Semantic Web Services for University Course
Registration

Sengiil Cobanoglu* and Zeki Bayram™*

Computer Engineering Department,
Eastern Mediterranean University,
Famagusta,

North Cyprus
{sengul.cobanoglu, zeki.bayram}@emu.edu.tr
http://cmpe.emu.edu.tr/

Abstract. Semantic web services, with proper security procedures, have
the potential to open up the computing infrastructure of an organiza-
tion for smooth integration with external applications in a very controlled
way, and at a very fine level of granularity. Furthermore, the process of
using the provided functionality, consisting of discovery, invocation and
execution of web services may be automated to a large extent. In this
paper, we show how semantic web services and service-oriented comput-
ing can facilitate this integration in the education domain. Specifically,
we use the Rule variant of Web Services Modeling Language (WSML) to
semantically specify the functionality of web services for on-line course
registration, a goal for consuming the provided functionality, as well as
the ontologies needed for a shared terminology between the service and
goal.

Keywords: Semantic web services, ontology, course registration, Web
Service Modeling Language, Web Service Modeling Ontology, discovery,
service orientation

1 Introduction

Service-oriented architecture [1], consisting of loosely coupled modular compo-
nents with standard interfaces, can facilitate greatly the process of developing
large and complex software in a distributed manner. In this paradigm, due to
the standard interfaces of the components, the provided functionality is platform
independent. Furthermore, new applications can easily be “assembled” from ex-
isting components by providing a user interface and some logic combining the
functionalities of the components used and synthesizing the required function-
ality. The problem with this seemingly ideal approach to software development,

* S. Cobanoglu is a graduate of the Department of Computer Engineering, Eastern
Mediterranean University, Famagusta, Cyprus.

** 7. Bayram is with the Department of Computer Engineering, Eastern Mediterranean
University, Famagusta, Cyprus.

2 Semantic Web Services for University Course Registration

which naturally promotes software re-usability and platform independence, is
that as the number of modules get larger and larger, finding a web service with
the desired functionality becomes harder and harder. This is where semantic web
services enter the picture and come to help. Web service functionality can be
described semantically using special purpose web service description languages,
and desired functionality can also be specified semantically in the form of goals.
A matcher can then be used for matching the desired functionality as specified
in the goal, with the functionalities provided by various web services. Once a
satisfactory match is found, invocation can be made, either in automatic mode,
or manually, or somewhere in between.

In this paper, we show the potential beneficial use of semantic web services
[2] in the educational domain, more specifically for making course registrations.
In previous work, semantic web service applications were investigated in the
banking domain [3][4], as well as the health domain [5].

Before we go into the specifics of our application, we present below terminol-
ogy and concepts relevant to semantic web services. The notion of an ontology
is used widely in the semantic web. Ontologies are used for representing shared
domain knowledge [6][7]. They form an important foundation of the semantic
web on which other components are built [8]. The main component of an on-
tology is the “concept,” which is similar in essence to classes in object-oriented
programming languages [9]. Web services are computational units on the World
Wide Web (WWW), and can be called through standard interfaces and proto-
cols, such as HTTP [10] and SOAP [11]. Web services also allow an organization
to open up part of its internal computing infrastructure to the outside world in
a controlled way. A drawback of “normal” web services is their purely syntac-
tic specification, which makes reliable automatic discovery impossible. Semantic
Web services attempt to remedy the purely syntactic specification of regular web
services by providing rich, machine interpretable semantic descriptions of Web
services [12] so that the whole process of web service discovery, orchestration
or composition, and execution can be automated through appropriate semantic
web service frameworks.

Web Service Modeling Ontology (WSMO) [13] is a framework for semantic
description of Semantic Web Services based on the Web Service Modeling Frame-
work (WSMF) [14]. Its four main components are ontologies, web services, goals
and mediators. Web Service Modeling Language (WSML) [15] is a language for
modelling web services, ontologies, and related aspects of WSMO framework,
to provide the description of semantic web services so that automatic discovery
and invocation becomes possible. Five language variants of WSML exist, which
are WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full.

In this paper, we use WSML-Rule to semantically specify an online university
course registration web service. We first define an ontology which contains rele-
vant concepts, axioms, relations and instances. Then we proceed to semantically
define the web service itself, and then a goal to consume the web service.

The remainder of the paper is organized as follows. Section 2 describes the se-
mantic specification of a web service for course registration in WSML-Rule. This

Semantic Web Services for University Course Registration 3

specification includes an ontology, consisting of concepts, instances, relations and
axioms of the course registration domain, the functional specification of the web
service itself in terms of preconditions, postconditions, assumptions and effects,
as well as a goal for consuming the web service. Section 3 contains a discussion
of the problems encountered and shortcomings of the WSML language. Finally,
section 4 is the conclusion and future work.

2 Specifying course registration functionality in WSML

The web service whose functionality we want to semantically describe imple-
ments a course registration use-case, where a student tries to register for a course
in a given semester. Several conditions must be satisfied before the registration
can take place. In the following sub-sections, we present the ontology, goal and
web service specification for the course registration use-case. Note that we used
WSML-Rule throughout the specification, since it supports rule-based logic pro-
gramming, with which we can write axioms that act as integrity constraints, and
also do computations.

2.1 Course Registration Ontology

The course registration ontology consists of concepts, relations, instances, rela-
tionInstances and axioms. We have placed concepts and instances into different
files and used the importing facility of WSML to better manage the ontology. Fig-
ure 1 depicts the prologue of the WSML file containing the ontological structures
used in the specification. Note the choice of WSML variant selected (WSML-
Rule), the definition of the namespace property, the beginning of the registration
ontology, and the importation of two other ontologies containing instances.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://cmpe.emu.edu.tr/courseRegistration#",
discovery _"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#",
dc _"http://purl.org/dc/elements/1.1#" }

ontology courseRegistration
importsOntology {courseRegistrationInstances, courseRegistrationRelationInstances}

Fig. 1. Prologue of the course registration ontology file

Concepts in the registration ontology Figure 2 graphically depicts the con-
cepts of the ontology. In figure 3 we have the concept definitions for University,

4 Semantic Web Services for University Course Registration

& WSML Visualizer - courseRegistration &2

Zoom: lSD% '] Rotate: lZTU degrees 'l @@ lhnp;//mnnnmupmm v Nk istration ¥

TurkishUndergraduateProgram

TurkishProgram
- CourseOpening UndergradiiztaDrnaram
Deparif. EnglishUndergraduateProgram

\ L.
3 UnieiCuriculumItAddress

Student \\V‘h_‘ ‘;‘ X " AcademickrocEnglishProgram
—RegistrationRequest

'Classroorln, J
Person® e courseRegistration
Tnstructor A { ". e EnglishGraduateProgram
PETIDCI“ AR GraduateProgram
‘D SEMeste RegisirationResult
Building
| TurkishGraduateProgram
~ General Nodes RoomDayPeriodDuration
“ Ontology
Concept [3 TurlishProgram
© Relation [
Adom LectuefLabRoomDayPeriodDuration

+ Extemal Nodes

1]

Fig. 2. Concepts of CourseRegistration ontology (graphical representation)

1

concept University
uname ofType (1 *) _string
locatedAt ofType (1 *) Address

concept Address
street ofType (0 1) _string
city ofType (0 1) _string

concept Faculty
facultyName ofType (0 1) _string
atUniversity ofType (0 1) University

concept Department
deptID ofType (0 1) _string
deptName ofType (0 1) _string
inFaculty ofType (0 1) Faculty

concept AcademicProgram
programName ofType (0 1) _string
programID ofType (0 1) _string
belongsTo ofType (0 1) Department

concept Curriculum
academicProgram ofType (0 1) AcademicProgram
refCode ofType (0 1) _string
courseName ofType (O 1) Course

Fig. 3. Registration ontology concepts (part 1)

Semantic Web Services for University Course Registration 5

concept UndergraduateProgram subConceptOf AcademicProgram

concept GraduateProgram subConceptOf AcademicProgram

concept TurkishProgram subConceptOf AcademicProgram

concept EnglishProgram subConceptOf AcademicProgram

concept EnglishGraduateProgram subConceptOf {EnglishProgram, GraduateProgram}

concept EnglishUndergraduateProgram subConceptOf { EnglishProgram, UndergraduateProgram}
concept TurkishGraduateProgram subConceptOf {TurlishProgram, GraduateProgram}

concept TurkishUndergraduateProgram subConceptOf { TurkishProgram, UndergraduateProgram}

Fig. 4. Some sub-concept relationships

Address, Faculty, Department, and AcademicProgram and Curriculum. A de-
partment may be running more than one program, and for each program, we
have a curriculum, with a list of courses.

Figure 4 shows the sub-concept relationships among concepts. For exam-
ple, EnglishProgram is a sub-concept of AcademicProgram. Note how multiple
inheritance is possible.

Figure 5 depicts concepts needed for course registration specifically. Note
the difference between Course and CourseOpening concepts. The former gives
information about a course in general, and the latter is used when a course is
offered in a given semester. Semester, Day, and Period are utility concepts.

Figure 6 depicts the definition of the Person concept, and its two sub-concepts
Student and Instructor. The yearEnrolled attribute of Student is the year that
the student enrolled university and the enrolledIn attribute is the Academic pro-
gram in which student is enrolled. Of special interest is the tookCourse attribute,
since it will be indirectly defined through the TookRelation axiom, given in figure
12.

Finally in figure 7, we have two concepts, RegistrationRequest and Registra-
tionResult that are used to pass information to the the web service, and get a
confirmation back. The request is for a course in a given year and semester. The
confirmation is the registration into a specific course opening.

Relations Although attributes of a concept act like relationships between
the host object and some other object, n-ary relationships where n > 2 are
best represented using explicit relations, which WSML provides as a construct.
Sometimes we use binary relationships for convenience, and it is also possible to
establish a connection between attributes of a concept and relations explicitly
through axioms.

In figure 8, we see the four relations present in the ontology. These are teaches
for specifying which instructor teaches which course opening, takes for students
for specifying which student takes which course opening, tookCourse for record-
ing which student has already taken which course, and prerequisite for recording
the prerequisite relationship among courses.

6 Semantic Web Services for University Course Registration

concept Course
courseCode ofType (0 1) _string
courseName ofType _string
hasPrerequisite ofType (0 *) Course
lecture_hour ofType (0 1) _integer
tutorial_hour ofType (0 1) _integer
credits ofType (0 1) _integer
ects ofType (0 1) _integer
belongsToProgram ofType (0 1) UndergraduateProgram

concept CourseOpening
groupNo ofType (0 1) _integer
ofCourse ofType (0 1) Course
semester ofType (0 1) Semester
id_courseOpening ofType (0 1) _string
teaching_times ofType (1 4) RoomDayPeriodDuration
current_size ofType (0 1) _integer
year ofType (0 1) _integer

concept Classroom
classID ofType (0 1) _string
location ofType (0 1) Building
capacity ofType (0 1) _integer
inDepartment ofType (O 1) Department
roomNumber ofType (0 1) _string

concept Semester
concept Day
concept Period
concept Building

concept RoomDayPeriodDuration
room ofType (1 1) Classroom
day ofType (1 1) Day
period ofType (1 1) Period
duration ofType (1 1) _integer

concept LectureRoomDayPeriodDuration subConceptOf RoomDayPeriodDuration
concept LabRoomDayPeriodDuration subConceptOf RoomDayPeriodDuration

Fig. 5. Registration ontology concepts (part 2)

Semantic Web Services for University Course Registration

concept Person
ID ofType (0 1) _string
gender ofType (0 1) _string
Date_of _Birth ofType (0 1) _date
name ofType (0 1) _string
lastName ofType (0 1) _string
address ofType Address

concept Student subConceptOf Person
yearEnrolled ofType (0 1) _integer
overallCGPA ofType (0 1) _float
enrolledIn ofType (0 2) AcademicProgram
semesterEnrolled ofType (0 1) Semester
tookCourse_ ofType (0 *) Course
nfp
dc#relation hasValue {TookRelation}
endnfp

concept Instructor subConcept0f Person
works_in ofType (1 *) Department

Fig. 6. Registration ontology concepts (part 3)

concept RegistrationRequest
student ofType Student
course ofType Course
year ofType _integer

semester ofType Semester

concept RegistrationResult
student ofType Student
courseOpening ofType CourseOpening

Fig. 7. Registration ontology concepts (part 4)

relation teaches(ofType Instructor, ofType CourseOpening)
relation takes(ofType Student, ofType CourseOpening)
relation tookCourse(ofType Student, ofType Course)
relation prerequisite(ofType Course,ofType Course)

Fig. 8. Relations in the course registration ontology

8 Semantic Web Services for University Course Registration

Concept and relation instances Instances are actual data in the ontology.
In figure 9 we give a representative set of instances for several concepts to enable
better understanding of the way in which concepts and relations are used in the
ontology. Figure 10 has a representative set of relation instances.

Axioms An axiom in WSML is a logical statement which can be used to im-
plicitly define concepts and conditions for concept membership (i.e. instances),
specify relations on ontology elements as well as assert any kind of constraints
regarding the ontology. Axioms that specify forbidden states of the ontology
start with “-”, and they function like integrity constraints of databases.

Figure 11 depicts four named axioms. The “registrationRules” axiom defines
the “clashes”, “prerequisiteNotTaken” and “classSizeExceeded” predicates. The
“clashes” predicate is true when two course openings in a given semester are
taught in the same physical location at exactly the same time. The “prerequi-
siteNotTaken” predicate is true when a student is taking a course without having
taken its prerequisite course. Note the use of the naf operator in WSML, which
performs “negation as failure”, the operational counterpart of logical negation.
The “classSizeExceeded” predicate is true if the number of students registered
to a course opening has exceeded the capacity of the room in which the course
in taught. The “noClashRoom” axiom is a constraint, forbidding any clashes of
rooms, which means the same room cannot be assigned to two courses at exactly
the same time slot. Similarly, “prerequisiteTaken” forbids taking a course with-
out first taking is prerequisite course, and “classSizeViolation” forbids exceeding
class sizes when registering students.

Figure 12 depicts the remaining axioms of the ontology. The “noClashTeacher”
axiom makes sure that the meeting times of two courses taught by a teacher
have no overlap, since naturally a person cannot be present in two places at
the same time. Axiom “noClashStudent” imposes a similar constraint for stu-
dents, although this restriction may be somewhat unrealistic in a university
environment. Finally, axiom “TookRelation” establishes a connection between
the “tookCourse” relation and the tookCourse_ attribute of Student objects: if
a student s and a course ¢ are in the tookCourse relation, then the tookCourse_
attribute value of s is c.

2.2 Goals

A goal is a declarative statement of what the requester can provide, and what it
expects as a result of invoking a web service. The “what I can provide” part is
specified in the “precondition” of the goal (this is an unfortunate terminology,
since it implies that the goal has a precondition), and the “what I expect” part
is specified in the “postcondition”. Goals are like elaborate queries in a database
system, except they can be far more complex, since they can involve any logical
statement, both in the “precondition” part and the “postcondition” part. A goal
is “matched” against web service specifications, and the one that “best” satisfies
the requirements of the goal is chosen for execution. The definition of “best” can

Semantic Web Services for University Course Registration

instance dept_computer_engineering member0f Department
deptName hasValue "Computer Engineering"
inFaculty hasValue faculty_of_engineering
deptID hasValue "computer_engineering"

instance cmpe_undergrad_eng member0Of EnglishUndergraduateProgram
programID hasValue "cmpe_undergrad_eng"
programName hasValue "Computer Engineering Undergraduate English"
belongsTo hasValue dept_computer_engineering

instance curriculum_cmpe_undergrad_eng memberOf Curriculum
academicProgram hasValue cmpe_undergrad_eng
refCode hasValue "cmpecurriculum"
courseName hasValue cmpe318

instance cmpe354 member0f Course
belongsToProgram hasValue cmpe_undergrad_eng
courseName hasValue "Introduction to Databases"
courseCode hasValue "cmpe354"
hasPrerequisite hasValue cmpe211

instance cmpe354_spring_2012_grl memberOf CourseOpening
id_courseOpening hasValue "cmpe354_spring_2012"
year hasValue 2012
semester hasValue spring
ofCourse hasValue cmpe354
groupNo hasValue 1
current_size hasValue 4
teaching_times hasValue {1ecture_cmpe128_wednesday_per2_2,
lab_cmpelab5_friday_per4_2 }

instance room_cmpel28 member0f Classroom
inDepartment hasValue dept_computer_engineering
classID hasValue "room_cmpel28"
capacity hasValue 60
location hasValue cmpe_building

instance lecture_cmpel28_monday_per2_2 memberOf LectureRoomDayPeriodDuration
room hasValue room_cmpel28
day hasValue monday
period hasValue per2
duration hasValue 2

instance ayse member0f Student
ID hasValue "104059"
name hasValue "Ayse"
lastName hasValue "Akcam"

instance spring member(Of Semester
instance monday memberOf Day

instance perl member0Of Period

instance cmpe_building member0f Building

Fig. 9. Various concept instances in the course registration ontology

10 Semantic Web Services for University Course Registration

relationInstance teaches(ali, cmpe354_spring 2012_gri)
relationInstance takes(ayse, cmpe354_spring_2012_gril)
relationInstance prerequisite(cmpe211,cmpe354)
relationInstance tookCourse(zainab,cmpe211)

Fig. 10. Various relation instances in the course registration ontology

axiom registrationRules
definedBy

clashes(7col,7co02):-
?col member0f CourseOpening
and ?co2 member0f CourseOpening
and ?col != ?7co2
and 7col[teaching_times hasValue ?ttl, year hasValue ?yl, semester hasValue ?s1]
and 7co2[teaching_times hasValue 7ttl, year hasValue 7yl, semester hasValue 7si].

prerequisiteNotTaken(?student,?course, ?precourse) : -
takes(7?student, 7courseOpening) and
?courseOpening[ofCourse hasValue 7course] memberOf CourseOpening and
prerequisite(?pre,?course) and
naf tookCourse(?student,?precourse) .

classSizeExceeded:- ?co [teaching_times hasValue 7tt,current_size hasValue ?s] member0Of CourseOpening and
7tt[room hasValue ?room] memberOf RoomDayPeriodDuration and
?room[capacity hasValue ?maxCap] and
?s > ?maxCap.

axiom noClashRoom
definedBy
!-clashes(?7x,7y).

axiom prerequisiteTaken
definedBy
!~ prerequisiteNotTaken(?student,?course, ?pre).

axiom classSizeViolation
definedBy
!- classSizeExceeded.

Fig. 11. Some axioms of the registration ontology

Semantic Web Services for University Course Registration 11

axiom noClashTeacher
definedBy
!'- 7t1 member0f Instructor
and ?col memberOf CourseOpening
and ?co2 memberOf CourseOpening
and teaches(?t,?col)
and teaches(?t,?7co2)
and ?col != 7co2
and 7col[teaching_times hasValue ?ttl, year hasValue ?yl, semester hasValue 7s1]
and ?co2[teaching_times hasValue ?tt2, year hasValue ?yl, semester hasValue ?s51]
and 7ttl[day hasValue ?dl, period hasValue ?pi]
and 7tt2[day hasValue ?dl, period hasValue ?7pi].

axiom noClashStudent
definedBy
!'- ?7t1 memberOf Student
and 7col member0Of CourseOpening
and ?co2 memberOf CourseOpening
and takes(?tl,%7col)
and takes(?7t1,7co2)
and 7col[teaching_times hasValue ?ttl, year hasValue ?yl, semester hasValue ?si1]
and 7co2[teaching_times hasValue ?tt2, year hasValue ?yl, semester hasValue ?si]
and 7ttl[day hasValue 7d1l, period hasValue 7pi]
and 7tt2[day hasValue ?d1, period hasValue ?pi]
and ?col != 7co2.

axiom TookRelation
definedBy
?x[tookCourse_ hasValue ?course] member0f Student:- tookCourse(?x,?course).

Fig. 12. More axioms of the course registration ontology

12 Semantic Web Services for University Course Registration

change, and non-functional requirements can also play a role in which web service
is chosen. Execution can be automatic if an appropriate semantic web service
framework is used. Ontologies are used to establish a “common understanding”
of terminology between goals and web services.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://cmpe.emu.edu.tr/courseRegistration#",
discovery _"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#",
dc _"http://purl.org/dc/elements/1.1#" }

goal goalCourseRegistration
importsOntology
{ _"http://cmpe.emu.edu.tr/courseRegistration#courseRegistration",
_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationInstances",
_"http://cmpe.emu.edu.tr/courseRegistration#courseRegistrationRelationInstances"}

capability goalCourseRegistrationAliCapability
nonFunctionalProperties
discovery#discoveryStrategy hasValue {discovery#HeavyWeightRuleDiscovery,
discovery#NoPreFilter}
endNonFunctionalProperties

sharedVariables {}

precondition
definedBy
?rr[student hasValue ali,
course hasValue cmpe354,
year hasValue 2012,
semester hasValue spring] memberOf RegistrationRequest.

postcondition
definedBy
7aResult [student hasValue ali,courseOpening hasValue ?co]
memberOf RegistrationResult
and ?co [ofCourse hasValue cmpe354,
year hasValue 2012,
semester hasValue spring,
groupNo hasValue ?groupno] memberOf CourseOpening.

Fig. 13. Goal for registering a specific student to a specific course in a given year and
semester

In figure 13, we have a goal for registering a specific student, Ali, to the
CMPE354 course in the spring 2012 semester. The goal specification starts with
stating the variant of WSML that will be used (WSML-rule), namespaces, and
imported ontologies which contain concept definitions and instances. In the ca-
pability section, non-functional properties state that “heavyweight rule match-
ing” should be used in the discovery process, meaning that full logical inference
should be the method utilized. The shared variables section should contain log-
ical variables that are shared in all parts of the goal (e.g. the precondition and
postcondition). In this case, since there are no shared variables, this section is

Semantic Web Services for University Course Registration 13

empty. The “precondition” of the goal contains the information needed to register
the student, i.e. an instance of the “RegistrationRequest” concept. This instance
acts like the parameter to the web service call. The postcondition states that
an instance of the “RegistrationResult” concept is required, which acknowledges
that the requested registration has been done. The variables ?co and ZaResult
are logic variables that are meant to be bound to values as a result of a successful
invocation of a web service.

2.3 Web Services

The web service specification in WSML describes in logical terms what the web
service expects form the requester, the state of the world which must exist before
it can be called, as well as results it can return to the requester, and the changes
it can cause to the state of the world after it has finished its execution. Pre-
conditions specify what information a web service requires from the requester.
Assumptions describe the state of the world which is assumed before the exe-
cution of the Web service. Postconditions are statements about the existence of
objects in the ontology created by the web service to be returned to he requester.
Effects describe the state of the world that is guaranteed to be reached after the
successful execution of the Web service.

In figure 14, we have the course registration web service specification. It
starts out, similarly to the goal specification, with the WSML variant used and
the namespaces. Three ontologies are imported as in the goal. There are five
shared variables in the capability. They are implicitly universally quantified.
These variables are ?student, ?course, ?year, ?semester, ?oldsize and ?co. The
precondition instantiates its variables with the data provided by the requester,
and through shared variables passes them to the other parts of the specification.
For example, the ?course variable’s contents are used in the assumption to find
a CourseOpening instance for that course. In the assumption, the current size of
the CourseOpening instance is stored in the ?oldsize variable, which is used in the
effect to increase the current size by 1. Note that the effect is not “performing”
an action, but merely declaring the state of the world after the web service
has finished execution, which is that the current size in the course opening is
increased by 1, and that now the student is considered to be registered to the
course opening. Lastly, the postcondition states the existence of an instance of
the RegistrationResult concept in the ontology that will be “sent” to requester.

3 Discussion

Although WSML-Rule is a relatively comprehensive language, we have still found
several constructs that are missing from it, the presence of which would have
made the language much more powerful and expressive. Some of these are:

— Lack of aggregate operators, such as “sum”, “count” etc. Due to this missing
feature, we could not check in a declarative way that the capacity of each
classroom should not be exceeded through registrations.

14 Semantic Web Services for University Course Registration

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://cmpe.emu.edu.tr/courseRegistration#",
discovery _"http://wiki.wsmx.org/index.php?title=DiscoveryOntology#",
dc _"http://purl.org/dc/elements/1.1#" }

webService web_service_courseRegistration

importsOntology {courseRegistration, courseRegistrationInstances,
courseRegistrationRelationInstances}

capability web_service_courseRegistrationCapability

nonFunctionalProperties
discovery#discoveryStrategy hasValue discovery#HeavyweightDiscovery
endNonFunctionalProperties

sharedVariables {?student, ?course,?year, 7semester, 7oldsize, ?7co}

assumption
definedBy
?co[ofCourse hasValue ?course,
year hasValue ?year,
semester hasValue 7semester,
groupNo hasValue ?groupno,
current_size hasValue ?7oldsize] memberOf CourseQpening.

precondition
definedBy
?rr[student hasValue ?student,
course hasValue ?7course,
year hasValue ?year,
semester hasValue ?semester] memberOf RegistrationRequest.
effect
definedBy
takes(?student,?co) and
?co[current_size hasValue (7oldsize+1)].

postcondition
definedBy
7aResult[student hasValue ?student,
courseOpening hasValue ?co] memberOf RegistrationResult.

Fig. 14. Specification of the course registration web service

Semantic Web Services for University Course Registration 15

— Lack of an exception mechanism. Currently there is no way to deal with
constraint violations in the ontology. They just get reported as errors.

— Inability to specify different postconditions and effects depending on the pre-
conditions and assumptions. Currently, a web service specification is like an
“if-then” statement of programming languages: if the preconditions and as-
sumptions are correct, then the web service guarantees the effect and post-
condition. What would be much more useful is a “case” structure, where
more than one set of precondition-assumption pairs would exist, with their
corresponding postcondition-effect pairs. The ability to have more than one
capability for a web service would solve this problem.

— Inability to have more than one outcome for one set of conditions in which the
web service is called. It would be desirable to be able to associate more than
one postcondition-effect pair for the same precondition-assumption pair. We
need to be able to say that the result of calling the web service can be
< postconditiony, ef fect;y > or < postconditions, ef fecty > or ...or <
postcondition,,, ef fect,, >, but this is not possible. For example, currently
we cannot deal with the case that a request to register to a course may fail,
in which case the state of the world will not change as a result of the web
service call.

4 Conclusion and Future Research Directions

We have specified semantically, using WSML-Rule, a web service for course
registration. This involved the definition of an ontology, with concepts needed
to capture domain knowledge and axioms to implement integrity constraints, as
well the specification of web service capability and goal to consume the provided
service. Our work has revealed several weaknesses of WSML-Rule, which we
identified above.

For future work, we are planning to work on remedying the weak points of
WSML-Rule. We believe semantic web services, more specifically WSMO and
WSML, when properly fixed and updated to answer the discovered deficiencies,
can be the backbone of the future semantic web with intelligent agents.

16 Semantic Web Services for University Course Registration

References

1. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall (2005)

2. Dieter Fensel, D., Facca, F.D., Simperl, E., Toma, I.: Semantic Web Services.
Springer (2011)

3. Sharifi, 0., Bayram, Z.: Database Modelling Using WSML in the Specification of a
Banking Application. In: Proceedings of WASET 2013, pp. 263-267, Zurich, Switzer-
land (2001)

4. Sharifi, 0., Bayram, Z.: Specifying Banking Transactions using Web Services Mod-
eling Language (WSML). In: The fourth International Conference on Information
and Communication Systems (ICICS 2013), pp. 138-143, Irbid,Jordan (2001)

5. Sharifi, 0., Bayram, Z.: A Critical Evaluation of WSMO and WSML through an E-
health Semantic Web Service Specification Case Study. Submitted for publication
(2013)

6. Domingue, J., Cabral, L,. Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B.,
Pedrinaci, C.: TRS-III: A broker-based approach to semantic Web services. Web
Semantics: Science, Services and Agents on the World Wide Web, vol. 6, num. 2,
pp- 109-132 (2008).

7. Gruber, T. R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition, vol. 5, num. 2, 199-220 (1993)

8. Berners-Lee, T., Hendler, J.: Scientific publishing on the semantic web. Nature, vol.
410, pp. 1023-1024 (2001)

9. Lara, R., Roman, D., Polleres, A., Fensel, D.: A conceptual comparison of WSMO
and OWL-S. In: Zhang, L.J., Jeckle, M.. (eds.) ECOWS 2004. LNCS, vol. 3250, pp.
254-269. Springer, Heilderberg (2004)

10. Hypertext Transfer Protocol Overview, http://wuw.w3.org/Protocols

11. SOAP specifications, http://www.w3.org/TR/soap

12. Fensel, D., Lausen, H., Polleres, A., Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling On-
tology . Springer-Verlag, New York (2006)

13. Web Service Modeling Ontology(WSMO), http://www.w3.org/Submission/WSMO

14. Fensel, D., Bussler, C.: The web service modeling framework WSMF. Electronic
Commerce Research and Applications, vol. 1, num. 2, pp. 113-137 (2002)

15. D16.1v1.0 WSML Language Reference, http://www.wsmo.org/TR/d16/d16.1

