
Agent Coordination Using Enterprise Java Beans and XML Web Services in a

Battlefield Environment

Bijan Zamanian

Department of Computer Engineering

Eastern Mediterranean University

Gazimağusa, T.R.N. Cyprus

bijan.zamanian@cc.emu.edu.tr

Zeki Bayram

Department of Computer Engineering

Eastern Mediterranean University

Gazimağusa, T.R.N. Cyprus

zeki.bayram@emu.edu.tr

Abstract

 We describe an agent coordination architecture

that makes use of XML Web services, Enterprise Java

Beans, and lightweight threads of JAVA. The

architecture is extendable and scalable due to the XML

Web Services component – agents can exist, as objects

running in processes on different machines, and yet

live in the same virtual world. The proposed

architecture is demonstrated in the simulation of a

battlefield scenario, with agents of varying types, such

as soldiers, tanks, planes etc. existing in two hostile

armies.

1. Introduction

Complex tasks are often carried out by teams

consisting of individuals, because no one individual

has the collective expertise, information, or resources

required for the effective completion or performance of

a task. In the computer field, agents are used to model

the characteristic behavior of individuals that are

operating as part of teams, as well as their interaction

with one another. Autonomous software agents are

applications which are expected to accomplish their

tasks using their skills and available knowledge in their

operation domain.

Agents can cooperate to facilitate achieving a

common, complicated and large scale goal. In such a

case, each agent is responsible for achieving part of the

goal. This cooperation effort has a chance of

succeeding only by knowledge and information

exchange and effective coordination [3][4].

Coordination is a process in which agents engage in

order to ensure a community of individual agents acts

in a coherent manner [1]. Coordination may require

cooperation, but it is not the case that cooperation

among a set of agents automatically results in

coordination.

Competition and combat are forms of coordination

in which agents in different camps try to defeat one

another. Agents can cooperate and coordinate through

communication by exposing their goals, results,

statuses, threats and locations to each others [2].

In this paper, we describe an agent coordination

architecture that makes use of XML Web services,

Enterprise Java Beans, and lightweight threads of

JAVA, and use our architecture to simulate a

battlefield scenario involving two opposing sides. Our

architecture is extendable and scalable because of the

XML Web Services component – agents can exist, as

objects running in processes on different machines, but

operate in the same virtual world. Agent coordination

is achieved through XML web services and Enterprise

Java Beans.

In the battlefield simulation scenario, agents

represent combat elements such as soldiers, tanks and

planes. Each combat element initially asks for a

mission from its command and control center, which is

implemented as a set of Enterprise Java Beans (EJB).

Each combat element, after obtaining its initial

mission, sets out to accomplish it by moving in the

direction of its target. Agents become aware of the

environment and make changes to their environment

using web services.

The remainder of this paper is organized as follows.

In section 2 we describe the agent coordination

architecture. In section 3 we see this architecture in

action for simulating a specific battlefield scenario.

Section 4 contains the implementation details of the

architecture and battlefield scenario. In section 5 we

talk about other approaches to agent coordination.

Finally in section 6 we have the conclusion and future

research directions.

2. Agent Coordination Architecture

2.1 Some Concepts

Actual reality is an abstraction of the world as it

really exists. This includes information about each

agent that exists, its position, status, speed, etc. as well

as physical characteristics of the environment.

Perceived reality is specific to each individual agent

and may or may not be the same as actual reality.

Agents take action based upon their perception of

reality

2.2 Proposed Architecture

Figure 1 depicts the overall architecture for agent

coordination. In this architecture we have four major

parts: Environment, EJB coordinator, web service and

agents.

Figure 1. Overall view of architecture

Agents are objects which have independent

existence and run in their own thread. They are mission

oriented in that they ask for a mission from their

superior, and then attempt to carry it out. The role of

the superior is played by the EJB coordinator. Agents

contact the EJB coordinator to get their mission

initially or inform it about the result of their previous

mission. While they are busy with their current

mission, they use web service methods to be informed

about the environment and cause changes to their

environment. Agents do not communicate among

themselves, but ultimately report their results and

information to the coordinator.

The EJB coordinator has information about the

environment, and serves agents by giving them their

initial mission. The coordinator updates its perception

of the world by benefitting from the perceptions of

agents which are communicating to it. In this sense,

agents serve the coordinator, since they share their

perception of the world with it.

Environment is the world in which the agents

operate. Agents as well as the coordinator usually have

an imperfect view of the environment since their view

is based on perceptions.

Web service is the eyes, ears and affecters of the

agents. Web service has full view of the reality, but

reveals only part of it to agents when they ask for

information about the environment. This simulates the

real world in that individuals rarely have a prefect view

of their environment. The web service also makes

changes to the environment that are the result of the

action of agents.

3. Demonstration of proposed architecture

The architecture described above is used to simulate

a battlefield environment in which two hostile teams of

agents try to defeat each other.

Defeating the opposite team by killing their forces

and conquering their lands is the large scale goal of

each team, which is composed of smaller goals

assigned to agents as missions.

For this simulation, there is only one coordinator

which is used for both sides. It distinguishes agents

according to the team they belong to and generates

different goals for them. The web service behaves

similarly and works for both teams. Hence both the

web service and the coordinator are parameterized by

the type of the teams. This saves code duplication.

Agents in this simulation are military units able to

move across the map, approach to target, explore the

battlefield, detect hidden enemies and attack them,

occupy land, check for possible threats to them,

retreat, reload ammunition, repair and resign of the

simulation.

3.1 Scenario

The environment is defined as a square map of size

400 * 400 Km
2

 in which units of two teams, red and

blue, act against each other.

Initially, as soon as an agent is launched to the

environment, it gets its first mission from the EJB-

coordinator and starts its goal based behavior. If its

mission is not to wait or resign, it starts to act to

accomplishing its mission. While the agent is alive it

can move in the environment and get the latest

information about goals, check possible threats to it

and react to them, attempt to reach the goal, effect

other agents in the environment and report results to

the coordinator.

The simulation can run for a specified period of

time, or until one team defeats the other one, or the

coordinator can not make new missions for agents.

While the simulation runs, agents log their activities

and coordinator saves the result of missions returned

by agent in the data base. The types of units available

in this simulation are airplane, tank, soldier and scout.

Physical structures such as buildings, bridges, etc. are

treated as special kind of agents which have no

movement.

3.2 Mission Assignment

The coordinator considers the requester type to

make a suitable mission for it. For example, a tank is

not able to attack a plane. At mission assignment time,

the coordinator checks the perceived reality to find

alive enemy units and generate a mission for the

requester. If there is no enemy listed after querying the

perceived reality or if there is no enemy compatible

with the unit type capabilities, the returned mission can

be “RESIGN” or “WAIT”.

If the coordinator returns “RESIGN” as the mission,

the requester unit returns to base, stops and becomes

inactive. In this state it can be a target but it can not be

a danger to others. It still exists in the actual reality and

maybe in an enemy’s perceived reality. If the

coordinator returns “WAIT” as the mission, for

example in the case when there is no enemy which can

be engaged by the requesting unit, the requester unit

waits for a period of time asks again for a mission at a

later time. During this waiting time, some enemy units

may be revealed by team mates and added to perceived

reality, and can be assigned as a target to be engaged in

by this unit.

Other possible missions for a unit are “BOMB”,

”ATTACK”, ”OCCUPY” or ”RETREAT” which are

assigned based on the mission requester unit type and

selected enemy type. For example, if the requester type

is plane, and enemy type is one of ground units, the

mission will be “BOMB”, but if both requester unit

and enemy unit are planes, the mission can be

“ATTACK”.

When a unit receives a mission, it starts moving

toward the target position to accomplish the mission.

Units use different methods to approach the enemy:

they may go directly to the exact position of the enemy

(such as a plane on a mission to bomb a building),

approach until the enemy is in range (such as a scout

on a sharpshooting mission), or keep approaching the

enemy event when the enemy is within range (such as

a foot soldier on a conquer mission) .

If an agent’s ammunition or health is less than a

minimum threshold, the mission for the unit is

“RETREAT”: it returns to base, reloads ammunition,

obtains necessary repairs to increase its wellbeing and

asks for another mission.

3.3 Some Unit Actions While Operating

Move: Unit starts moving toward the exact position

of the target until it is in the right position and then it

takes next step required to finish the mission.

Follow: Unit starts chasing the enemy, shoots it if it

is in range and continues chasing if it became out of

range. This continues until one of them is killed, or

escapes because of eminent danger, or the unit runs

out of ammunition.

Approach: Unit approaches enemy till it comes in

range and then it shoots. This movement style is used

only for scout units.

Sharp Shooting: When an enemy is in range, a

scout units shoots the enemy soldier and causes 100%

damage to the enemy.

Shooting: When an enemy is range, the unit shoots

the enemy to destroy it. The damage caused to enemy

is a function of the distance between the unit and its

target. The closer the enemy, the more accurate the

shooting.

Bombing: A plane drops a bomb when it is over the

target and this causes a random amount of damage to

the target.

Observation: Units need to observe their

surroundings to find out if there is any potential threat

to them. If there is an eminent danger from enemy

units, the unit may decide to engage the enemy or

escape, based on the number of enemies and their

type. In either of these cases, the primary mission is

suspended and the unit switches to the new temporary

mission. If it survives the immediate threat, it retrieves

the original mission and moves to achieve it.

3.4 Path Finding and Modification

It is important for units to know the latest location

of their non-static target while they are moving toward

it. This helps them to avoid wasting time by going to a

location that the target has already left. For this

purpose, units periodically check the new location of

their target using the web service and modify their

direction if necessary.

Agents find their direction toward their target using

global coordinates. Intersection of the x axis and the

agent speed vector towards the enemy forms angle α at

any given time, which shows the direction towards

which the agent should go. An agent based on its speed

ν can go a distance d= ν.t .

Agents make the calculations shown in figure 2 to

modify their path based on α and their speed.

���, ��� Target position

���, ��� Current position of agent

���′, ��′� New position of agent

	 = ���� − ���
 + ��� − ���
 Distance to enemy

 ��� � = ��−��
�

 ��� � = ��−��
�

� = �. �� Distance gone by agent in a unit of time

�� = �. ��� � X component of distance per unit time

�� = �. ��� � Y component of distance per unit time

��′ = �� + �� Computing new position of agent

��′ = �� + ��

Figure 2. Calculation necessary to find the

direction toward target

The computation depicted in figure 2 will be

repeated many times by each agent on its way to its

target. Their position in the environment is updated by

a call to a web service method. The target position will

be observed before each new calculation, since it may

have changed from the last observation.

3.5 Mission Results

 A separate log is maintained for each agent. If the

agent is “killed” during the operation, it aborts its last

action, stops and changes its state to “KILLED”.

Whether the unit survives or not, the mission results

are sent to the coordinator which logs the results. A

mission result for an agent can be one of “FAILED”,

“ACCOMPLISHED”, or “ACOMPALISHED BY

TEAMMATES”.

3.6 Scaling, Timing and Logging

In this simulation, one second is scaled to five

minutes in the real world and distance in kilometers.

During the simulation, each unit logs its activities as

time passes. When a unit takes action at a certain time

it sends the event time and explanation about the action

to the logger, hence it assures that actual time of the

event is logged.

3.7 Running the Simulation

This simulation can run for a specified duration of

time, or as long as one side defeats the other side.

When time is over, all units abort their operation,

report their mission result, save their logs and then

stop.

The first step to start the simulation is to create units

of each side with preferred types. During the

simulation, no new unit can be created but prebuilt

units can be removed if they are killed or resigned.

When a unit is created, it inserts itself to the actual

reality by calling a web service method. Units of one

team are launched on the left half of the map and units

of the other team two are launched on the right side of

the map in random positions. When they are added to

the actual reality, they have to be activated. Static

objects (units) like lands and buildings do not need to

be activated. If non-static units are created but not

activated, they can become targets for the enemy, and

they can not defend themselves. They are considered to

be inactive, but not dead.

4 Implementation

4.1 Web Service

A web service can be deployed to an EJB container,

or a web container. If it is deployed to an EJB

container, it is accessible only to clients of that EJB. In

order to achieve maximum scalability and platform

independence and be accessible by all agents,

regardless of the agents’ location, we deployed our

web service to a web container. Our web service is

bundled with a class which contains a data source,

connection pool, and necessary code to run queries on

the data base. The database contains information about

the environment. This information is exposed by web

service methods to agents, allowing them to sense and

effect the environment.

Our web service has been implemented using JAX-

WS [5], which is a technology for building web

services and clients that communicate using XML. In

JAX-WS, a web service operation invocation is

represented by an XML-based protocol such as SOAP.

JAX-WS runtime system converts the API calls and

responses to and from SOAP[5][7] messages. Part of

the web service WSDL file is depicted in figure 3.

<operation name="updateUnitPosition">

<input message="tns:updateUnitPosition"></input>

</operation>

<operation name="searchUnitByMid">

<input message="tns:searchUnitByMid"></input>

<output

message="tns:searchUnitByMidResponse"></output>

</operation>

Figure 3. A portion of implemented web service

WSDL file

4.2 Agent Implementation

All types of agents in this simulation are instances

of classes that are subclasses of a common ancestor

class “Agent” or the “Agent” class itself. The Agent

class implements the “runnable” interface of java and

defines the basic behavior of all agents. It also

contains an internal thread which controls the life cycle

and activities of the agent.

TANK TANK1 = new TANK("Red_TANK1",team, visible);

TANK1.Go(t);

Figure 4. Instantiating and activating a tank in

simulation

Agents of both sides exist and run in one client

application. This client application can be deployed to

a different VJM or machine. In our case, it runs on the

same system as the EJB container. Different teams of

agents can run in different client applications and

maybe on different machines as well.

Agents are launched to the simulation environment

by calling their constructor with necessary parameters.

Figure 4 depicts the creation of a tank unit. Inside the

constructor, the “insertAgent()” web service method is

called to insert information about the agent into the

actual reality database. Agents won’t be functional and

dynamic until their life cycle is started. Each agent

instance has a “run” method which is executed in a

separate “Thread” object. This Thread object is the

value of an instance variable called “runner” of the

“Agent” class. Calling the “Go()” method of an agent

starts its thread and independent existence. Figure 5

depicts the “Go()” method of the “Agent” class.

public void Go(int t)

{

 Agent.finishTime = t;

 addLog(System.currentTimeMillis(), "Unit started");

 addLog(System.currentTimeMillis(), "Total simulation time

is set to " + Agent.finishTime);

 this.agentNum++;

 this.runner.setName(this.getMid());

 this.runner.start();

}

Figure 5. “Go()” method of the “Agent” class

The “run()” method of the “Agent” class is depicted

in figure 6. All activities of the agent take place in the

while loop of the “run()” method.

The only way to get out of the loop is to be killed or

resign from the simulation, in which case the instance

variable “runner” is set to null and the loop terminates.

When the agent is killed or resigns, it saves the agent

operation log.

public void run()

 {

 addLog(System.currentTimeMillis(),"Unit is

 running");

 Thread thisThread = Thread.currentThread();

 while (this.runner == thisThread) {

 askMission();

 doMission();

 }

 saveLog(this.log);

 }

Figure 6. Agent’s life and action control in run

method of the thread.

4.3 EJB Coordinator

The coordinator is a set of EJBs, one of which

communicates with the agent and uses other EJBs to

perform its duties. The coordinator serves each single

agent in the environment. Each team of agents could

have their own EJB coordinator, but in our

implementation, one coordinator serves both teams.

Inside the EJB container, beans can serve each other

internally by a remote or local interface. We have used

the remote interface of EJBs to enable our Entity Beans

making up the coordinator to be distributed on

different machines if required.

The coordinator contains two entity beans:

“UnitEntity” and “MissionEntity” representing agent

and goal entities. These entity beans are used to

represent agents and missions of the simulation as

objects in the database that keeps the environment data.

The entity manager and persistence unit of Java EE is

used to manipulate the environment database. The

EntityManager API creates and removes persistent

entity instances, finds entities by the entity’s primary

key, and allows queries to be run on entities [5] [6].

Two session beans are developed to implement the

logic of coordination. Clients use the remote interface

of these session beans for getting their tasks.

Agents, before they can call methods of the remote

interface, have to find a reference to the remote

interface by performing a JNDI lookup [6]. Figure

gives a better view of the concept.

Figure 7. Components of coordinator

5. Related Work

We have not found any research that uses the same

set of tools and techniques as we do for agent

coordination. There is a lot of research in the area of

agent coordination. We give a small, representative

survey below.

In [7], the authors investigate the degree to which

intelligent agent coordination strategies scale along

various dimensions of stress.

In [8], the authors describe the use of coherence

constraints as a means to regulate agent interaction.

Coherence constraints describe relationships between

the content of utterances, and the context.

In [9], the authors describe a novel approach for

using centralized “single-agent” policies in

decentralized multi-agent systems by maintaining and

reasoning over the possible joint beliefs of the team.

This approach offers strategies to reducing the

amount of communication of the multiagent

coordination system.

A channel-based exogenous coordination language,

called Reo, and discuss its application to multi-agent

systems is described in [10]. Reo supports a specific

notion of compositionality for multi-agent systems that

enables the composition and coordination of both

individual agents as well as multi-agent systems.

6. Conclusion and Future Work

In this paper we described an agent coordination

architecture based on XML web services, Enterprise

Java Beans and light weight java threads.

Our architecture is both extendable and scalable

since agents can exist in different java virtual machines

or even on different physical machines and still live in

the same virtual environment. This is made possible

through XML web services and the EJB technology

employed. We demonstrated the utility of our

architecture in simulating a battlefield scenario

consisting of two opposing teams where each team

contains different kinds of agents representing combat

elements, such as tanks, soldiers and planes.

For future work, we are planning to split the

coordination job among EJBs in a hierarchical manner,

whereby EJBs communicate with one another using a

messaging service such as JMS . This will allow more

complex coordination jobs to be handled. We are also

planning to have a visual representation of agents, so

that their activities can be seen in real time.

References

1. H S Nwana, L Lee and N R Jennings (1996): “Co-

ordination in software agent systems.”, BT Technol J, Vol

14, No 4

2. Weiming Shen; Hamada Ghenniwa; Yinsheng Li (2006):

"Agent-Based Service-Oriented Computing and

Applications", Pervasive Computing and Applications,

2006 1st International Symposium, 2006, pp. 8 – 9.

3. Zhi-Zhong Sun; Bin Li; Liang Li (2007):"An

Adaptive Agent Coordination Framework for Web

Services Composition", Machine Learning and

Cybernetics, 2007 International Conference, Volume 7, 19-

22, pp. 3870 - 3875

4. R. Scott Cost, Yannis K Labrou,Tim Finin (2000): "Agent

Communication Languages and Agent Coordination",

Coordination of Internet Agents: Models, Technologies and

Applications. July 01, 2000. Springer-Verlag

5. The Java™ EE 5 Tutorial Third Edition

http://www.sun.com, Accessed 2 Jun 2008

6. Rima Patel Sriganesh;Gerald Brose;Micah Silverman

(2006): “Mastering Enterprise JavaBeans 3”. Wiley

Publishing Inc. ISBN 978-0-471-78541-5

7. Durfee, Edmund H. (2001): “Scaling Up Agent

Coordination Strategies”, Computer, Vol.34 Issue 7, pp.39-

46

8. Joris Hulstijn , Frank Dignum, Mehdi Dastani ,(2005):

“Coherence Constraints for Agent Interaction”, LNCS

3396/2005, Springer Berlin / Heidelberg Publishing, ISBN

978-3-540-25015-9, pp. 134-152

9. Maayan Roth, Reid Simmons, Manuela Veloso ,(2005):

“Decentralized communication strategies for coordinated

Multi_Agents Policies”, Multi-Robot Systems. From Swarms

to Intelligent Automata Volume III, Springer

Netherlands,ISBN 978-1-4020-3388-9, pp. 93-105

10. Dastani, M., Arbab, F., and de Boer, F. (2005):

“Coordination and composition in multi-agent systems. ”

Proceedings of the Fourth international Joint Conference on

Autonomous Agents and Multiagent Systems (The

Netherlands, July 25 - 29, 2005). AAMAS '05. ACM, New

York, NY, 439-446

