
A Constraint Logic Programming Solution to the

Teacher Relocation Problem

Nagehan Ilhan, Zeki Bayram

Computer Engineering Department, Eastern Mediterranean University

Famagusta, Turkish Republic of Northern Cyprus

{nagehan.ilhan, zeki.bayram}@emu.edu.tr

Abstract — In North Cyprus, teacher relocation in State schools

is handled in a centralized manner. Teachers, if they wish to

relocate, state which schools they wish to move to, and the

authorities try to come up with a relocation scheme that

maximizes the happiness of the teachers, without overlooking the

needs of the schools involved. This is a classic discrete

optimization problem, and requires exponential search for its

solution. We handle this problem using constraint logic

programming techniques, trying to minimize the search space

wherever possible. We formulate the problem mathematically,

model it in the ECLiPSe constraint logic programming language,

and test our solution under various scenarios.

I. INTRODUCTION

Many real-life problems need combinatorial search for

their solution, and the solution time can grow exponentially

with the size of the problem. The “teacher relocation

problem,” where each teacher states which set of schools

would satisfy him/her, and an assignment of teachers to

schools which tries to maximize the satisfaction of the teachers

according to certain criteria is made, falls under this class of

problems.

Constraint Logic Programming (CLP) has evolved to

model and solve many hard real-life problems in recent years

[1]. It is well suited for scheduling problems since it allows the

formulation of the constraints of the problem in a high-level,

declarative way. Variables of the problem are mapped to logic

variables, domains of the variables are specified, and the

constraints on the variables are stated declaratively [7]. An

objective function on the variables involved is also specified.

The goal is to find an assignment of values to the variables,

without violating any constraints, in such a way that the value

of the objective function is minimized.

In this paper, we define the “teacher relocation” problem,

formulate it mathematically, model it in the ECL
i
PS

e
 (ECRC

Common Logic Programming System)[2] constraint

programming language, and test our solution under various

scenarios. Our results indicate that it is a viable solution which

can be used in the real-life environment of North Cyprus to

replace the manual method that is currently in use.

The rest of the paper is organized as follows. In section II

we have the description and formal specification of the

problem. Our CLP solution in ECL
i
PS

e
 is presented in section

III. Section IV contains the evaluation of our solution with

simulated input data. In section V we have a brief coverage of

related work, and section VI is the conclusion and future

research directions.

II. DESCRIPTION, FORMAL SPECIFICATION AND

TIME COMPLEXITY OF THE TEACHER RELOCATION

PROBLEM

Each teacher who wishes to relocate can state two choices.

An implicit, but undesirable third choice on the part of the

teacher is to stay in his/her current school. Teachers who do

not wish to relocate do not make any choices, and are not

forcibly relocated.

Teachers state their choices in order of preference. A

specific teacher’s happiness is given very naturally by

order(teacher, assignment(teacher)), where order(t,s) is the

position (first, second etc.) of school s in the preference

declaration of teacher t. Here, smaller numbers mean more

happiness.

The goal of the system is to maximize the overall happiness

of the teachers, which corresponds to minimizing the value of

the objective function

Re

(, ())
t TeachersWhoWishTo locate

order t assignment t
∈

∑ (1)

subject to the constraint in each school that the number of

teachers at the school never exceed its capacity. This is

modeled by the use of quotas, which specify the teacher

deficiency (vacant positions) in each school before relocation

is initiated. So for each school, the following constraint must

be satisfied in a final solution:

incomingTeachers outgoingTeachers quota≤ + (2)

Another obvious constraint is that a teacher cannot be

assigned to more than one school, hence the function

assignment.

For N teachers, the best case time complexity is N, where

each teacher is assigned to his/her first choice without

violating any constraints. For the worst case analysis, all

possible combinations of assignments must be considered,

which gives us 3
N
.

III. FORMULATON OF THE PROBLEM AS AN

ECL
i
PS

e
 PROGRAM

Data Structures

To store the information of teachers, we use the structure

teacher(Teachername, ALSchool) for each teacher.

Teachername is the name of the teacher and ALSchool is the

current school of the teacher. Each teacher name is assumed to

be unique.

A teacher’s choices are represented as

choice(Teachername, SchoolName, ChoiceNo, AppYear),

where Teachername is the name of the teacher, SchoolName

specifies the name of the school which the teacher wants

locate, ChoiceNo represents the precedence number of the

teacher to locate to this school and AppYear is the application

year of the teacher for relocation.

Information about schools is given by school(Schoolname,

Countyname, Quota, MaxCapacity), where SchoolName is the

name of the school, Countyname specifies the county which

the school belongs to, Quota is the number of vacancies at the

school, and MaxCapacity specifies the maximum number of

teachers which the school can employ.

Note that not all the bits of information represented in the

database are used in the solution that we present, but they are

included to allow the possibility of different solutions in the

future.

The general technique used

teacher-school pairs are assigned -1 or 0 to indicate

whether teacher is assigned to school. -1 means that teacher is

assigned to school, 0 means teacher is not assigned to school.

This representation allows easy checking of the constraints that

each teacher is assigned to exactly one school, and school

quotas are not exceeded. Two techniques are used to prune the

search space and generate results faster.

First, just any feasible assignment is generated, which gives

us a baseline of “happiness” for teachers. If, during the

optimization phase, this value is exceeded, that branch of the

search space is pruned.

Second, the domains are increased gradually – if a solution

is possible where all teachers are placed to their first choices,

surely this will result in maximum teacher satisfaction. So a

solution is attempted where only the first choices are

considered. If no solution is possible, then the first two choices

of teachers are considered. If still no solution is possible, then

all three choices are considered (the last one being the implicit

“stay in your current school” choice).

The top level predicate “solve”

The main predicate in the program is solve, given in

Fig. 1. Its output parameter Cost is the minimum cost of the

solution. The solution itself is printed on the screen. solve

generates the teacher list using the database, and passes it on to

the increment_loop predicate, which actually does the

job. The second parameter of increment_loop denotes

that only the first choices will be considered when the search

begins.

solve(Cost):-

 findall(X,teacher(X,_),Teacherlist),

 increment_loop(Teacherlist,1,Cost),!.

Fig. 1: The “solve” predicate

The “increment_loop” predicate

The increment_loop predicate, given in Fig. 2, gets

Teacherlist and Choicenum as input parameters and

outputs the Cost. Predicate willbelabeled generates the

list Clist1, which will be flattened by the flatten

predicate to generate a list of the form

[(Teachername,Schoolname,R,Cost),….] in its Clist output

parameter. The domain of R is [-1,0] if Schoolname is either a

school preferred by Teachername or it is his/her current

school. Otherwise the domain of R is [0]. We chose -1, rather

than 1, to represent a teacher being assigned to a school,

because the built-in indomain predicate assigns values to

variables in increasing numeric order, and in our labeling

predicate this would result in a teacher not being assigned to a

school initially (0 would be tried before 1).

Then each_teacher predicate is called. It gets

Teacherlist and Clist as input. It is the first constraint

of the program which constrains a teacher to locate only to one

school, since a teacher cannot exist in more than one school. In

order to prevent the relocation of a teacher to more than one

school , sum of all R’s of each teacher in Clist is

constrained as to be -1.

 SumofRs # = -1 (3)

In the next step, the list of schools Schoollist is

generated and passed as an input parameter to the

createoutoflist predicate, together with

Teacherlist and Clist. The predicate

createoutoflist generates the Outlist, flattended

into Outoflist, which has the same structure with

Clist. However, the R value of a teacher becomes -1 in the

school which he/she wants to vacate. Outoflist contains

information about which schools teachers are moving out of.

increment_loop(Teacherlist,

 Choicenum,Cost):-

 willbelabeled(Teacherlist,Choicenum,

 [],Clist1),

 flatten(Clist1,Clist),

 each_teacher(Teacherlist,Clist),

 findall(Y,school(Y,_,_,_),Schoollist),

 createoutoflist(Teacherlist,Schoollist,

 [],Outlist,Clist),

 flatten(Outlist,Outoflist),

 findinginoutlist(Schoollist,Clist,

 [],Schoolinlist),

 findinginoutlist(Schoollist,Outoflist,

 [],Schooloutlist),

 quotaconstraint(Schoollist,Schoolinlist,

 Schooloutlist),

 solve1(RefCost),

 length(Teacherlist,LT),

 bb_min((our_labeling(Clist, 0, RefCost,

 Cost)), Cost,bb_options with

 [from:LT]),

 (nonvar(Cost),lastreplacement(Clist),!);

 (Choicenum1 is Choicenum+1,

 increment_loop(Teacherlist,

 Choicenum1,Cost)).

Fig. 2: The “increment_loop” predicate

Then findinginoutlist predicate is called two

times. In first call, it takes Schoollist and Clist as

input parameters and generates Schoolinlist as output.

It keeps the information of the number of coming teachers to

each school and has the structure

[(Schoolname,NumberOfComingTeachers), …]. In second call

of the findinginoutlist predicate, Schoollist and

Outoflist are passed as input parameters to generate

Schooloutlist which has the same structure with

Schoolinlist but keeps the number of outgoing teachers

for each school: [(Schoolname, NumberOfOutgoingTeachers

)].

The quotaconstraint predicate is our second

constraint in the program. It takes Schoollist,

Schoolinlist, and Schooloutlist as parameters.

It constrains each school such that the difference between the

number of coming teachers and outgoing teachers to the school

are smaller than or equal to the quota of the school.

 (Incoming-Outgoing)#<=Quota (4)

Then, the solve1 predicate is called to get a baseline

cost in its RefCost parameter. solve1 just finds any

feasible solution, without any consideration of optimality. We

use this value to prune the search space when we make

incremental assignments: if the current “cost” has already

exceeded the reference cost, that branch of the search space is

not explored any further. Refcost is passed as a

parameter to our_labeling predicate.

Next we have a call to the minimization predicate

bb_min(Goal,Cost,Options). bb_min/3 is a built-in predicate

which finds a solution of the Goal that minimizes the value of

Cost [2]. The goal to be satisfied is

our_labeling(Clist,0,RefCost,Cost), where

Cost is to be minimized. Cost is the cumulative happiness

of teachers, as already discussed in section II, and is computed

inside our_labeling predicate.

Then we have an OR (;) structure. If the program has

already found the minimum cost, the lastreplacement

predicate is called, which prints the teacher names, their

assigned schools, as well as the rank of the school in the

preference order of the teachers. If no solution was found, the

Cost variable will be free, Choicenum is incremented by

1 and increment_loop is called recursively to try to

find a solution by including one more preference of the

teachers to the search space.

Labeling

Rather than relying on the built-in labeling predicate of

ECL
i
PS

e
, we wrote our own our_labeling predicate

given in Figure 3, which gave us the possibility of pruning

the search space as labeling was being done.

our_labeling([],A,RefCost,A).

our_labeling([(H,S,R,X)|T],Acc,

 RefCost,Cost):-

 indomain(R),

 lk(H,S,R,X),

 Cost1 is Acc+X,

 unassignedTeachers(T,UL),

 Cost1+UL<=RefCost,

 our_labeling(T,Cost1,RefCost,Cost).

Fig. 3: The “our_labeling” predicate

The our_labeling predicate gets Clist, Acc

and RefCost as input variables and outputs Cost. It

firstly assigns a value to R by calling the indomain

predicate. The lk predicate gets H(teacher name),

S(school name) and R (0 or -1) as input parameters, and

outputs X. If R = -1, then X = the order of preference

of S by H. Otherwise X= 0.

cost1 accumulates the cost (“cumulative happiness”) of

relocated teachers that have been assigned schools up to this

point. We want to prune the search space at his point if the

best achievable solution (cost1 + number of teachers that

have not been assigned to any school yet) is greater than or

equal to Refcost. This is true, because in the best case, the

remaining teachers will be assigned to their first choices, and

their cumulative happiness will be equal to how many they are.

unassignedTeachers(T, UL)gives the number of

unassigned teachers in UL. If Cost1+UL>RefCost,

there is no need to continue to label the other teachers, and the

labeling fails.

IV. RESULTS

It is possible to attempt to solve the teacher relocation

problem without using our “incremental domain” approach. To

see if there is any significant difference, we tried both

approaches using simulated data, varying the number of

teachers and the quotas of schools. The number of schools was

fixed at 10 (admittedly an arbitrary figure, but representative

of the number of elementary schools in North Cyprus).

Fig. 4 shows the number of teachers versus the CPU time in

seconds to solve the problem for searching with incremental

domains and without incremental domains, when empty

quota’s of schools randomly change from 1 to 5.

Quota changes 1 to 5

0

50

100

150

200

250

10 20 30 40 50

Number of Teachers

C
P

U
 t

im
e
 i

n
 s

e
c
.

With

Incremental

Domain

Without

Incremental

Domain

Fig. 4: Number of Teachers vs. CPU time while quota changes 1 to 5

It is clearly seen that with the incremental domain

technique, the problem is solved much more quickly. This is

especially true when the problem size becomes bigger in terms

of the number of teachers.

Quota changes 1 to 10

0

5

10

15

20

25

10 20 30 40 50

Number of Teachers

C
P

U
 t

im
e
 i

n
 s

e
c
.

With

Incremental

Domain

Without

Incremental

Domain

Fig. 5: Number of Teachers vs. CPU time while quota changes 1 to 10

As the quotas increase, the problem becomes easier, since

teachers can then be assigned to schools without requiring that

other teachers leave the school. This case is depicted in Fig. 5,

where quotas range randomly from 1 to 10. In this case as

well, the incremental domain approach shows a clear

advantage.

The worst case of the problem occurs when we decrease

quotas of the schools to zero (Fig. 6). In this case, the program

is forced to tries almost all possibilities to find the solution and

search space increases to its maximum level. The incremental

domain approach still outperforms the other one, however

neither one can find a solution in a reasonable amount of time

when the number of teachers is much more than 30.

Worst Case

0

20

40

60

80

100

10 20 30

Number of Teachers

C
P

U
 t

im
e
 i

n
 s

e
c
.

With

Incremental

Domain

Without

Incremental

Domain

Fig. 6: Number of Teachers vs. CPU time while quotas are zero

V. RELATED WORK

Our literature search has not revealed any publication on

the teacher relocation problem. Many other kinds of

scheduling problems have been successfully solved with CLP,

however. In [3] the authors present a methodology to solve a

job-shop scheduling problem using constraint logic

programming. They investigate a new strategy to find the

optimal solution which involves step by step decreasing of the

upper and lower bounds of the search space of the branch and

bound evaluation function. In [4] authors describe a solution to

the nurse scheduling problem by developing a technique to

prune the search space which is based on reducing the variable

domains. In [5], the authors investigate the efficiency of

constraint programming for solving the nurse scheduling

problem. In [6], the authors present a solution to university

timetabling problem using the ECL
i
PS

e
 constraint logic

programming language by stating the constraints in the most

suitable order. The authors in [8] use their own labeling to

reduce the search space to find the optimal solution. In [9], a

solution to sport tournament scheduling using the finite

domain library of ECL
i
PS

e
is presented. A constraint-based

depth-first branch and bound procedure is used to find an

optimal solution in reasonable time, except in some situations.

A solution to the Hospitals/Residents Problem, which bears

some resemblance to the Teacher Relocation Problem studied

here, is presented in [10]. In the Hospitals/Residents Problem,

each resident is paired with an acceptable hospital, in such a

way that a hospital’s capacity is never exceeded. Both the

hospitals and residents have preferences. Authors investigate

four different techniques, two of them being similar to our

assignment of binary values to variables.

VI. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

We defined the teacher relocation problem, modeled it

using constraints, implemented a solution as an ECL
i
PS

e

program, and tested our solution under various scenarios. We

devised several strategies for reducing the search space, and

generating results faster. The first is using a baseline value for

pruning solution paths that cannot possibly improve the

baseline value. Second is the usage of “incremental domains,”

where preferences of teachers are considered incrementally.

Our simulation runs confirm that the incremental domain

approach outperforms the non-incremental one.

The proposed model works well up to a reasonable number

of teachers and quotas in schools. As the problem size

becomes large (i.e. when the number of teachers increase

and/or the schools quotas become small), since the search

space grows exponentially, it may not be possible to find the

best solution in a reasonable amount of time. However, North

Cyprus is a small country, and the problem sizes seem well

within the capability of our solution.

For future work, we plan to improve the “cost function” by

taking into account the needs of the schools and how long a

teacher has been waiting for relocation, handle the case of new

teachers who are just beginning their careers, as well as

teachers who will leave the system through retirement. A Web

based user interface is also being planned.

 REFERENCES

[1] F. Rossi, “Constraint Logic Programming,” in Proceedings of

ERCIM/Compulog Net workshop on constraints, Springer,

LNAI 1865, 2000.

[2] IC-PARC. ECLiPSe 5.7 User Manual, 2003.

[3] J. Paralic, J. Csonto, M. Schmotzer, “Optimal Scheduling Using

Constraint Logic Programming,” in Proceedings of 8th

Symposium on Information Systems IS'97, Varazdin, October

1997, pp. 65-72.

[4] S. Abdennadher, H. Schlenker, “Nurse Scheduling using

Constraint Logic Programming,” in Proceedings of Eleventh

Annual Conference on Innovative Applications of Artificial

Intelligence, IAAI-99, The MIT Press, Orlando, Florida, July

1999.

[5] G. Weil, K. Heus, P. Francois, M. Poujade, “Constraint

programming for nurse scheduling,” in Proceedings of IEEE

Engineering in Medicine and Biology, July/August 1995, pp.

417-422.

[6] M. Kambi, D. Gilbert, “Timetabling in Constraint Logic

Programming”, in Proceedings of INAP-96: Symposium and

Exhibition on Industrial Applications of Prolog, Tokyo, Japan,

1996.

[7] K. Marriot, P. Stuckey, Programming with Constraints: An

introduction, The MIT Press, 1998.

[8] J. Csonto, J. Paralic, “The CLP Approach to Solve a Scheduling

Application,” in Proceedings of the 7th International

Symposium on INFORMATION SYSTEMS’96, Varazdin,

September 1996, pp. 179-190.

[9] A. Schaerf, “Scheduling Sport Tournaments using Constraint

Logic Programming,” in Proceedings of the 12th European

Conference on Artificial Intelligence (ECAI-96), Budapest,

Hungary, 1996, pp 634-639.

[10] D.F. Manlove, G. O'Malley, P. Prosser, C. Unsworth, “A

Constraint Programming Approach to the Hospitals / Residents

Problem,” in Proceedings of the Fourth Workshop on Modeling

and Reformulating Constraint Satisfaction Problems, held at

the 11th International Conference on Principles and Practice of

Constraint Programming (CP 2005), pp 28-43.

