning 

the search space as labeling was being done.  



 
our_labeling([],A,RefCost,A). 

our_labeling([(H,S,R,X)|T],Acc, 

              RefCost,Cost):- 

   indomain(R), 

   lk(H,S,R,X), 

   Cost1 is Acc+X, 

   unassignedTeachers(T,UL), 

   Cost1+UL<=RefCost, 

   our_labeling(T,Cost1,RefCost,Cost). 

 

Fig. 3:  The “our_labeling” predicate 

 

The our_labeling predicate gets Clist, Acc 

and RefCost as input variables and outputs Cost. It 

firstly assigns a value to R by calling the indomain 

predicate. The lk predicate gets H(teacher name), 

S(school name) and R (0 or -1) as input parameters, and 

outputs X. If  R = -1,  then        X = the order of preference 

of S by H. Otherwise X= 0.  

cost1 accumulates the cost  (“cumulative happiness”) of 

relocated teachers that have been assigned schools up to this 

point. We want to prune the search space at his point if the 

best achievable solution  ( cost1 +  number of teachers that 

have not been assigned to any school yet ) is greater than or 

equal to Refcost. This is true, because in the best case, the 

remaining teachers will be assigned to their first choices, and 

their cumulative happiness will be equal to how many they are.  

unassignedTeachers(T, UL)gives the number of 

unassigned teachers in UL. If Cost1+UL>RefCost, 

there is no need to continue to label the other teachers, and the 

labeling fails.  
 

IV.   RESULTS 

 

It is possible to attempt to solve the teacher relocation 

problem without using our “incremental domain” approach. To 

see if there is any significant difference, we tried  both 

approaches using simulated data, varying the number of 

teachers and the quotas of schools. The number of schools was 

fixed at 10 (admittedly an arbitrary figure, but representative 

of the number of elementary schools in North Cyprus). 

Fig. 4 shows the number of teachers versus the CPU time in 

seconds to solve the problem for searching with incremental 

domains and without incremental domains, when  empty 

quota’s of schools randomly change from 1 to 5. 
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Fig. 4:   Number of Teachers vs. CPU time while quota changes 1 to 5 

It is clearly seen that with the incremental domain 

technique, the problem is solved much more quickly. This is 

especially true when the problem size becomes bigger in terms 

of the number of teachers.  
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Fig. 5: Number of Teachers vs. CPU time while quota changes 1 to 10 

As the quotas increase, the problem becomes easier, since 

teachers can then be assigned to schools without requiring that 

other teachers leave the school. This case is depicted in Fig. 5, 

where quotas range randomly from 1 to 10. In this case as 

well, the incremental domain approach shows a clear 

advantage.  

 

The worst case of the problem occurs when we decrease 

quotas of the schools to zero (Fig. 6). In this case, the program 

is forced to tries almost all possibilities to find the solution and 

search space increases to its maximum level. The incremental 

domain approach still outperforms the other one, however 



neither one  can find a solution in a reasonable amount of time 

when the number of teachers is much  more than 30. 
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Fig. 6: Number of Teachers vs. CPU time while quotas are zero 

 

V.  RELATED WORK 

 

Our literature search has not revealed any publication on 

the teacher relocation problem.  Many other kinds of 

scheduling problems have been successfully solved with CLP, 

however. In [3] the authors present a methodology to solve a 

job-shop scheduling problem using constraint logic 

programming. They investigate a new strategy to find the 

optimal solution which involves step by step decreasing of the 

upper and lower bounds of the search space of the branch and 

bound evaluation function. In [4] authors describe a solution to 

the nurse scheduling problem by developing a technique to 

prune the search space which is based on reducing the variable 

domains. In [5], the authors investigate the efficiency of 

constraint programming for solving the nurse scheduling 

problem.  In [6], the authors present a solution to university 

timetabling problem using the ECL
i
PS

e
 constraint logic 

programming language by stating the constraints in the most 

suitable order. The authors in [8] use their own labeling to 

reduce the search space to find the optimal solution. In [9], a 

solution to sport tournament scheduling using the finite 

domain library of ECL
i
PS

e 
is presented. A constraint-based 

depth-first branch and bound procedure is used to find an 

optimal solution in reasonable time, except in some situations. 

A solution to the Hospitals/Residents Problem, which bears 

some resemblance to the Teacher Relocation Problem studied 

here, is presented in [10].  In the Hospitals/Residents Problem, 

each resident is paired with an acceptable hospital, in such a 

way that a hospital’s capacity is never exceeded. Both the 

hospitals and residents have preferences. Authors investigate 

four different techniques, two of them being similar to our 

assignment of binary values to variables. 

 

 

 

VI. CONCLUSION AND FUTURE RESEARCH 

DIRECTIONS 

 

We defined the teacher relocation problem, modeled it 

using constraints, implemented a solution as an ECL
i
PS

e
 

program, and tested our solution under various scenarios. We 

devised several strategies for reducing the search space, and 

generating results faster. The first is using a baseline value for 

pruning solution paths that cannot possibly improve the 

baseline value. Second is the usage of “incremental domains,” 

where preferences of teachers are considered incrementally. 

Our simulation runs confirm that the incremental domain 

approach outperforms the non-incremental one.  

The proposed model works well up to a reasonable number 

of teachers and quotas in schools. As the problem size 

becomes large (i.e. when the number of teachers increase 

and/or the schools quotas become small), since the search 

space grows exponentially, it may not be possible to find the 

best solution in a reasonable amount of time. However, North 

Cyprus is a small country, and the problem sizes seem well 

within the capability of our solution. 

For future work, we plan to improve the “cost function” by 

taking into account the needs of the schools and how long a 

teacher has been waiting for relocation, handle the case of new 

teachers who are just beginning their careers, as well as 

teachers who will leave the system through retirement. A Web 

based user interface is also being planned. 
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