
1

Business Object-Or iented Analysis and Design
(BOOAD) M ethodology

Zeki Bayram

Bo
�
aziçi University

Bebek 80815 Istanbul
Turkey

e-mail: bayram@boun.edu.tr
web: http://www.cmpe.boun.edu.tr /~bayram

tel: +90 (212) 2631500 ext. 2094

Abstract

In this paper we advocate the use of application-type and computation-paradigm

specific, as opposed to general purpose, analysis and design methodologies for

developing software systems. To motivate and justify our viewpoint, we describe an

object-oriented analysis and design methodology which is tailored for software

systems whose functionality is to be implemented mainly through database operations.

Because business information systems are typically in this category, this methodology

is given the name Business Object-Oriented Analysis and Design methodology, or

BOOAD for short. The notation as well as the semantics of the notation used in

BOOAD is inherited from Object Modeling Technique (OMT) of Rumbaugh, but

somewhat modified through the li fting up of various notions from object-oriented

database systems. These modifications include, among others, the concept of

considering classes as repositories of objects, having classes answer queries regarding

the objects they contain, the concept of a transaction which can be rolled back if

necessary, integrity constraints on the states of objects, and set-valued and pointer-

valued attributes of objects, as well as an exception mechanism which provides

support for error handling and error recovery. Object communication is mainly

through events in the broadcast-receive mode, but point-to-point communication

 2

among objects and classes is also supported. A sample analysis model (student

registration system) is developed to demonstrate the main concepts of BOOAD.

K eywords: Business, analysis, design, event, state transition diagram, requirements
specification, class, inheritance, object-oriented

1. Introduction

Specification of what a software system is going to do is probably the most important

phase in the development of the software system. The product of this phase is known

as the requirements specification and is a reference point used throughout the

development process of the system.

The requirements specification is generated after an analysis of the problem at

hand. This analysis results in an understanding of the problem, the identification of the

main functions to be performed by the system that will be eventually produced, as well

as how the system will interact with its environment. Although the results of the

analysis phase can be described using natural language, doing so can hinder the

discovery of inconsistencies or incompleteness in the specification. Due to the

impreciseness of natural language, ambiguities may also be present in the specification.

Some restricted form of natural language, together with graphical notations with well

specified semantics is thus preferred over unrestricted textual descriptions.

Object-oriented analysis and design (OOAD) methodologies combine textual and

graphical notations in a way which allows the description complex systems naturally

and as closely as possible to the problem area. This is made possible by the fact that the

description of the whole system is decomposed into the description how each

 3

individual object in the system perceives and interacts with its environment and other

objects.

 There is a large number of OOAD methods that have been proposed, (see for

example [[1],[2], [3], [4], [5]]), and some of these are in widespread use today. The

problem with these OOAD methods is that they are general purpose, attempting to

address the needs of many kinds of applications, without any regard for the actual

paradigm of computation that will be used to implement the system, or the type of the

application. Consequently, for a specific type of application or computation paradigm,

we can expect that only part of the notation in the method will end up being used.

Furthermore, it is often quite unclear how the transition from the analysis to the design

model will be made, considering the fact that the back end could be anything from an

object-oriented database system application to a computation-intensive concurrent

program running on a massively parallel machine.

We advocate instead the development and use of OOAD methods that do take

into account the type of application, and the paradigm of computation that will be used

to implement the application. The advantages of this approach include eliminating

notation at the analysis phase that does not readily map into design notions, the

enrichment of the "tools" available at the analysis level through the lifting up of design

concepts into analysis, and diminishing the semantic gap between analysis, high-level

design and detailed design.

 The remainder of this paper is organized as follows. In the next section, a brief

overview and main characteristics of BOOAD is given. Section 3 gives a high level

description of the process of object-oriented analysis and design using BOOAD.

 4

Section 4 describes each component of BOOAD in detail. Point-to-point

communication is described in section 5. The mapping from a BOOAD model onto a

relational database design is given in section 6. Section 7 gives a sample analysis model

generated using BOOAD and finally section 8 is the conclusion and future research

directions.

2. Main Highlights of BOOAD

BOOAD contains notions lifted up from the world of databases as well as some that

are adapted from programming languages. Briefly, these are

• Queries which are used to manipulate data, a notion which is present in BOOAD

in the form of class methods. Classes are then seen as depositories of objects (i.e.

sets of instances belonging to the class), and queries on classes correspond to

activations of class methods. Once queries are made available in the analysis model,

they can be used inside the guards or action parts of transitions in a state transition

diagram (to be explained in due course), increasing the expressivity of these

diagrams.

• The notion of a transaction which can be rolled back if necessary.

• Integrity constraints on states of objects. Violation of an integrity constraint causes

specified actions to be taken through the raising of exceptions (see below).

• An exception mechanism to handle unexpected conditions. Exceptions, attached

to integrity constraints or conditions in a transition in a state transition diagram,

help specify the constraints on the system as a whole in a very elegant way.

 5

This specific set of features in BOOAD makes possible both point-to-point and

broadcast-receive kind of communication among objects. These will be explained

shortly in the ensuing sections.

3. The Process of Business Object Oriented Analysis and
Design using BOOAD

We follow the steps below in constructing a model of a system using BOOAD.

• Identify the outward behavior of the system by discovering actors (people or

other systems playing a specific role) and how each actor interacts with the system.

Work at the granularity level of use cases [[5]], where a use case is one complete

sequence of interactions between the user and the system for the purpose of getting

the system to perform a specific function. Each use case will correspond to a

system-level operation in the generated product.

• Specify the user-interface. The logic of the user-interface of the system will be

driven by the use cases discovered above. For each use case, identify precisely the

input required from the user (actor), in what order that input will be obtained, and

what is to be done with that input. User interface logic will be described by the

state transition diagrams of User Interface (UI) classes.

• Specify the static structure of the system. Identify classes, class hierarchies,

relationships among classes (aggregation - also called "part-of", association,

inheritance). Identify multiplicities. Differentiate between user interface classes

and domain specific classes. Domain specific classes will in all likelihood be

 6

abstract specifications of databases of the design phase, whereas user interface

classes will be used to specify the users' interaction with the system.

• Specify the dynamic behavior of the system. Describe the lifecycle of each

"significant" object through state transition diagrams. This process will result in

the identification of system events that will be broadcast/received, as well as the

formulation of many queries (in pseudo-code). Differentiate between system events

and user interface events: System events will be used for object communication,

whereas user interface events will be generated as a result of an actor interacting

with the system.

• Map user-interface events to system events. The recipient of user interface

events will be user interface classes, which will input data from the user and

generate system events with appropriate arguments, after querying classes as

necessary to find individual objects to be passed as arguments to the system events

(i.e. user interface classes are the links between user interface events and system

events). The logic of the user interface class interacting with actors is specified in

the state transition diagram of the UI class.

• Verify the model. Iterate over the analysis model, test it with scenarios.

4. Components of a BOOAD Model

In this section we describe each component of BOOAD separately, and in greater

detail.

 7

4.1 Classes

In BOOAD, classes are partitioned broadly into three kinds: domain classes,

relationship classes and user interface classes. All three kinds of classes can answer

queries by activating class operations (methods). These queries are formulated using

natural language in the analysis phase. Class operations can be invoked directly using

the syntax className::operationName(....), or they can be linked to events which

cause the operation to be invoked automatically when the event is broadcast. By

convention, operations which carry the same signature (name and arguments) as events

are activated directly when the event is broadcast.

4.1.1 Domain classes

A domain class represents a collection of objects in the problem domain. Domain

classes (as opposed to instances of a class) do not in general need state transition

diagrams (STD) associated with them. They represent collections of objects, and the

behavior of the collection rarely needs to base its activities on state information. This

is not the case for individual objects (i.e. instances of a domain class), which will most

likely need STDs of their own. We thus distinguish between a state transition diagram

for a class, which represents a set of objects, and a state transition diagram for an

individual object, which belongs to a class.

Domain class operations can create instances of themselves, modify and delete

objects they contain, and cause the activation of other operations (queries) on other

classes.

 8

4.1.2 Relationship classes

Relationship classes are needed to represent many-many relationships among objects,

or relationships involving three or more objects. They are similar to domain classes in

other aspects.

4.1.3 User-interface (UI) classes

UI classes define the user interface of the system. The job of a UI class is to obtain

input from the user and generate system events with relevant arguments so that the

desired effect will be achieved system-wide through all involved objects responding to

the generated event(s). Event arguments are found through appropriate queries to

classes.

The behavior of a UI class can be defined very precisely in the form of a state

transition diagram. Transitions in the state transition diagram (of a UI class) are

triggered by UI events (such as mouse clicks, button pushes, menu choices etc.)

generated by the user interacting with the system. Usually, only one instance of the

class will be needed, so we tend to regard the class itself as an object and draw the

state transition diagram only for the class itself.

4.1.4 Object attr ibutes

Instances of domain or relationship classes can have three kinds of attributes:

• set-valued attributes

• pointer-valued attributes

• simple data attributes

Relationship information about objects are maintained through set valued and pointer-

valued attributes: A set-valued attribute contains a set of pointers to objects, and a

 9

pointer valued attribute points to a single object. Simple data attributes, on the other

hand, contain data pertaining to the intrinsic characteristics of the object (color, size,

etc.).

Notationwise, set-valued attributes start with "~", pointer-valued attributes start

with "%" and other attributes of a basic type such as integer, string etc. start with a

letter different from "~" or "%".

4.1.5 Operations (methods)

We deal with two kinds of operations (methods) in BOOAD: instance operations, and

class operations. Notationwise, class methods start with "$" whereas instance methods

start with any other letter.

4.1.5.1 Instance Operations

Instance operations operate on objects, have access to the internals of the object they

operate upon, and are used for changing the state of objects and returning information

about the object.

4.1.5.2 Class Operations

Class operations have the responsibility of implementing queries, given the role of

classes as repositories of their instances. Querying involves adding, deleting, modifying

instances of the class, as well as returning a collection of objects satisfying given

criteria.

4.2 Events

Communication among objects is an essential component of any OOAD method. The

participants of communication include objects, classes and actors. Actors communicate

 10

with user interface classes, and objects and classes communicate with each other. The

event mechanism is the main communication medium in BOOAD. The other

mechanism is point-to-point, described in section 5.

4.2.1 Types of events

We differentiate between two kinds of events.

• User Interface events are generated when the user interacts with the system, and

are detected by user interface classes in their state transition diagrams. These

events usually have no arguments (from an analysis point of view), and correspond

to a physical action such as a menu item being selected, a button being pushed etc.

UI-events are responsible for transitions in the state transition diagram of UI-

classes.

• System events are generated by user interface classes and other classes or objects

with the purpose of carrying information around and causing recipients of the event

to take relevant action, possibly using the information carried inside the arguments

of the event. System events, together with state transition diagrams, determine the

logic of operations in the system.

4.2.2 Communication using events

Communication is initiated when an event is broadcast, with appropriate arguments,

by an object or class inside its state transition diagram, or inside a method. The event

may be destined for one or more objects and/or classes. Depending upon the current

state of the recipient, the event may be accepted, or ignored. If the event is accepted,

its arguments are available for use in the accepting entity.

 11

It may be the case that a method of an object or class has the same signature as the

event. In such a case, the event is received immediately (irrespective of the current

state of the object), and causes the activation of the method with the same signature.

This mechanism is explained in detail in section 4.2.3.

4.2.3 Direct activation of methods by events

The mapping between events and operations is achieved implicitly by the state

transition diagrams of objects and classes. An exception to this rule occurs when the

name of the event coincides with the name, as well as argument types (i.e. signature),

of a method in a class or an object. In this case, the method in the object/class is

invoked immediately regardless of the state the receiving object/class is in. Care should

be taken to ensure that methods that are invoked directly on objects do not modify the

state of the object. The issue of direct activation of operations in objects is taken up

more thoroughly in section 5.

4.2.4 Event parameters

A by-reference semantics is adopted for event arguments in the style of JAVA [[6]] or

Smalltalk [[7]]. This means that when an event is received by more than one object,

there is only one copy of the objects that are arguments to the event, and these

arguments must be shared by the receiving objects. We assume that concurrent access

to the methods of the argument objects is controlled, possibly in a similar fashion to

the use of synchronized methods in JAVA [[6]].

4.3 State Transition Diagrams (STD's)

A state transition diagram, briefly, consists of a set of states, and a set of transitions

connecting states. The standard use for state transition diagrams (STD) by OOAD

 12

methods is to describe the lifecycle of significant objects in the system, and

consequently the behavior of the whole system from the perspective of individual

objects. This is the main use of STD's in BOOAD too. However, they are also used in

describing the logic of operations, as well as the logic of the user interaction with the

system. This is made possible through allowing transitions to take place without

requiring the receipt of an event, and by allowing queries as part of conditions and

actions inside transition. A consequence of these generalizations of STD's is that this

gives them the descriptive power of flowcharts, and operations can be described easily

using state transition diagrams.

4.3.1 Transitions

A transition consists of the receipt of an event (optional), a condition (optional), and

the performing of an action (optional). Although all three components are optional

individually, either a condition or an event must be present in every transition.

A condition can involve a query to a class, local variables of the state transition

diagram, attributes of the object, a direct message sent to an object found as a result of

a query, or a direct message to an object that came as an argument of the received

event. The condition part in BOOAD can be made up of more than one condition, each

one in square brackets, such as [condition1] [condition 2] etc. All the conditions must

be true individually before we can proceed to the action part. Furthermore, we can

attach exceptions to individual conditions to handle errors (that being the reason for

separating the conditions from one another) and possibly cause a rollback of the

current transaction. The syntax for attaching exceptions to conditions is

[condition]<<exception>>. An exception is raised if the condition to which it is

attached fails to be true. "Built-in" exceptions include error (a serious condition which

 13

should not have happened given the semantics of the application), rollback (for

causing an immediate rollback of the current transaction), and warning (for drawing

attention to an unusual circumstance), but others may be defined and used for a

specific application.

An action in a transition can include updating the value of an attribute, invoking

an operation of the object, invoking a query on a database, saving results in local

variables, and broadcasting event(s).

4.3.2 Local Names in a state transition diagram

We can introduce local names to state diagrams to hold values. Event arguments can

also be seen as local variables. The local variables hold their previous values until they

are updated by a direct assignment, or the arrival of another event which causes some

other value being assigned to an event argument. This is similar somewhat to the

dynamic scoping rule of programming languages.

4.3.3 Integrity constraints on the states of a STD

We can state conditions, integrity constraints, which must be true in a given state,

regardless of what happens. If a transition into a state causes one of the integrity

constraints on the state to be violated, an exception, such as error or rollback can be

raised. Integrity constraints are written with the same syntax as conditions annotated

with exceptions in a transition.

5. Point-to-point communication in BOOAD

In point-to-point communication, messages rather than events are used. Messages are

sent directly to a specific object or class, and activate methods in the receiving entity

(we adopt the convention that the message name is the same as the method name

 14

which is activated in the entity receiving the message). Here, the identity of the

receiver is known to the sender, and both the sender and receiver are unique. No other

entities in the system need to be aware of this communication.

Since the identity of the receiver must be known by the sender before a message

can be sent directly to the receiver, it may be necessary to do some work find out what

this identity is. In the case that the receiver is a class, we can directly use the class

name, as in classX::methodY(…). If the receiver is an object, and that object's identity

is not known to the sender, the object must be found through a query sent to an

appropriate class, possibly, but not necessarily, to the class to which the object

belongs. An example sequence of actions might look like:

 anObject := anObjectClass::" a query" ;

 anObject.someOperation(...).

Note that point-to-point communication by-passes the filtering mechanism

provided by state transition diagrams, as in the case where an event automatically

activates a method with the same signature. In the state diagram of an object, a

method of the object is called only when the object is in a relevant state, and either a

condition is true, or an event has been received (or both) which causes the activation

of the method. If the directly-called method changes the state of the object to which it

belongs, this invalidates the whole state transition diagram mechanism, and the direct

call should be avoided. On the other hand, methods that just return information about

the object and do not have any side effects can be called at any time without any

undesirable effects.

 15

Classes may also participate frequently in point-to-point communication where a

class operation is invoked directly by some other entity. This will in general not have

undesirable effects, since non-UI classes typically do not have significant behavior that

depend upon the current state of the class. UI-classes do have state transition

diagrams, but their methods are not meant to be activated directly at all; only when the

current state and the received UI-event dictates can one of their methods be activated.

6. Mapping from the Object Model and Dynamic Models of
BOOAD to Relational Database Design

Once the analysis and high-level design model for a system has been generated, it is

time to map its components onto a relational database design. A mapping into object-

oriented databases would have been even more straight-forward, but relational

database management systems are in such common use today and have matured to

such an extent that that we choose to deal with them in this presentation.

There are two main aspects of the BOOAD model that need to be mapped: its

structure, and its dynamic behavior. The static structure is described in the form of

classes and their relationship to one another (aggregation, association, inheritance).

Dynamic behavior, described implicitly by the state transitions diagrams of objects and

classes, is how the system behaves outwardly and what changes take place in the

overall system when a certain interaction takes place between an actor and the system.

Before we go on to describe the mapping from the structure and dynamic behavior

of a BOOAD model onto a relational design, let us first give a brief introduction to

relational database systems.

 16

6.1.1 Relational Databases

In a relational database, information is stored inside tables. Tables contain records,

which in turn contain atomic data inside fields. A field has a specific type, such as

character, integer, string etc., a name, as well as a (possibly empty) set of constraints

which limit the kind of data it can contain. A database is a related set of tables and the

records contained in the tables.

Before we can start to populate a database with records, the structure of each

table in the database needs to be specified using a data definition language (DDL).

This specification is known as a database schema. In a record, a set of fields whose

values uniquely identify the object is known as a key. Fields forming a key are

specified when the database schema is generated.

Populating a database once its structure is specified is done through queries

specified using a data manipulation language (DML). DML is usually very high level

and declarative. An example of a DML is Structured Query Language (SQL) [[8]] and

Query by Example (QBE) [[8]]. Logic specific to a database application is

implemented using its DML.

6.1.2 M apping the static structure of a BOOAD model onto a relational
database schema

The static structure of a BOOAD model is mapped onto table definitions, with

necessary additional information (such as types of fields) being specified. Abstract

classes are not directly mapped onto anything in the relational design, but are

implicitly used since their attributes, which are eventually inherited by some non-

abstract class, become field names in tables.

 17

In a BOOAD model, we assume the existence of object identifiers. In a relational

database, object identity is implemented by values contained in the key fields of

records, where no two distinct records are allowed to have the exact same data in their

key fields.

Relationships of a BOOAD model are mapped quite straightforwardly onto the

relational model. One-one, one-many and part-of relationships depicted in the analysis

model can be modeled by one table having a foreign key belonging to the other table

involved in the relationship (a foreign key is a set of fields that depict a record uniquely

in some other table). Many-many relationships between two classes, as well as

relationships involving more than two classes necessitate the use of a relationship

table with foreign keys to the tables involved in the relationship. Relationship classes

(when used to depict many-many relationships in the analysis model) are mapped onto

relationship tables in a straight-forward manner.

6.1.3 M apping the dynamic behavior of a BOOAD model onto data
manipulation operations in the relational model

Mapping the dynamic behavior of the analysis and high-level design model onto data

manipulation operations in the relational world is more involved. In a relational

database, data is passive, waiting to be manipulated through queries. This is in

contrast with the object-oriented approach of the analysis and design model, where

objects are assumed to be active. Furthermore, many things seem to be happening

concurrently, with each individual object having its own thread of control. In a

relational database application, disregarding the fact that more than one user could be

interacting with the system at any one time, there is a single thread of control, which

possibly modifies the data in a sequential fashion. Thus, the transition needs to be

 18

made from maximum concurrency, to an individual thread of control, and there should

be no loss in the semantics of what the system does outwardly.

We start by identifying the system-wide functions which are initiated by the user's

interaction with the system. It is the job of a UI class to guide the interaction, get

relevant data from the user, make queries on the classes, and generate events which

will be picked up by individual objects and/or classes. Upon the receipt of an event,

objects may change state, make queries, etc. In the relational model, records, which

correspond to the objects receiving messages, are passive. Hence, any state changes to

objects need to be performed on their behalf. Since possibly there is more than one

recipient of an event, the same thing needs to be done for each recipient. Furthermore,

any other actions taken in the state transition diagrams of objects upon the receipt of

an event need to be performed on their behalf. If these actions include the broadcasting

of other events, these events must be traced (recursively) and the state changes they

cause implemented for the receiving objects. In fact, there can be a chain of events

being generated, and each one can cause state changes in individual objects, and hence

the overall system. We should trace the broadcasting and reception of all such events,

and make sure that data manipulation operations perform the required state changes on

behalf of the records.

Class methods are another aspect of the dynamic behavior of the system. These

can be mapped quite straightforwardly to queries using the DML of the relational

database management system (RDBMS).

 19

7. Sample Analysis model: Student Course Registration

In this section, we demonstrate the workings of BOOAD using a very simplified

version of the student registration procedures in a university. To keep the presentation

reasonably small, we left out the user-interface classes. We thus assume that for each

transaction, an appropriate user interface class reads data from the user, and generates

system events which will be picked up by other classes and objects in the system.

7.1 Static Analysis

The (invisible) actors of the system are the registrar's office personnel. They process

data from the other active elements, i.e. students and teachers, and feed the system

with that data.

Objects which participate in the system have classes representing them. These

classes are Person, an abstract superclass from which classes Student and

FacultyMember are derived, CourseOpening which represents a specific course

section opened in a semester, Course which gives the description of a course and

StudentTakesCourse which is needed to record the many-many relationship between

CourseOpening and Student classes. The static description of the system is given in

Figure 1.

 20

Student

CurrCredits
GPA
onProbation
TotalCredits
Year
~coursesTaken
updateGPA(numCredits,aCourse)

Person

FirstName
LastName

isa

isa

FacultyMember

MaxNoOfCourses
~coursesTaught
assign(aCourseOpening,aFacultyMember)
getGrade(student,course)

Course

Code
CourseName
Credit
Definition

CourseOpening

%course
%taughtBy
MaxNoOfStudentsAllowed
sectionNumber
SemesterOpened
YearOpened
~taken_by
~textbooksUsed
assign(aCourseOpening,aFacultyMember)

Teaches

1+

1+

StudentTakesCourse

%courseOpening
%student
gradeObtained
$addCourse(aStudent,aCourse,aSectionNumber)
dropCourse(aStudent, aCourse)
gradePosted(aStudent, aCourse, aGrade)

Figure 1: Static model of the course registration system

7.1.1 Person

Person has properties common to students and faculty members, i.e. firstName and

lastName.

7.1.2 Student

Student extends Person and adds the fields currCredits (the total number of credits

being taken in the current semester), GPA (grade point average at the beginning of the

 21

semester), onProbation (whether the student is currently on probation or not, decided

according his GPA), totalCredits (the total amount of credits he had at the beginning

of the semester), year (one of "Freshman", "Sophomore", "Junior", "Senior"), and

~coursesTaken (set of pointers to StudentTakesCourse objects). The operation

updateGPA(numCredits,aCourse) updates the GPA of the student (at the end of a

semester), as well as his total credits based upon his status and grade obtained in

aCourse.

7.1.3 FacultyMember

FacultyMember extends Person and adds the fields maxNoOfCourses (the total

number of courses the faculty member can be asked to teach), as well as

~coursesTaught, a set valued attribute containing pointers to CourseOpening objects.

The operation getGrade(student,course) returns the grade the first argument (student)

obtained in the course taught by the faculty member. assign(aCourseOpening,

aFacultyMember) is both an operation of facultyMember and an event generated by

some UI class. As such, it is automatically activated when the event is broadcast. If the

faculty member is the intended recipient, then the object aCourseOpening is added to

the ~coursesTaught set.

7.1.4 CourseOpening

Instances of CourseOpening represent different sections of a course opened in a

semester. Its fields include %course (pointer to a course object of which this instance

is a section), %taughtBy (pointer to the faculty member teaching the course),

MaxNoOfStudentsAllowed (to take the course), sectionNumber, semesterOpened

("Fall", "Spring", "Summer"), yearOpened and ~takenBy (set valued attribute

containing pointers to studentTakesCourse objects). assign(aCourseOpening,

 22

aFacultyMember) has a similar function to that in facultyMember and result in the

setting ~taughtBy to point to aFacultyMember.

7.1.5 StudentTakesCourse

Instances of StudentTakesCourse are used to implement the many-many relationship

between courseOpening objects and Student objects. %courseOpening thus points to

a courseOpening object and %student points to a student object. gradeObtained (the

grade the student obtained by taking the course implied by %courseOpening) is

conveniently located in instances of StudentTakesCourse. The class operation

$addCourse(aStudent,aCourse,aSectionNumber) creates an instance of

StudentTakesCourse and initializes its fields after making appropriate queries.

dropCourse(aStudent, aCourse) is an instance method, which sets gradeObtained to

"dropped." gradePosted(aStudent, aCourse, aGrade) is similar, but sets

gradeObtained to aGrade. All these operations are automatically activated upon the

receipt of events by the same signature.

7.1.6 Course

Course objects represent course definitions (somewhat like catalog data),

independently of when the course is opened, who is teaching it etc. Fields of a course

object include code (such as CmpE 420), courseName (name of the course spelled out,

e.g. "Principles of Programming Languages"), Credit (how many credits the course is

worth), and Definition (a paragraph of information about the contents of the course).

 23

7.2 Dynamic Analysis

Dynamic analysis reveals the behavior of individual objects in the system from their

own point of view. This is accomplished through state transition diagrams, or by direct

activation of methods inside objects and classes by events.

7.2.1 Dynamic Behavior of a faculty member

During registration, courses are assigned to faculty members. The number of courses

assigned should not exceed the total number of courses he is supposed to teach (this

may vary according to rank, other duties etc.). After semester has ended, a faculty

member posts grades for students who have taken his courses.

The state diagram for a faculty member is given in Figure 2. Note that a query is

sent to "system." This is done when there is no obvious class that should answer the

query.

 24

FacultyMember

Start 1

Course Assignments

[~coursesTaught.size() <= MaxNoOfCourses]<<RollBack>>

Teaching Classes

Posting Grades

T := System::"Generate set of all <aStudent,aCourse> pairs
 where aStudent takes aCourse from self";
For each <S,C> in T, send gradePosted(S,C,getGrade(S,C))

End of Semester

registration_time

assign(aCourseOpening, aFacultyMember)
[self = aFacultyMember]
~coursesTaught.add(aCourseOpening)

Classes_start
[~coursesTaught.size() >0]<<Error>>

Exam_time

Semester_ended

Figure 2: State transition diagram for a facultyMember object

7.2.2 Dynamic behavior of a student

The status of a student is determined at the start of a semester. If his GPA is greater or

equal to 2.0 then he can register as a regular student. Otherwise he is "on probation"

and can only repeat courses that were previously taken with a grade lower than "C." A

regular student can take courses whose total credits do not exceed 20 and are not less

than 15 either. There is no minimum credit requirement for students on probation.

Regular students can drop courses during the semester, provided their load does not

 25

fall below 15. Students cannot add courses during the semester. Once the semester is

over and grades are posted, students update their GPA and total credits taken.

Figure 3 depicts the state transition diagram for a student. Note the widespread

use of conditions with special actions attached to them (to be activated if the condition

is not true). Also of interest is the use of events generated externally which affect the

system, such as Exam_time and Classes_Start, and the use of 'C'-like operators for

brevity, such as x+=y, meaning x:=x+y etc.

26

Student

Semester Starting

Semester ended

adding courses, repeating student

[CurrCredits<=20]<<RollBack>>

adding courses, regular student

[CurrCredits<=20]<<RollBack>>

taking_courses

[CurrCredits >=15]<<RollBack>>

classes ended and final exams taken

repeating_courses
registration_time
[GPA < 2.0]
onProbation := true

Semester_ended
[~CoursesTaken.isEmpty()]<<Error>>

Classes_start
[CurrCredits > 15]<<Error>>

onProbation := false

dropCourse(aStudent,aCourse)

[self = aStudent]
[STCobject :=
 studentTakesCourse::"instance of yourself
 where %courseOpening.%Course = aCourse
 and %student = aStudent";
 STCobject is not NIL]<<RollBack>>

~CoursesTaken.remove(STCobject);

[self=STC.%student]
[StudentTakesCourse::"student has taken aCourse
before with a grade < C AND student not registered
to another section of aCourse"]<<RollBack>>

~coursesTaken.add(STC);

[self = aStudent]
[STCobject :=
 studentTakesCourse::"instance of yourself
 where %courseOpening.%Course = aCourse
 and %student = aStudent";
 STCobject is not NIL]<<RollBack>>

~CoursesTaken.remove(STCobject);
updateGPA(aGrade, aCourse)

StudentTakesCourseObject(STC)
[self=STC.%student]

~coursesTaken.add(STC);

[CurrCredits > 0]<<Error>>

Figure 3: State transition diagram for a student object

 27

7.2.3 Dynamic behavior of a CourseOpening object

A courseOpening object is created for each section of a course opened in a semester.

The state diagram of this kind of object is given in Figure 4.

CourseOpening

Beginning of semester

registering students

[~taken_by.size()
 <= MaxNoOfStudentsAllowed]<<RollBack>>

inside semester

semester over

registration_time

StudentTakesCourseObject(STC)

[self=STC.%courseOpening]

~taken_by.add(STC)
Classes_start

dropCourse(aStudent,aCourse)

[%course=aCourse]
[STCobject := studentTakesCourse::"instance of
 yourself where
 %courseOpening = self
 AND %student = aStudent";
 STCobject is not NIL]
[~taken_by.contains(STCobject)]<<Error>>

 ~taken_by.remove(STCobject)

Semester_ended

Figure 4: State transition diagram for a courseOpening object

 28

7.2.4 Dynamic behavior of StudentTakesCourse objects

Objects of class StudentTakesCourse are used to implement the many-many

relationship among students and courseOpening objects. Their dynamic behavior is

simple enough for them not to require state transition diagrams: class and instance

methods suffice. We give below these operations.

The first of these, $addCourse(aStudent,aCourse,aSectionNumber), given in

Figure 5, is a class method which has the same name as an event, and is thus activated

automatically as soon as the event is broadcast (by a UI state transition diagram). First,

a check is made to see whether the student given in the argument has taken the course

before with a grade "C" or better, or if the student is registered for a different section

of the same course. This is done through a query to the class (self here refers to the

class, since $addCourse(aStudent,aCourse,aSectionNumber) is a class method). If that

is the case, the transaction is rolled back. Otherwise, a new instance of

studentTakesCourse object is created, and the links of this object is set to point to

aStudent and to the appropriate courseOpening object, which is found after a query

to the courseOpening class. Finally, a one-argument event,

studentTakesCourseObject(STC), is generated, the argument being the

studentTakesCourse object just created. This event will be received by student and

courseOpening objects.

 29

Next we have the instance method dropCourse in Figure 6. This method has the

same name as an event, and is activated automatically when the event is broadcast.

Every studentTakesCourse object will then be executing this method when the event

is broadcast. However, only the one with links to the correct student and

courseOpening objects will do further processing, i.e. setting GradeObtained to

"Dropped."

Finally we have the instance method gradePosted(aStudent, aCourse, aGrade),

which is similar to dropCourse(aStudent, aCourse) and updates the gradeObtained

field of the object.

$addCourse(aStudent,aCourse,aSectionNumber)
IF self::" aStudent has taken
 aCourse before with a grade >= C or is
 currently registered for a different section of
 aCourse"
THEN <<ROLLBACK>>
ELSE
 STC := self.newInstance();
 STC.%courseOpening:=
 CourseOpening::" an instance Y of yourself
 such that Y.%Course= aCourse and
 Y.sectionNumber = aSectionNumber" ;
 STC.%student := aStudent;
 send StudentTakesCourseObject(STC);
ENDIF

Figure 5: Class method addCourse of studentTakesCourse

dropCourse(aStudent, aCourse)
I f %student = aStudent
 AND %courseOpening.%course = aCourse
 THEN
 GradeObtained := " Dropped"

Figure 6: Method dropCourse of studentTakesCourse objects

 30

8. Conclusion and further work

We described an object-oriented analysis and design methodology, BOOAD, as an

example of an object-oriented application-area and computation-paradigm specific

analysis and design methodology tailored for database applications. Its notation and

semantics is inherited from OMT, but enriched with notions lifted up from object-

oriented database systems. These lifted-up notions include transactions, queries,

integrity constraints, set-valued and pointer-valued attributes. Other enhancements

include an exception mechanism for dealing with errors.

The advantages of the presented approach include the minimization of the

potential difficulties in making the transition from analysis to design and

implementation. Furthermore, we have a semantically rich set of notations and

concepts available at the analysis phase which are of great use in describing systems

with database functionality, as was demonstrated in the student registration example.

We expect other application-area and computation-paradigm specific

methodologies to emerge in time for other application areas and computation

paradigms. We envision analysis-design methodologies for numeric-intensive programs

running on parallel architectures, computer games with involved user-interface

components, embedded real-time systems, robot controllers, secure systems where

certain risks need to be minimized, verifiably correct systems and the like.

gradePosted(aStudent, aCourse, aGrade)
IF %student = aStudent AND
 %courseOpening.%course = aCourse
THEN gradeObtained := aGrade

Figure 7: M ethod gradePosted of studentTakesCourse objects

 31

Further work on BOOAD includes the implementation of tools to support the

proposed methodology.

Acknowledgments

The author would like to thank Nahit Emanet for his useful comments on an earlier

draft of this paper.

References

[1] James Rumbaugh, OMT Insights: Perspectives on Modeling from the Journal of

Object-Oriented Programming, Prentice Hall, 1996

[2] Grady Booch, Object-Oriented Analysis and Design with Applications, Second

Edition, Addison-Wesley 1994

[3] Derek Coleman, Patrick Arnold, et al., Object-Oriented Development: The Fusion

Method, Prentice Hall, 1994

[4] Michael Blaha and William Premerlani, Object Oriented Modeling and Design for

Database Applications using OMT and UML, Prentice Hall, 1998

[5] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven

Approach, Addison-Wesley, 1992

[6] Ivor Horton, Beginning Java, Wrox Press, 1997

[7] Simon Lewis, The Art and Science of SmallTalk, Hewlett Packard, 1995

[8] Jeffrey D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1,

Computer Science Press, 1988

