
XSLT Version 2.0 is Turing-Complete: A Purely
Transformation Based Proof

Ruhsan Onder and Zeki Bayram

Department of Computer Engineering/Internet Technologies Research Center
Eastern Mediterranean University

Famagusta, Cyprus
{ruhsan.onder, zeki.bayram }@emu.edu.tr

http://www.emu.edu.tr

Abstract. XSLT is a programming language, originally designed to convert XML
documents to XHTML for presentation on browsers. XSLT works by matching
predefined patterns to a source XML document and producing output for each
kind of construct that is matched. In spite of its relatively humble goals, XSLT
has the full power of a Turing machine, i.e. it is “Turing-complete.” We show
this is so by implementing an interpreter for a generic Turing machine in XSLT
version 2.0. We use only the constructs available in the official specification of
XSLT version 2.0 by the World Wide Web consortium, and no extensions to the
core specification. Furthermore, we do not resort to string functions (which are
also available in XSLT) but rather rely on the innate transformational capabilities
of XSLT.

1 Introduction

Extensible Stylesheet Language Transformations (XSLT) was originally conceived as
a way to transform data encoded as an XML document into an XHTML page that
can be viewed on a user’s browser. The motivation behind representing data in XML
format was to separate content from presentation of the content, with XSLT acting
as the bridge between the two. XSLT is also used to convert XML documents from
one format to another, so that different applications can work on the same data, but in
different formats.

XSLT works by transforming a source XML document through the application of
templates. A template has two main parts: (1) a potentially complex pattern in the form
of an XPath expression which specifies a part of the source document, and (2) the way
in which the specified part will be transformed.

Recently, we showed that XSLT can be used as a “system level” tool, acting as an
interpreter for a simple imperative language [1]. In this paper we show that XSLT can
be used to implement the functionality of a universal Turing machine. For this purpose,
we designed a Universal Turing Machine Emulating Stylesheet (which we shall call
UTMES). UTMES takes as input an XML encoded definition of a Turing machine that
accepts by final state, as well as the input for the Turing machine, and “runs” the Turing
machine on the provided input.

Table 1.State transition table of a Turing machine that accepts strings of form0n1n, n ≥ 1

State\ Symbol 0 1 X Y B
s0 (s1,X,R) – – (s3,Y,R) –
s1 (s1,0,R)(s2,Y,L) – (s1,Y,R) –
s2 (s2,0,L) – (s0,X,R)(s2,Y,L) –
s3 – – – (s3,Y,L) (s4,B,R)
s4 – – – – –

In computability theory, a programming language or any other logical system is
calledTuring-completeif it has a computational power equivalent to a universal Turing
machine. In other words, the system and the universal Turing machine can emulate each
other [2]. Since we are in effect emulating a universal Turing machine by our stylesheet,
we are actually proving the Turing-completeness of XSLT. Our stylesheet makes use of
only constructs that are available in the most recent working draft specification of XSLT
version 2.0 [3], and hence our completeness result pertains to this specification.

The remainder of this paper is organized as follows. In section 2 the new facilities of
XSLT version 2.0 are explained, which open the way for a straight-forward transforma-
tion oriented proof of the Turing-completeness of XSLT. Using UTMES to interpret/run
Turing machines is explained in section 3. Section 4 contains the description of the im-
plementation of UTMES. Related work and a comparative discussion with our work
is given in section 5. In section 6 we have the conclusion. Appendix A contains the
XSLT template that implements a single move of the Turing Machine, and Appendix B
contains the trace of UTMES as it runs a Turing Machine on some input.

2 XSLT Version 2.0

A significant improvement of XSLT version 2.0 over XSLT version 1.0 [4] is the re-
placement of the concept of “result tree fragments” with the more versatile “temporary
trees.” In XSLT version 1.0 when we assign the return value of a template to a variable,
a result tree fragment is created to hold the return value. However, result tree frag-
ments are not re-usable in the stylesheet as regular nodes, since their contents cannot
be pattern-matched through XPath expressions and consequently they cannot be trans-
formed. Rather, they are treated as strings and string manipulation functions are needed
to extract their contents. Alternatively, to be able to access and output the contents of
a result tree fragment as a node set, extension functions of XSLT processors or parsers
are required, such as the msxsl:node-set() function of MSXML [5], which by definition
are non-standard.

Temporary trees, which are intrinsically part of the XSLT version 2.0 specification,
have the full functionality of node sets. The return value of a template can be held in
a variable as a temporary tree and its contentscan be pattern-matched using XPath
expressions. It is this feature of XSLT version 2.0 that allows us to use a pure transfor-
mation based approach in the implementation of UTMES.

<TM>
<Spec>

<StateSet>
<state>s0</state>
<state>s1</state>
<state>s2</state>
<state>s3</state>
<state>s4</state>

</StateSet>
<InputSymbols>

<Symbol>0</Symbol>
<Symbol>1</Symbol>

</InputSymbols>
<TapeSymbols>

<Symbol>0</Symbol>
<Symbol>1</Symbol>
<Symbol>X</Symbol>
<Symbol>Y</Symbol>
<Symbol>B</Symbol>

</TapeSymbols>
<StartState>s0</StartState>
<BlankSymbol>B</BlankSymbol>
<FinalStates>

<FinalState>s4</FinalState>
</FinalStates>
<TransitionFunction>

<Delta CurrentState="s0" read="0"
NextState="s1" write="X" direction="R"/>

<Delta CurrentState="s0" read="Y"
NextState="s3" write="Y" direction="R"/>

<Delta CurrentState="s1" read="0"
NextState="s1" write="0" direction="R"/>

<Delta CurrentState="s1" read="1"
NextState="s2" write="Y" direction="L"/>

<Delta CurrentState="s1" read="Y"
NextState="s1" write="Y" direction="R"/>

<Delta CurrentState="s2" read="0"
NextState="s2" write="0" direction="L"/>

<Delta CurrentState="s2" read="X"
NextState="s0" write="X" direction="R"/>

<Delta CurrentState="s2" read="Y"
NextState="s2" write="Y" direction="L"/>

<Delta CurrentState="s3" read="Y"
NextState="s3" write="Y" direction="R"/>

<Delta CurrentState="s3" read="B"
NextState="s4" write="B" direction="R"/>

</TransitionFunction>
</Spec>
<input>

<Symbol>0</Symbol>
<Symbol>0</Symbol>
<Symbol>1</Symbol>
<Symbol>1</Symbol>

</input>
</TM>

Fig. 1.Specification for a Turing machine for accepting strings of form0n1n, n ≥ 1

<TM>
<Tape>

<TapeHead state="s0"/>
<tapeEl>0</tapeEl>
<tapeEl>0</tapeEl>
<tapeEl>1</tapeEl>
<tapeEl>1</tapeEl>

</Tape>

<Transitions>
<Delta CurrentState="s0" read="0"

NextState="s1" write="X" direction="R" />
<Delta CurrentState="s0" read="Y"

NextState="s3" write="Y" direction="R" />
<Delta CurrentState="s1" read="0"

NextState="s1" write="0" direction="R" />
<Delta CurrentState="s1" read="1"

NextState="s2" write="Y" direction="L" />
<Delta CurrentState="s1" read="Y"

NextState="s1" write="Y" direction="R" />
<Delta CurrentState="s2" read="0"

NextState="s2" write="0" direction="L" />
<Delta CurrentState="s2" read="X"

NextState="s0" write="X" direction="R" />
<Delta CurrentState="s2" read="Y"

NextState="s2" write="Y" direction="L" />
<Delta CurrentState="s3" read="Y"

NextState="s3" write="Y" direction="R" />
<Delta CurrentState="s3" read="B"

NextState="F" write="B" direction="R" />
</Transitions>

</TM>

Fig. 2. Instantaneous description of the Turing machine before it starts execution

3 Running Turing Machines on the Universal Turing Machine
Emulator Stylesheet UTMES

3.1 Format of the Turing Machines

UTMES is applied to an XML document containing the specification of a Turing ma-
chine, as well as the input to the Turing machine. Such an XML document for accepting
strings of the form0n1n, n ≥ 1, is shown in Figure 1. The state transition table for the
Turing machine in this document is given in Table 1 (taken from [6]). The specifica-
tion is structured under a<TM> root which has<Spec> and<input > elements. The
<Spec> element has the state set, input symbols, tape symbols, start state, Blank sym-
bol, final states and transition function specifications as sub-elements. The transition

rules in the<TransitionFunction > element are enclosed in<Delta > elements,
having@CurrentState , @read, @NextState , @write and@direction attributes,
which indicate the current state, symbol read from tape, next state, the symbol to over-
write the symbol read and the direction that the tape head will move (left or right),
respectively.

3.2 Execution of a Simple Turing Machine with UTMES

UTMES transforms the Turing machine specification, together with its initial input, into
an internal format, which represents the instantaneous description (ID) [6] of the Turing
machine in its initial configuration. The initial ID of the Turing machine of Figure 1 is
shown in Figure 2. Execution then proceeds by successively generating a new ID, using
the current ID and the transition function of the Turing machine.

The result of the execution of the Turing machine, given in Figure 1, on the provided
input, is depicted in Appendix B.

4 Implementation of the Universal Turing Machine in XSLT

UTMES is implemented as an XSLT version 2.0 stylesheet. In this section, we describe
its overall architecture and some of its implementation details.

4.1 Software Used

We used Java 1.4.208 [7] with Xalan Java 2.4.1 [8] as the XML processor for the
execution of our examples.

4.2 Overview of the Implementation

We used two named templates,Execute andChangeTape and various other un-
named templates to simulate the execution of a Turing machine on its input. First, un-
named templates create the initial ID of the Turing machine. The templateExecute
takes this initial ID, and produces consecutive ID’s according to the transition rules of
the Turing machine, calling the templateChangeTape to generate the next ID, given
the current ID. The execution stops when a final state is reached.

4.3 Overview of the Execution Process

Figure 3 depicts the top-level templates of UTMES. After matching the<TM>element,
a variable$TuringM is created to hold the initial ID, generated by the applied tem-
plates (lines 7-10). Then this variable is used as the temporary tree for the call to the
templateExecute . The result returned by this call, which is the the list of state tran-
sitions and rules applied during execution, is held in variable $tapeVar (lines 11-16),
which in turn is used to print the output (lines 18-20).

1. <xsl:template match="/">
2. <TM>
3. <xsl:apply-templates select="TM"/>
4. </TM>
5. </xsl:template>
6. <xsl:template match="TM">
7. <xsl:variable name="TuringM">
8. <xsl:apply-templates select="input"/>
9. <xsl:apply-templates select="Spec"/>
10. </xsl:variable>
11. <xsl:variable name="tapeVar">
12. <xsl:call-template name="Execute">
13. <xsl:with-param name="tape" select="$TuringM/Tape"/>
14. <xsl:with-param name="rules" select=

"$TuringM/Transitions"/>
15. </xsl:call-template>
16. </xsl:variable>
17. State Transitions :

18. <xsl:for-each select="$tapeVar/child::node()">
19. <xsl:copy-of select="."/>
20. </xsl:for-each>
21.</xsl:template>

Fig. 3.Top-Level Templates

4.4 Matching a Rule to the Current State

The recursive named templateExecute , depicted in Figures 4 and 5, takes<Tape>

and<Transitions > tree fragments in separate parameters from the main template
which matches the<TM>element. It finds the transition rule which applies to the current
ID (line 27) and sends it to the modifier templateChangeTape , together with the
current configuration.

Execute implements a recursive algorithm whose basis step (lines 29-37) checks
if the Turing machine stopped in a final state (i.e. the current state is final and there are
no matching rules). This is in accordance with [6] (page 327). If this is the case, then the
final state as well as the message “accepted” are returned to its caller. If there exists a
matching rule (lines 38-61), then a variable$tst is created to hold the result of the call
to the templateChangeTape (lines 50-56), to be subsequently used in the recursive
call toExecute .

Variables$Cstate , $TpHdPos, $currentSymb and$MatchRule hold the current
state, position of the tape head in the tape, the symbol that is currently scanned, and the
rule that matches the current ID. Continually (at every call)Execute outputs the tape
contents to its caller (lines 39-49).

1. <xsl:template name="Execute">
2. <xsl:param name="tape"/>
3. <xsl:param name="rules"/>
4. <xsl:variable name="Cstate">
5. <xsl:value-of select=

"$tape/child::*[name()=’TapeHead’]/@state"/>
6. </xsl:variable>
7. <xsl:value-of select="’TAPE : |’"/>
8. <xsl:for-each select="$tape/child::*">
9. <xsl:if test="name()=’TapeHead’">
10. <xsl:value-of select="name()"/>
11. <xsl:value-of select="’ ’"/>
12. <xsl:value-of select="@state"/>
13. </xsl:if>
14. <xsl:value-of select="."/>
15. <xsl:value-of select="’|’"/>
16. </xsl:for-each>

17. <xsl:variable name="TpHdPos">
18. <xsl:for-each select="$tape/child::*">
19. <xsl:if test="name()=’TapeHead’">
20. <xsl:value-of select="position()"/>
21. </xsl:if>
22. </xsl:for-each>
23. </xsl:variable>
24. <xsl:variable name="currentSymb">
25. <xsl:value-of select="$tape/child::*[$TpHdPos+1]"/>
26. </xsl:variable>

Fig. 4.The template “Execute” which recursively applies the transitions to the tape (part 1)

4.5 Implementing a one-step move of the Turing Machine

Although the procedure for generating the next ID from the current ID is simple in
principle, there are special cases to consider when the tape head is at either end of the
tape, which complicates the situation.

In the following discussion, “tape” refers to the<tape>..</tape> element, “tape
head” refers to the<TapeHead state=".."/> element, and “symbol” refers to
<tapeEl>..</tapeEl> elements in the XML document.

The templateChangeTape , given in Appendix A, takes the matching rule (in pa-
rameter$MRule), and the current ID (in parameters$tape , $HdPos) as inputs.$tape

holds the current contents of the Turing machine’s tape,$HdPos holds the position of
the tape head and$MRule holds the the matched rule. It applies the matching rule to
the current ID to produce the new ID.

Moving Right If the applicable transition rule dictates a right move, then all the tape
symbols up to the tape head are copied as they are. In normal operation, the symbol
which comes directly after the tape head is replaced by the symbol indicated by the

27. <xsl:variable
name="MatchRule" select=

"$rules/child::*[./@CurrentState=$Cstate and
./@read=$currentSymb]"/>

28. <xsl:choose>
29. <xsl:when test="count($MatchRule)=0">
30.
<xsl:value-of select="’FINALS: ’"/>
31. <xsl:for-each

select="/TM/Spec/FinalStates/child::*">
32. <xsl:value-of select="."/>
33. <xsl:if test="$tape/child::*[name()=

’TapeHead’]/@state=.">
34.
accepted
35. </xsl:if>
36. </xsl:for-each>
37. </xsl:when>
38. <xsl:otherwise>
39. <xsl:value-of select="’CurrentState:’"/>
40. <xsl:value-of select=

"$MatchRule/@CurrentState"/>
41. <xsl:value-of select="’ read: ’"/>
42. <xsl:value-of select="$MatchRule/@read"/>
43. <xsl:value-of select="’ NextState:’"/>
44. <xsl:value-of

select="$MatchRule/@NextState"/>
45. <xsl:value-of select="’ write: ’"/>
46. <xsl:value-of select="$MatchRule/@write"/>
47. <xsl:value-of select="’ direction: ’"/>
48. <xsl:value-of select="$MatchRule/@direction"/>
49.

50. <xsl:variable name="tst">
51. <xsl:call-template name="ChangeTape">
52. <xsl:with-param name="tape" select="$tape"/>
53. <xsl:with-param name="MRule"

select="$MatchRule"/>
54. <xsl:with-param name="HdPos"

select="$TpHdPos"/>
55. </xsl:call-template>
56. </xsl:variable>

57. <xsl:call-template name="Execute">
58. <xsl:with-param name="tape" select="$tst/Tape"/>
59. <xsl:with-param name="rules" select="$rules"/>
60. </xsl:call-template>
61. </xsl:otherwise>
62. </xsl:choose>
63.</xsl:template>

Fig. 5.The template “Execute” (part 2)

transition rule, the tape head “moves right,” and all subsequent symbols are copied as
they are. Special cases arise if the tape head writes a blank to the leftmost position of
the tape, or if the tape head moves past the last symbol on the tape.

Blanks that come before the leftmost non-blank symbol are not explicitly repre-
sented. On the other hand, a Blank symbol is added at the end, if the tape head moves
right past the last existing symbol, since the tape head needs to be scanning a symbol at
all times.

Moving Left If a left move is specified by the matching rule, then again all the symbols
up to the tape head are copied as they are. Under normal circumstances, the symbol that
is currently scanned by the tape head is replaced by the symbol dicated by the applicable
transition rule, the head “moves left,” by changing places with the symbol on its left,
and the remaining symbols that come after the replaced symbol are copied as they are.
If the tape head was pointing at the first symbol on the tape before the move, a Blank
symbol is inserted after the tape head (i.e. the first of the implicit Blanks on the left
side of the tape become explicit). If the tape head was pointing to the last symbol on
the tape, and the symbol to write is a Blank then the last symbol is removed (a trailing
Blank is not represented explicitly, unless it is directly being scanned by the tape head).

The full code of our implementation, as well as sample Turing machines, are avail-
able at [9].

5 Related Work

Our literature search on proving the Turing-completeness of XSLT revealed several
other approaches, although all of them deal with XSLT version 1.0 rather than version
2.0.

Kepser [10] showed the Turing-completeness of XSLT version 1.0 and XQuery by
codingmu-recursivefunctions in XSLT, which are themselves Turing-complete.mu-
recursivefunctions are inductively defined based on a set of functions that always return
zero, a set of functions that select a component out of a tuple and the successor function
which adds 1 to any given natural number. These functions are combined to obtain
more complex functions using composition, primitive recursion and mu-recursion. This
approach is far from being straightforward, and relies on the Turing-completeness of
mu-recursive functions. Our approach, in contrast, is much more straightforward, in
that we directly implemented a universal Turing machine emulator.

Lyons [11] implemented a universal Turing machine in XSLT version 1.0 which
takes the initial tape as an inputstring parameter from the command line at execution
time. Then, the input tape,represented as a stringis manipulated according to the rules
of the input Turing machineusing string manipulation functionsof XSLT. Although
there is nothing wrong in principle with using string functions, we believe they do not
represent the core essence and nature of XSLT, which is based on transformations. Our
work differs significantly from his: we exclusively use transformations for the compu-
tation and pure XML for representing states of the computation.

Korlyukov [12] used the transformation oriented approach with recursive templates
like we do, but made use of the result tree fragments of XSLT 1.0 together, with non-

standard features (specifically thenode-set()function) of the XML processorXT de-
veloped by [13]. He used a different XML syntax for the specification of input Turing
machines and tape contents. His implementation does not however follow the textbook
concept of an “instantaneous description,” and his work has not been published in liter-
ature.

Our observation is that our work is the only one so far that shows the Turing-
completeness of the official XSLT version 2.0.

6 Conclusion

We showed the Turing-completeness of XSLT version 2.0, which provides features for
storing and accessing result of intermediate computations as regular node sets. We de-
veloped an XSLT stylesheet, called UTMES, that emulates a universal Turing machine
using only native XSL transformations (as opposed to non-standard features or string
manipulation functions) by exploiting the temporary tree concept introduced by XSLT
version 2.0. The input to UTMES is a Turing machine, together with the initial tape,
encoded as an XML document. UTMES then “executes” the given Turing machine on
the given initial tape.

XSLT version 2.0 is very new, and we believe this is the first demonstration of its
Turing-completeness.

References

1. Onder, R., Bayram, Z.: Interpreting imperative programming languages in XSLT. In: Pro-
ceedings of the Ninth IASTED International conference on Internet and Multimedia Systems
and Applications (EuroIMSA2005), IASTED (2005) 131–136

2. Brainerd, W., Landweber, L.: Theory of Computation. Wiley (1974)
3. Michael Kay (Editor): XSL transformations (XSLT) version 2.0 of W3C working draft.

Available at http://www.w3.org/TR/xslt20 (2005)
4. James Clark (Editor): XSL transformations (XSLT) version 1.0 of W3C working draft.

Available at http://www.w3.org/TR/xslt (1999)
5. MSXML Documentation Team: Microsoft XML core services (MSXML) 1.0. Available at

http://www.nedcomp.nl/support/origdocs/xml4/ (1998)
6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley (2001)
7. Java 2 Developer Team: Java 2 SDK, standard edition documentation version 1.4.2. Available

at http://java.sun.com/j2se/1.4.2 (2005)
8. Java 2 Developer Team: Java API for XML processing (JAXP). Available at

http://java.sun.com/xml/jaxp/index.jsp (2005)
9. Onder, R., Bayram, Z.: Universal Turing Machine Emulator Stylesheet UTMES. Available

at http://itrc.emu.edu.tr (2006)
10. Kepser, S.: A simple proof for the Turing-completeness of XSLT and XQuery. In: Proceed-

ings of the Extreme Markup Languages, Montreal, Quebec. (2004)
11. Lyons, B.: Universal Turing machine in XSLT. Available at

http://www.unidex.com/turing/utm.htm (2001)
12. Korlyukov, A.: Turing machine. Available at http://www.refal.net/ korlukov/tm/ (2001)
13. Clark, J.: XT: an XSLT processor in Java. Available at http://www.blnz.com/xt/index.html

(2002)

APPENDIX

A Code of the Template Applying the Appropriate Rule to the
Current State

1. <xsl:template name="ChangeTape">

2. <xsl:param name="tape"/>
3. <xsl:param name="MRule"/>
4. <xsl:param name="HdPos"/>

5. <xsl:element name="Tape">
6. <xsl:choose>
7. <xsl:when test="$MRule/@direction=’R’">
8. <xsl:for-each

select="$tape/child::*[position() < $HdPos]">
9. <xsl:copy-of select="."/>
10. </xsl:for-each>

11. <xsl:if
test="count($tape/child::*[position() < $HdPos])!=0

or $MRule/@write!=’B’">
12. <xsl:element name="tapeEl">
13. <xsl:value-of select="$MRule/@write"/>
14. </xsl:element>
15. </xsl:if>

16. <xsl:element name="TapeHead">
17. <xsl:attribute name="state">
18. <xsl:value-of select="$MRule/@NextState"/>
19. </xsl:attribute>
20. </xsl:element>

21. <xsl:if
test="count($tape/child::*[position() = $HdPos + 1]/

following-sibling::*)=0">
22. <xsl:element name="tapeEl">
23. <xsl:value-of select="’B’"/>
24. </xsl:element>
25. </xsl:if>

26. <xsl:for-each
select="$tape/child::*[position() > $HdPos + 1]">

27. <xsl:copy-of select="."/>
28. </xsl:for-each>
29. </xsl:when>

30. <xsl:otherwise>

31. <xsl:for-each
select="$tape/child::*[position() < $HdPos - 1]">

32. <xsl:copy-of select="."/>
33. </xsl:for-each>

34. <xsl:element name="TapeHead">
35. <xsl:attribute name="state">
36. <xsl:value-of select="$MRule/@NextState"/>
37. </xsl:attribute>
38. </xsl:element>

39. <xsl:if
test="count($tape/child::*[position() = $HdPos + 1]/

preceding-sibling::*[name()!=’TapeHead’])=0">
40. <xsl:element name="tapeEl">
41. <xsl:value-of select="’B’"/>

42. </xsl:element>
43. </xsl:if>

44. <xsl:for-each
select="$tape/child::*[position()=$HdPos - 1]">

45. <xsl:copy-of select="."/>
46. </xsl:for-each>

47. <xsl:if
test="count($tape/child::*[position() > $HdPos+1])!=0

or $MRule/@write!=’B’">
48. <xsl:element name="tapeEl">
49. <xsl:value-of select="$MRule/@write"/>
50. </xsl:element>
51. </xsl:if>

52. <xsl:for-each
select="$tape/child::*[position() > $HdPos + 1]">

53. <xsl:copy-of select="."/>
54. </xsl:for-each>
55. </xsl:otherwise>
56. </xsl:choose>
57. </xsl:element>
58. </xsl:template>

B Execution Trace of the Turing Machine given in Figure 1 on its
input

State Transitions :

TAPE : |TapeHead s0|0|0|1|1| CurrentState: s0 read: 0 NextState:
s1 write: X direction: R

TAPE : |X|TapeHead s1|0|1|1| CurrentState: s1 read: 0 NextState:
s1 write: 0 direction: R

TAPE : |X|0|TapeHead s1|1|1| CurrentState: s1 read: 1 NextState:
s2 write: Y direction: L

TAPE : |X|TapeHead s2|0|Y|1| CurrentState: s2 read: 0 NextState:
s2 write: 0 direction: L

TAPE : |TapeHead s2|X|0|Y|1| CurrentState: s2 read: X NextState:
s0 write: X direction: R

TAPE : |X|TapeHead s0|0|Y|1| CurrentState: s0 read: 0 NextState:
s1 write: X direction: R

TAPE : |X|X|TapeHead s1|Y|1| CurrentState: s1 read: Y NextState:
s1 write: Y direction: R

TAPE : |X|X|Y|TapeHead s1|1| CurrentState: s1 read: 1 NextState:
s2 write: Y direction: L

TAPE : |X|X|TapeHead s2|Y|Y| CurrentState: s2 read: Y NextState:
s2 write: Y direction: L

TAPE : |X|TapeHead s2|X|Y|Y| CurrentState: s2 read: X NextState:
s0 write: X direction: R

TAPE : |X|X|TapeHead s0|Y|Y| CurrentState: s0 read: Y NextState:
s3 write: Y direction: R

TAPE : |X|X|Y|TapeHead s3|Y| CurrentState: s3 read: Y NextState:
s3 write: Y direction: R

TAPE : |X|X|Y|Y|TapeHead s3|B| CurrentState: s3 read: B
NextState: s4 write: B direction: R

TAPE : |X|X|Y|Y|B|TapeHead s4|B|

FINALS: s4 accepted

