
 1

Implementing Constructor Calls with Parameters in
ADA ‘95

Abstract

Ada ‘95 does not provide for a constructor mechanism with parameters for initializing

newly created objects. The package Ada.Finalization provides an initialize procedure

which is automatically called at object creation time, but that procedure takes only one

argument, i.e. the object being operated upon. This is hardly useful, since initialization

of any kind usually requires additional information, which needs to be supplied through

arguments. One way to get around the parameter problem is to specify a tagged type

with discriminants that is derived from the limited_controlled type. The parameters

that are meant to be given to the initialize procedure are then given as discriminants to

the tagged record object. We describe this technique with a concrete example and

explore its limitations and implications.

1. Introduction

Automatic object initialization once an object is created, and cleanup once an object is

removed from memory are two important aspects of writing correct and maintainable

object-oriented programs. Object oriented functionality has been added to the Ada

language in the Ada '95 standard [[3]], but this does not include straight-forward

support for automatically called initializer procedures (also called constructors in

by: Zeki Bayram
Bo

�
aziçi University

Computer Engineering Dept.
Bebek 80815

Istanbul - Turkey
e-mail: bayram@boun.edu.tr

 2

object oriented terminology) with parameters. Although the package Ada.Finalization

provides two tagged type definitions (controlled and limited_controlled), both of

which have an initialize procedure defined for them, and this initialize procedure is

automatically called for any object of a type derived from either controlled or

limited_controlled at creation time, only one parameter can be supplied to this

procedure, i.e. the object being operated upon. Initialization, by its nature, requires

values with which the object is to be initialized, either directly, or after some

processing has been done on the values, and the inability of the initialize procedure to

take more than one argument renders it practically useless for object initialization.

One way to get around the parameter problem can is by passing parameters as

discriminants to the object. Unfortunately, not all types are permitted as parameters to

tagged records with discriminants: only discrete types and access types. So in order to

perform default initialization of objects with values from arbitrary types, access

discriminants have to be used.

Another way might be seen as side-stepping the initialize procedure, and making an

aggregate value assignment to the newly declared object. But this will not work if the

object has a private part, which is generally the case in object-oriented programs.

In this article, we devise and explain a method of supplying parameters to the initialize

procedure for types derived from the limited_controlled type of Ada.Finalization. In

this method, pointers to actual parameters are passed as access discriminants to the

tagged derived records. The initialize procedure can then use the values pointed to by

the discriminants to perform any initialization action necessary. The actual parameters

pointed to by the record discriminant are then disposed, since they are assumed not to

be useful later on.

 3

2. The package Ada.Finalization

Specification of the Ada.Finalization package which contains the procedure finalize is

given in Figure 1. It is taken form the Ada Reference Manual [3].

This package defines the types controlled and limited_controlled. Objects created

using any type derived from controlled can be assigned and tested for equality. Hence

there is a procedure adjust which is called as the final stage of an assignment

operation, with the destination of the assignment being an argument. There is no

adjust procedure for limited_controlled since by definition, objects created using any

type derived from limited_controlled cannot be assigned or tested for equality.

All of the above procedures are called automatically by the compiler at various times:

initialize is called right after an object is created (and as we have explained above, its

usefulness is severely impaired by its inability to take extra arguments), finalize is

called just before the space for an object is deallocated, either explicitly if the object

package Ada.Finalization is

 pragma Preelaborate(Finalization);

 type Controlled is abstract tagged private;

 procedure Initialize(Object : in out Controlled);

 procedure Adjust (Object : in out Controlled);

 procedure Finalize (Object : in out Controlled);

 type Limited_Controlled is abstract tagged limited private;

 procedure Initialize(Object : in out Limited_Controlled);

 procedure Finalize (Object : in out Limited_Controlled);

 private

 ... -- not specif ied by the language

 end Ada.Finalization;

Figure 1: Package Ada.Finalization

 4

was created dynamically, or implicitly, when the object is no longer in the scope of its

declaration, and adjust is called as explained above.

3. Human-Man-Woman hierarchy and object initialization

We now explain and demonstrate the technique of passing extra arguments to the

initialize procedure by using a concrete example, based upon the human-man-woman

hierarchy of types presented in [[1]]. human is the base type, which defines common

behavior for its two child classes, man and woman. Every human has a name, which is

set at object creation time. man objects also have a bearded attribute, which can be

set to a Boolean value at object creation time. Every human is greeted either as "Mr,"

"Mrs," or "XXXX" if no sex is specified.

In order for automatic initialization to take place, man is derived from

limited_controlled. This choice is imposed upon us by the rules of ADA which

prohibit any discriminants to records of types other than discrete or access. Since we

want to be able to pass arguments of an arbitrary type to initialize an object, we have

to pass them as access types. Since a type derived from controlled cannot have access

discriminants, we are stuck with limited_controlled as the only choice.

In this example, we want to automatically initialize the name field of objects, hence we

pass a string access value as a discriminant to the newly created object. For man

objects, we can also specify whether he is bearded as a discriminant, and the

discriminant need not be an access type since Boolean is a discrete type.

 5

In Figure 2, we establish the environment to work in by importing definitions from

text_io and ada.finalization, and give the primitive procedures (i.e. methods) for

human objects. We note above that N is defined as an access discriminant to the type

Human, which itself is a derived type of limited_controlled.

In Figure 3, we derive two new tagged types, Man and Woman from Human. We note

that Man has two discriminants, N and B. N is passed directly to the parent type,

Man. Both of these discriminants will be used by the procedure initialize to

automatically initialize a Man object.

with text_io; use text_io;

with ada.f inalization; use ada.f inalization;

package Humanity is

subtype Name is String (1..30);

type Human(N: access string) is new limited_controlled with private;

procedure initialize(H: in out Human);

procedure f inalize(H: in out Human);

procedure display(H: Human);

function Name_of(H: Human) return String;

function Title_of (H: Human) return String;

Figure 2: Specification of human

type Man(N:access string; B:boolean) is new Human(N) with private;

function Is_Bearded (M: Man) return Boolean;

procedure Shave (M: in out Man);

function Title_of (M: Man) return String;

procedure initialize(M: in out Man);

type Woman(N: access string) is new Human(N) with private;

function Title_of (W: Woman) return String;

Figure 3: Specification of man and woman

 6

Figure 4 contains the private parts of the declarations. In Figure 5, we start the

implementation We need the ada.unchecked_deallocation generic procedure in

order to define the free procedure for strings. The critical thing to notice is how the

record discriminant N is used as a place holder for an extra argument to the initialize

procedure. Also note that we cannot directly dispose of the object pointed to by the

formal record parameter (discriminant) and that a local variable s_a is used to point to

the object passed as an argument, and later disposed of.

private

type Human(N:access string) is new limited_controlled w ith

 record

 First_Name: name;

 last_char: Natural := 0;

 end record;

type Man(N:access String; B:boolean) is new Human(N) with

 record

 Bearded: Boolean ;

 end record;

type Woman(N:access string) is new Human(N) with

 null record;

end Humanity;

Figure 4: Private parts of the declarations

 7

Next, we have the implementation of man and woman primitive functions/procedures.

Since most of the behavior is inherited, not much work is needed here. Due to dynamic

dispatching, the correct version of title_of will be called for each object. Also note

with text_io; use text_io;

with ada; use ada;

with ada.unchecked_deallocation;

package body Humanity is

type string_access is access all string;

procedure Free is new Ada.Unchecked_Deallocation (str ing, string_access);

procedure Display (H: Human) is

begin

 Put (Title_of (Human'Class (H)) & " " & Name_of(H)); -- redispatching

 new_line;

end Display;

procedure initialize(H:in out Human) is

s_a: string_access := H.N;

begin

 put("Human::init ialize called for " & H.N.all);

 new_line;

 H.f irst_name(1.. H.N.all' last) := H.N.all;

 H.last_char := H.N.all' last;

 free(s_a);

 end init ialize;

procedure f inalize(H: in out Human) is

begin

 put("Human:: f inalize called for " & H.f irst_name(1..H.last_char));

 new_line;

end f inalize;

function name_of(H: Human) return string is

begin

 return H.f irst_name(1..H.last_char);

end;

function tit le_of(H:Human) return string is

begin

 return "XXXX." ;

end;

Figure 5: Implementation of Human operations

 8

that we defined an initialize procedure for man which first calls man::initialize, and

then does its specific initialization.

And finally, in Figure 7 we have the main procedure which imports the human-man-

woman hierarchy and uses it, followed in Figure 8 by the program's output.

function Is_Bearded (M: Man) return Boolean is

begin

 return M.bearded;

end;

procedure shave(M:in out man) is

begin

 M.bearded := false;

end;

function Title_of (M:man) return string is

begin

 return("Mr. ");

end;

procedure initialize(M:in out Man) is

begin

 initialize(human(M));

 put("Man:: initialize called for " & M.N.all);

 new_line;

 M.bearded := M.B;

end initialize;

function title_of (W:woman) return string is

begin

 return "Mrs. " ;

end;

end Humanity;

Figure 6: Implementation of man and woman operations

 9

4. Discussion

Below, we give some observations on the method described.

• Since objects in general cannot be passed as record discriminants directly (unless

they are of a discrete or access type), access to the object must be passed in the case

that the argument is not of a discrete type. Consequently, actual parameters (in the

general case) must be created dynamically, and disposed of inside initialize for

with Humanity; use Humanity;

with text_io; use text_io;

procedure main is

H: Human(new string'("any human"));

M: Man(new string'(" joe"),true);

W: Woman(new string'("mary"));

begin

 display(H);

 display(M);

 display(W);

end main;

Figure 7: M ain procedure

Human::init ialize called for any human

Human::init ialize called for joe

Man::initialize called for joe

Human::init ialize called for mary

XXXX. any human

Mr. joe

Mrs. mary

Human::finalize called for mary

Human::finalize called for joe

Human::finalize called for any human

Figure 8: Program Output

 10

proper reclaiming of memory. Since access discriminants are read-only, a local

variable must be made to point to the actual discriminant that will be disposed of.

• Since access discriminants are allowed only for limited types, types which need

initialization should be derived from limited_controlled, rather than controlled.

This is an annoying limitation: a limited_controlled object (or any object belonging

to a type derived from limited_controlled) cannot be used as the target of an

assignment operation, or tested for equality with another object of the same type.

• We note that we could have initialized the bearded attribute of a man object inside

the record declaration, but we chose to do it this way to demonstrate how the

initialize for man overrides the initialize for human, and that explicit type casting

must be used to call the shadowed procedures.

5. Conclusion

Simply, we wish designers of the ADA '95 standard had thought of a better way than

the package Ada.Finalization for implementing object initialization. We do not hesitate

in suggesting a solution: slightly incrementing the syntax of the language to allow

specifying constructor procedures. In the meantime, we will have to live with the

limitations of the above described or any other work-around method if we wish to

automatically initialize objects in ADA.

Acknowledgments: I would like to thank my colleague Levent Akın for his very

useful comments and suggestions on an earlier draft of this article.

 11

References

[1] Object-Oriented Programming with Ada 9X. HTML document by S. Barbey, M.

Kempe, and A. Strohmeier.

[2] The Ada 95 Rationale, Intermetrics Inc. 1995

[3] The Ada Reference Manual, Intermetrics Inc. 1995

