
A Critical Evaluation of Web Service Modeling
Ontology and Web Service Modeling Language

Omid Sharifi1 and Zeki Bayram2(B)

1 Computer and Software Engineering Department, Toros University, Mersin, Turkey
omid.sharifi@toros.edu.tr

2 Computer Engineering Department, Eastern Mediterranean University,
Famagusta, Cyprus

zeki.bayram@emu.edu.tr

Abstract. Web Service Modeling Language (WSML), based on the Web
Service Modeling Ontology (WSMO), is a large and highly complex lan-
guage designed for the specification of semantic web services. It has dif-
ferent variants based on logical formalisms, such as Description Log-
ics, First-Order Logic and Logic Programming. We perform an in-depth
study of both WSMO and WSML, critically evaluating them by iden-
tifying their strong points and areas in which improvement would be
beneficial. Our studies show that in spite of all the features WSMO and
WSML support, their sheer size and complexity are major weaknesses,
and there are other areas in which important deficiencies exist as well.
We point out those discovered deficiencies, and propose remedies for
them, laying the foundation for a more tractable and useful formalism
for specifying semantic web services.

Keywords: Semantic web services · WSMO · WSML · Evaluation

1 Introduction

The goal of web services is to allow normally incompatible applications to inter-
operate over the Web regardless of language, platform, or operating system [10].
Web services are much like remote procedure calls, but they are invoked using
Internet and WWW standards and protocols such as Simple Object Access Pro-
tocol (SOAP) [2] and Hypertext Transfer Protocol (HTTP) [1].

Web Services Modeling Ontology (WSMO) [3] is a comprehensive framework
for describing web services, goals (high-level queries for finding web services),
mediators (mappings for resolving heterogeneities) and ontologies. Web Services
Modeling Language (WSML) [5] is a family of concrete languages based on F-
logic [11] that implement the WSMO framework. The variants of WSML are
WSML-core, WSML-flight, WSML-rule, WSML-DL, and WSML-full. WSML is
large, relatively complex, and somewhat confusing, with different variants being
based on different formalisms. The complexity and confusion arise mainly from
the many variants of the language, and the rules used to define the variants.

c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 97–105, 2016.
DOI: 10.1007/978-3-319-47217-1 11



98 O. Sharifi and Z. Bayram

The variants of WSML form a hierarchy, with WSML-full being on top (the
most powerful) and WSML-core being at the bottom (weakest).

Our literature search has failed to reveal any significant industrial real-life
application that uses WSML. We believe this is due to the inherent complexity
of the language, the “less-than-complete” state of WSML (e.g. the syntax of
WSML-DL does not conform to the usual description logic syntax, choreography
specification using abstract state machines (ASM) [8] seems unfit for the job due
to the execution semantics of ASMs, goals, choreographies and web services are
not integrated in the same logical framework etc.), as well as the lack of proper
development tools and execution environments. So WSML looks like it is still in
a “work-in-progress” state, rather than a finished product.

In this work, we critically evaluate the strengths and weaknesses of WSMO
and WSML, and determine the areas of improvement that will result in a usable
semantic web service specification language. This is the main contribution of this
work, which will be input to the next phase of our research, the actual design
and implementation of such a language.

The remainder of the paper is organized as follows. Section 2 contains a crit-
ical evaluation of WSMO and WSML, including their strengths, weaknesses and
deficiencies, discovered both through our detailed study of the documentation
provided for WSMO and WSML, as well as experimentation with the paradigm
in several use-cases. In Sect. 3 we have a brief discussion of related work, and
finally Sect. 4 is the conclusion and future research directions.

2 Evaluation of WSMO and WSML

In this section we discuss the strong and weak points of WSMO and WSML
as discovered through our studies of their specification and the practical expe-
rience gained through experimentation. We also suggest possible improvements
wherever possible.

2.1 General Observations

WSMO boasts a comprehensive approach that tries to leave no aspect of semantic
web services out. These include ontologies, goals, web services and mediators. In
the same spirit of thoroughness, designers of WSML have adopted the paradigm
of trying to provide everything everybody could ever want and let each potential
user chose the “most suitable” variant of the language for the job at hand. This
approach has resulted in a complex syntax, as well as a complex set of rules that
differentiate one version of the language form another.

2.2 Deficiencies in Syntax

WSML-DL and WSML-full have no explicit syntax for the description logic
component [5], relying on a first-order encoding of description logic statements.
Without proper syntax, it is not possible to use them in the specification of
semantic web services in a convenient way.



Critical Evaluation of WSMO and WSML 99

2.3 Logical Basis of WSMO

The ontology component of WSMO is based on F-logic, which gives this compo-
nent a solid theoretical foundation. However, its precise relationship to F-logic
has not been given formally, and what features of F-logic have been left out are
not specified explicitly.

2.4 Lack of a Semantics Specification for Web Service
Methods/Operations

In spite of all the effort at comprehensiveness, there are significant omissions in
WSMO, such as specification of the semantics of actual methods (operations)
that the web service provides, which makes it impossible to prove that after
a “match” occurs between a goal and a web service, the post-condition of the
goal will indeed be satisfied. Even worse, once matching succeeds and the web
service is called according to the specified choreography, the actual results of
the invocation may not satisfy the post-condition of the goal. Below, we explain
why.

In WSMO, matching between a goal and web service occurs by considering
the pre-post conditions of the goal and web service, and this is fine. The problem
occurs because of the lack of a semantic specification (for example, in the form of
pre-post conditions) for web service methods/operations, and how these methods
are actually called through the execution of the choreography engine. Method
calls are generated according to availability of “data” in the form of instances,
and the mapping of instances to parameters of methods. There is no consider-
ation of logical conditions which must be true before the method is called, and
no guarantee of the state of the system after the method is called, since these
are not specified for the web methods. Instances of a concept can be parameters
to more than one web method. Assuming two methods A and B have the same
signature, it may be the case that an unintended method call can be made to B,
when in fact the call should have been made to A, which results in wrong com-
putation. Consequently, not only is it impossible to prove that after a “match”
occurs between a goal and a web service, the post-condition of the goal will be
satisfied, but also once the web service execution is initiated, the computation
itself can produce wrong results, invalidating the logical specification of the web
service.

Unfortunately, the interplay between choreography, grounding and logical
specification of what the web service does (including the lack of the specification
of semantics for web service methods) has been overlooked in WSMO. All these
components need development and integration in order to make them part of a
coherent whole.

2.5 Implementation and Tool Support

Some developmental tools, such as the “Web Services Modeling Toolkit” [4]
exist which make writing WSML specifications relatively easy. However, these



100 O. Sharifi and Z. Bayram

tools depend on external reasoner support, rather than having intrinsic reasoning
capabilities. As such, development and testing of semantic web service specifi-
cations cannot be made in a reliable manner. For example, no explanations are
given when discovery fails for a given goal.

2.6 Choreography in WSMO

We have already talked about how the interplay of choreography and ground-
ing can result in incorrect execution, invalidating the logical specification of a
web service. In this section, we delve more deeply into the problems of WSMO
choreography.

– WSMO choreography is purportedly based on the formalism of abstract state
machines [8], but in fact it is only a crude approximation. Very significantly,
evolving algebras are magically replaced with the state of the ontologies as
defined by instances of relations and concepts. This transformation seems to
have no logical basis, so the applicability of any theory developed for abstract
state machines to WSMO choreography specifications is questionable. The
choreography attempt of WSMO looks more like a forward-chained expert
system shell, where the role of the “working memory” is played by the current
set of instances in the ontologies. It probably would be more reasonable to
consider WSMO choreography in this way, rather than being based on abstract
state machines.

– The fact that in an abstract state machine rules are fired in parallel does not
match well with the real life situation that method calls implied by the firing
of rules have to be executed sequentially.

– Both goals and web services have choreography specifications, but there is
no notion of how the choreographies of goals and web services are supposed
to match during the discovery phase. It is also not clear how the two are
supposed to interact during the execution phase. Although restrictions on who
can modify the state of the ontology and in what way can be specified in the
form of modes of concepts, this is relatively complex, and far from practical.
In the documentation of WSMO, only the choreography of the service is made
use of.

– Choreography grounding in WSMO tries to map instances to method parame-
ters of the web service methods by relating concepts to the methods directly.
Methods are then called when their parameters are available in the current
working memory. The firing of the rules are intermixed with the invocation
of methods (with appropriate lowering/lifting of parameters), and changes to
working memory by actions on the right hand side are forbidden (presuming
that any changes will be made by the actual method call). This is a strange
state of affairs, since the client may itself need to add something to the working
memory, and there is no provision for this.

– The choreography rule language allows nested rules. Although this nesting per-
mits very expressive rules to be written, using the “if”, “forall” and “choose”
constructs in any combination in a nested manner, the resulting rules are
prohibitively complex, both to understand, and to execute.



Critical Evaluation of WSMO and WSML 101

– As mentioned before, in the grounding process, only the availability of
instances that can be passed as parameters to methods, and the pre-
determined mapping between concepts and parameters, are considered, with
no pre-conditions for method calls. This is a major flaw, since it may be that
two methods have exactly the same parameter set, but they perform very
different functions, and the wrong one gets called.

– The choreography specification is disparate from the capability specification
(pre-conditions, post-conditions), whereas they are in fact intimately related
and intertwined. The actions specified in the choreography should actually
take the initial state of the ontologies to their final state, through the inter-
action of the requester and web service. This fact is completely overlooked in
WSMO choreography.

– Choreography engine execution stops in WSMO when no more rules apply.
A natural time for it to stop would be when the conditions specified in the
goal are satisfied by the current state of the ontology stores. Again this is a
design flaw, which is due to the fact that the intimate relationship between
the capability specification and choreography has been overlooked.

2.7 Orchestration in WSMO

The orchestration component of WSMO is yet to be defined. The creators of
WSMO say it will be similar to choreography, and be part of the interface speci-
fication of a web service. At a conceptual level, however, we find the specification
of orchestration for a web service somewhat unnecessary. Why would a requester
care about how a service provider provides its service? Composition of web ser-
vices to achieve a goal would be much more meaningful, however. So the idea
of placing orchestration within a web service specification seems misguided. Its
proper place would be inside the specification of a complex goal, which would
help and guide the service discovery component to not only find a service that
meets the requirements of the goal, but also mix-and-match and compose differ-
ent web services to achieve the requirements of the goal.

2.8 Goal Specification

The goal specification includes the components “assumptions,” “pre-conditions,”
“post-conditions” and “effects,” just like the web service specification. The
logical correspondence between the “pre-conditions,” “assumptions,” “post-
conditions” and “effects,” of goals and web services is not specified at all. The
usage of the same terminology for both goals and web services is also misleading.
In reality, the web service requires that its pre-conditions and assumptions hold
before it can be called, and guarantees that if it is called, the post-conditions
and effects will be true. On the other hand, the goal declares that it guarantees
a certain state, perhaps by adding instances to the instance store, of the world
before it makes a request to a web service, and requires certain conditions to
be true as a result of the execution of the web service. The syntax of the goals
should be consistent with this state of affairs.



102 O. Sharifi and Z. Bayram

2.9 Reusing Goals Through Specialization

Being able to reuse an existing goal after specializing it in some way would be
very beneficial. The template mechanism of programming languages, or “pre-
pared queries with parameters” in the world of databases are concepts which
can be adapted to goals in WSMO to achieve the required specialization. Such
functionality is currently missing in WSML.

2.10 Specialization Mechanism for Web Service Specifications

Developing a web service specification from scratch is a very formidable task.
Just like in the case of specializing goals, a mechanism for taking a “generic”
web service specification in a domain, and specializing it to describe a specific
web service functionality would be a very useful proposition. To take this idea
even further, a hierarchy of web service specifications can be published in a
central repository, and actual web services can just declare that they implement
a pre-published specification in the hierarchy. Or, they can grow the hierarchy
by specializing an existing specification, and “plugging” their specification into
the existing hierarchy. Such an approach will help in service discovery as well. A
specialization mechanism for web services does not exist in WSMO, and would
be a welcome addition to it.

2.11 Missing Aggregate Function Capability

The logic used in WSML (even in WSML full) does not permit aggregate func-
tions in the sense of database query languages (sum, average etc.). Such an
addition however would require moving away from first order logic into higher
order logic, with corresponding loss of computational tractability. Still, it may be
worthwhile to investigate restricted classes of aggregate functionality which lend
themselves to practical implementation. For example, a built-in setof predicate
could be used to implement aggregate functions.

2.12 Extra-Logical Predicates

The ability to check whether a logic variable is bound to an object, or whether
it is in an unbound state (the var predicate of Prolog [16]) is missing. The
availability of this feature is of practical importance, since for example a web
service pre-condition may be a disjunction, and depending on the input provided
by the goal, some variables in the disjunction may remain unbound after a
successful match.

2.13 Multiple Functionality in a Web Service

A WSML goal or web service may only have one capability [9]. This is a severe
restriction, since a web service can possibly provide different results, depending
on the provided input. Ideally, each web service specification should be able to
have a set of capabilities. This is not currently available in WSMO or WSML.



Critical Evaluation of WSMO and WSML 103

2.14 Automatic Mapping Between Attributes and Relations

Although one can define a binary relation for each attribute using an axiom,
relating objects and their attribute values, this is cumbersome when done manu-
ally. Having it done automatically would be nice, a feature currently not available
in WSML.

2.15 Error Processing

There is currently no mechanism specifying how to handle errors when they arise.
For example, what should be done when a constraint is violated in some ontol-
ogy? There should be a way of communicating error conditions to the requester
when they arise. This could be the counterpart of the exception mechanism in
programming languages.

2.16 No Agreed-Upon Semantics for WSML-Full

WSML-full, which is a combination of WSML-DL and WSML-rule, has no
agreed-upon semantics yet [9] yet. With no formal semantics available, it is
hard to imagine how WSML-full specifications could be processed at all.

3 Related Work

The authors have benefited from practical experience gained through semantic
web service specification use cases reported in [6,13,14] in determining weak
points of WSMO and WSML, in addition to unreported extensive experimenta-
tion. Although some of the drawbacks of WSML reported here have been pointed
out in the master thesis by Cobanoglu [7] as well, our coverage of the choreog-
raphy issue is unique in its depth and scope. We also offer solutions wherever
possible to improve WSMO and WSML.

Our literature search failed to reveal any additional comprehensive study on
the weaknesses of WSMO and WSML. However, we should also mention WSMO-
lite [12,15], a relatively recent bottom-up semantic web service specification
framework inspired by WSMO, that recognizes and provides solutions for the
problems of specifying pre and post conditions for web service operations, as
well as dealing with error conditions.

4 Conclusion and Future Work

We investigated the WSMO semantic web service framework, and the WSML
language through an in-depth study of both, as well as extensive practical exper-
imentation. Our investigation has revealed several deficiencies and flaws with
WSMO and WSML, which we presented in this paper. We also provided sug-
gestions for improvement where possible.



104 O. Sharifi and Z. Bayram

In future work, we are planning to develop a logic based semantic web service
framework that builds on the strengths of WSMO, but at the same time remedies
the weaknesses identified in this paper. Our proposal will aim to be coherent,
where all the components are in harmony with each other, manageable, not
unnecessarily complex, and practical enough to be used in real life.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. HTTP - hypertext transfer protocol. http://www.w3.org/Protocols/. Accessed 19
Apr 2016

2. SOAP version 1.2 part 1: Messaging framework (2nd edn.). https://www.w3.org/
TR/soap12/. Accessed 19 Apr 2016

3. Web Service Modeling Ontology. http://www.wsmo.org/. Accessed 30 Mar 2016
4. Web Services Modelling Toolkit. https://sourceforge.net/projects/wsmt/.

Accessed 18 Apr 2016
5. WSML - Web Service Modeling Language. http://www.wsmo.org/wsml. Accessed

30 Mar 2016
6. Çobanoǧlu, Ş., Bayram, Z.: Semantic web services for university course registration.

In: Kim, W., Ding, Y., Kim, H.-G. (eds.) JIST 2013. LNCS, vol. 8388, pp. 3–16.
Springer, Heidelberg (2014)

7. Cobanoglu, S.: A critical evaluation of web service modeling language. Master
Thesis, Eastern Mediterranean University, February 2013

8. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (1984)

9. Group, W.W., et al.: D16.1v1.0 WSML language reference final draft 2008–08-08
(2008). http://www.wsmo.org/TR/d16/d16.1/v1.0/. Accessed 20 Apr 2016

10. McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: Java Web Services Architecture.
Morgan Kaufmann, San Francisco (2003)

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42(4), 741–843 (1995). doi:10.1145/210332.210335

12. Roman, D., Kopeck, J., Vitvar, T., Domingue, J., Fensel, D.: WSMO-Lite and
hRESTS: lightweight semantic annotations for web services and RESTful APIs.
Web Semant. Sci., Serv. Agents WWW 31, 39–58 (2015)

13. Sharifi, O., Bayram, Z.: Database modelling using WSML in the specification of a
banking application. In: Proceedings WASET 2013, pp. 263–267 (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.w3.org/Protocols/
https://www.w3.org/TR/soap12/
https://www.w3.org/TR/soap12/
http://www.wsmo.org/
https://sourceforge.net/projects/wsmt/
http://www.wsmo.org/wsml
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://dx.doi.org/10.1145/210332.210335


Critical Evaluation of WSMO and WSML 105

14. Sharifi, O., Bayram, Z.: Specifying banking transactions using web services mod-
eling language (WSML). In: Proceedings of the Fourth International Conference
on Information and Communication Systems (ICICS 2013), pp. 138–143 (2013)

15. Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web
services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-68234-9 49

16. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer, Verlag (1984)

http://dx.doi.org/10.1007/978-3-540-68234-9_49
http://dx.doi.org/10.1007/978-3-540-68234-9_49

	A Critical Evaluation of Web Service Modeling Ontology and Web Service Modeling Language
	1 Introduction
	2 Evaluation of WSMO and WSML
	2.1 General Observations
	2.2 Deficiencies in Syntax
	2.3 Logical Basis of WSMO
	2.4 Lack of a Semantics Specification for Web Service Methods/Operations
	2.5 Implementation and Tool Support
	2.6 Choreography in WSMO
	2.7 Orchestration in WSMO
	2.8 Goal Specification
	2.9 Reusing Goals Through Specialization
	2.10 Specialization Mechanism for Web Service Specifications
	2.11 Missing Aggregate Function Capability
	2.12 Extra-Logical Predicates
	2.13 Multiple Functionality in a Web Service
	2.14 Automatic Mapping Between Attributes and Relations
	2.15 Error Processing
	2.16 No Agreed-Upon Semantics for WSML-Full

	3 Related Work
	4 Conclusion and Future Work
	References


