Conditional Term Rewriting as a Deductive Database
Language

Zeki O. Bayram, Barrett R. Bryant
Department of Computer and Information Sciences
University of Alabama at Birmingham
Birmingham, Alabama 35294-1170, U.S.A.
InterNet: bayram@cis.uab.edu, bryant@cis.uab.edu

1 Introduction

The logic data model, as defined by the Datalog query language [14], is the foundation on which
deductive databases are built [11]. In Datalog, the database is partitioned into two parts: the ex-
tensional database (EDB), which contains the “hard” facts, stored as relations, and the intensional
data base (IDB), which is derived from the EDB through the use of rules, or clauses, which are
part of the database. Datalog (with negation) is more powerful than the relational data model. For
example, we can define clauses in Datalog to compute the transitive closure of a relation, a task
which is not possible in the relational model. However, to see a limitation of Datalog, consider the
following set of facts/rules in Datalog that represent a certain family relationship.

parent(john,jack).
parent(jack,mary).

How are we to interpret the parent predicate? Is john the parent of jack, and jack the parent of
mary, and thus mary the grand—daughter of john? Or is it the other way around, and mary is
the grandmother of john? We develop a data model whereby, for example, we would represent the
above data as:

parent(john) — jack.
parent(jack) — mary.

This kind of representation removes any ambiguity from binary relations. Furthermore, we can
have more intuitive queries. For example: if we want to find the grandparents of john, we could
query as parent(parent(john)). Therefore, we need to add the capability of representing functions
in the logical database, effectively adapting functional/logic programming to the area of deductive
databases, much as logic-based deductive databases are an adaptation of logic programming.

Functional/logic programming languages integrating the two paradigms of functional and logic
programming have been well studied and investigated [7]. Most of these languages are based on
narrowing as their operational semantics and have as their programs functions specified in the form
of a set of equations, or rewrite rules. Using narrowing as the operational semantics of functional
languages was pioneered by Reddy [13]. Functional/logic programs composed of conditional term
rewriting systems, with conditional narrowing as the operational semantics, have a special appeal
due to their conciseness and expressiveness [8].

In this paper, we describe a functional/logic deductive data base model based on conditional
term rewriting systems for defining logic data bases with functional syntax. In this approach, we
use conditional rewrite rules as a database language, and develop a bottom-up evaluation algorithm

126

that utilizes narrowing for evaluating queries. We demonstrate the soundness and completeness of
this query evaluation algorithm with respect to a more standard reduction semantics, and prove
that it terminates. The model we develop subsumes the logic data model with Datalog programs
making up the database. The advantages of our model over Datalog stem mainly from the fact
that our model makes available within a unified framework both relational and functional styles of
programming. The availability of the functional style of programming, in addition to the relational
style, can be used to good advantage to write programs that have a less ambiguous declarative
reading than their purely logical counterparts, to more authentically and naturally represent data
(some data can best be represented using a functional notation rather than relational), and pose
queries more intuitively through the use of function nesting.

The remainder of the paper is organized as follows. In the next section, we develop the
DataFunLog (DFL) model which permits the definition of a database with conditional rewrite
rules. Also an algorithm for evaluating queries is presented. In section 3 we extend our rules to
permit the “not” function to appear anywhere within the body or the condition part of a rule. We
call the resulting language DFLN, “DataFunLog with Negation.” Also in section 3 we introduce
the notion of a stratified database, and describe an extended bottom—up evaluation algorithm to
handle negation for stratified DFLN programs. Section 4 describes other approaches to database
languages, and compares them to DFLN. The last section is the conclusion and future research
directions.

2 The DataFunLog (DFL) Data Model

Our data model is based on conditional term rewriting systems. Since we are dealing with atomic
data, and following the lead of Datalog, we shall not allow constructors in our rules: just variables
and constants. A rule will, in general, be of the form

lhs : condition — rhs

with the following restrictions:

1. All variables appearing in the lhs must appear in the rhs or in the condition.

2. All variables must be restricted: they must be an argument to a function call in the condition
or in the rhs. e.g. “f(X) — X” is not allowed.

3. lhs can have no function applications in argument positions: only variables and constants.
Thus “f(g(a),X) — rhs” is not allowed.

4. All variables occuring in the condition part must be arguments to some function.
“f(...):X — rhs” is not allowed.

These restrictions on rewrite rules are necessary for the bottom-up query evaluation algorithm to
terminate.

To demonstrate the elegance and power of the proposed data model, we give an example
DataFunLog with Negation (DFLN) program. We also give the intuitive meaning of the rules
defining the program. The following rules define certain family relationships:

127

male(joe)—true.

female(mary)—true.

parent(tom)—joe.

brother(X):parent(X) = parent(Y) and male(Y) and not(X=Y) — Y.
father(X):Y=parent(X) and male(Y)—Y.

The rules defining “=” and the logical connectives are assumed. In fact, as we shall see later, the
rules defining them is included by default in the database. The functions “male” and “female”
are boolean valued functions. The “parent” predicate is straightforward, where “parent(X)— Y”
means “the parent of X is Y.” The way we read the last two rules are as follows: “For all constants
X and Y, the brother of X is Y if the parents of X and Y are the same, Y is male and Y is not
equal to X” and “ the father of X is Y if Y is the parent of X and Y is male.”

Given these rules defining the database, we can, for example, ask queries of the form “Whose
father is joe” by “father(X) = joe” where X is a logical variable. We have developed an algorithm
using bottom-up evaluation for answering such queries. For the case involving negation, we have
developed a stratification algorithm, and an algorithm which makes use of the bottom-up evaluation
algorithm developed for evaluating DFL programs.

2.1 The Meaning of DataFunLog Programs Without Negation

Let us define certain terms that we shall make use of in the remainder of this paper.

We partition all symbols used in a DFL program into three sets: The set of function names F',
the set of variables V' and the set of atomic objects (also called constants, or data objects) DOM.

We define a term recursively as:

e A variable is a term
e A data object is a term

e If f is a function name, and a;,1 < i < n, are terms, then f(a1,a9,---,ay) is a term

An atomic object is also called a term in normal form.

An occurrence is a string of integers of the form i.5.k ..., where 1 < 4, j, k... We use occurrences
to give an unambiguous address for a particular subterm of a term. If t is a term, we denote the
subterm of t at occurrence u as t[u]. A few examples will serve best to describe the meaning of
occurrences.

f(g(a,b),c)[1] = f(g(a,b)c)
f(g(a;b)c)[1.1] = g(a,b)
f(g(a,b),c)[1.1.2] = Db
f(g(a,b),c)[1.2] = ¢

If u is pointing to a subterm of ¢ that does not exist, we define t[u] to be t itself. For example,
f(g(a,b).0)[1.2.4.2]~f(g(a,b).c).

Obtaining a subterm of a term by the above process is called an eztraction operation. Replacing
a subterm s of a term t at some occurrence u by another term w is called a replacement operation
and is denoted by t[w/u].

128

Conditional rewrite rules, in the presence of confluence, have a natural declarative reading,
in addition to a procedural one, whereby a conditional rewrite rule can be seen as conditional
equality between two terms. However, we cannot use this approach to give a declarative reading
to DataFunLog programs, since by necessity, we do not have confluence in the rewrite rules. For
example, with a database consisting of the following rules,

f(a)—b.
f(a)—c.

where a, b and ¢ are terms in normal form, if we interpreted the rules to mean (unconditional)
equality, we would be able to prove that b and c are equal, an obvious falsity.

Instead, the declarative reading of conditional rewrite rules will be that they define set-valued
functions. In the above example, f is a (partial) function that maps the constant “a” to the set of
constants {b,c}. Answering a query which possibly can contain variables means finding the set of
values denoted by the expression that makes up the query, as well as the values for the variables
in the query for which the expression denotes this set of values.

In order to give meaning to rules, we need to give a meaning to expressions. Below, we define
what an expression denotes, and then what each rule means. First, we define some more terms.

Let o be a substitution. We say that if all substituted terms in o are ground, then o is a ground
substitution. If all the substituted terms are in normal form, then we say o is a normal substitution.
We can combine these different qualifiers to describe a particular substitution.

Let R be the set of rules that make up a DFL program. Let R’={(rule)o | rule € R and o is a
ground normal substitution and (rule)o is ground}.

The meaning of any ground expression exp, Den(exp), is the set of constants (terms in normal
form) exp can be (conditionally) reduced to using ONLY the rules in R’, i.e. Den(exp) = { a | exp
=" a, and a is a constant}. The meaning of any non-ground expression ezp is |J, Den((exp)o),
where o is a ground normal substitution and (ezp)o is ground.

We can now give meaning to the rules in a DFL program: If [hs : cond — rhs is a rule,
for any ground normal substitution o that makes the rule ground, true € Den((cond)o) implies
Den((rhs)o) C Den((lhs)o).

Alternatively, we can see rules as functions mapping substitutions to sets of constants. For this
interpretation, we would need to standardize, or rectify the rules in the database. The process of

rectification proceeds as follows: for any function name f, let “f(a1,...,a,) : cond — rhs” be one
of the rules defining f. Replace this rule with “f(Vi,...,V,,) : Vi = a1 and Vo = a9 and ...and
Vi = ay, and cond — rhs,” where V1, V,, ..., V, are new variables not occurring in any defining rule

of f. Repeat the same procedure for all defining rules of f. Note that the new rules defining the
function f will now have the same variables in their i argument positions. Then, for any given

ground normal substitution o that makes all the rules defining f ground, we can say f maps o to
Den((lhs)o).

2.2 An Algorithm for Computing the Answer to a Given Query

We shall assume henceforth that every database includes the following rules by default:
{z =z — true|lxr € DOM} as well as the rules

129

Algorithm 1 Finding the answer to a given query:

1. For every function name f in F, create two sets: call the first set rawy, and the second set
successf. Initialize: successy =0 and rawy = all rules defining f.

2. Repeat steps 2a through 2d until neither of the sets successy and rawys change any more (f is
any function name occuring in the program)

(a)
(b)

(c)

(d)

Let f(a1,a2,...,a,) : Cond — rhs € rawy. If Cond = “true,” then add
f(a1,a2,-..,a,) = rhs to rawy.

Let f(ai,a90,...,a,) : Cond — rhs € rawy. Let Cond[u] be a nonvariable subterm
of Cond at occurrence u. Let g(bi,bo,...,by) — some_constant € successy for some
function name g. Let g(b1,ba,...,bn) be unifiable with Cond[u] with most general unifier
o. Let Cond' = Cond[some_constant/u], i.e. replace the subterm of Cond at occurrence
u with some_constant. Add the rule f(a1,az,...,a,)0 : (Cond)o — (rhs)o to rawy.
This operation is called a narrowing operation on a condition.

Let f(ai,a9,...,a,) — rhs € rawys. Let rhs[u] be a nonvariable subterm of rhs at
occurrence u. Let g(bi,ba,...,by) — some_constant € success, for some function
name g. Let g(b1,ba,...,by) be unifiable with rhs[u] with most general unifier o. Let
rhs' = rhs[some_constant/u], i.e. replace the subterm of rhs at occurrence u with
some_constant. Add the rule f(ai1,az,...,an)0 — (rhs')o to raws. This operation is
called a narrowing operation on the right hand side.

Let f(a1,a2,...,a,) = rhs € rawy. If rhs is a constant, then add f(a1,a2,...,a,) —
Ths to successy

3. The answer is the set successgpswer-

Figure 1: Algorithm for computing the rule set to answer a query

true and true — true false or false — false
true and false — false true or false — true
false and true — false false or true — true
false and false — false true or true — true

Note that we have adopted an infix notation for the connectives “and” and “or,” as well as the “="
function. The precedence of these operators, from highest to lowest, are: =, and, or.

In figure 1 we give the algorithm for computing the answer to a given query (). We shall
generate a temporary rule of the form “answer(Q) — Q,” where @ is the query. F' is the set of
function names in the database (as we mentioned before) and D is the database itself made up
of (conditional) rewrite rules. D also contains the rule for “answer” generated by the query. To
illustrate this algorithm, consider example 1 as follows.

Example 1 Assume the data base is made up of the rules given below. The query is “f(Z).”We
show how the given query is computed (using algorithm 1).

130

f(X) = h(g(X))
g(a) =+ b

h(b) — ¢
answer(f(Z)) — £(Z)

We give the sets at each iteration as they are computed.
DOM = {a,b,c,true, false}.

Initialize: succesSapswer = SUCCESSf 1= SUCCESSy = SUCCESSp = SUCCESSqnd = SUCCESSer =
success— = 0. raws := {f(X) = h(g9(X))}. rawy := {g(a) = b}. rawy := {h(b) — c}.
TaWanswer = {answer(f(Z)) — f(Z)}. rawgnq :={rules defining “and”}. raw,, :={rules defining
“or”}. raw= :={rules defining “="}.

Iteration 1: successy := successq |J {g(a) = b}. successy, := successp |J {h(b) = c}. successgng :=
succesSang Urawand. successyr = succesSor |Jrawer. success— := success— | Jraw—. Note that
Iteration 1 places in the success sets the actual data from the “extensional” database.

Iteration 2: rawy := raws U {f(a) = h(b)}.

Iteration 3: rawy := rawy U {f(a) = c}.

Iteration 4: successy := successy U {f(a) = c}.

Iteration 5: rawgnswer = raWanswer U {answer(f(a)) — c}.

Iteration 6: successgnswer = Successanswer U {answer(f(a)) — c}.

At this point, since none of the sets can change any further, we take the contents of successqnswer

to be the answer to the query, in this case {answer(f(a)) — ¢}. O

Since every new rule added to a raw set is simpler than some other rule in the same raw set, we
can observe that algorithm 1 terminates. Furthermore, if Q is a query, possibly containing variables
and “answer(Q)o — rhs” € succesSanswer at the termination of algorithm 1, then (Q)o is ground,
rhs is a constant, and all variables in Q have been replaced by constants (terms in normal form).
To see this, replace answer(Q) — Q with answer(Vy,Va,...,V,) — Q where Vi, V5,...,V, are
the variables occuring in @), in the order in which they appear in). This is true because for any
function f, if f(a1,a2,...,an) = rhs € successy at any stage of the execution of algorithm 1, then
ai,as,...,a, are all constants, and so is rhs. Therefore, we claim that:

1. Given a DFL program P, f(a1,as,...,a,) = rhs € successy for any function name f in P iff
rhs € Den(f(a1,a2,-..,a,)).

2. Given a DFL program P, and a query @, and a normal ground substitution o, upon termi-
nation of algorithm 1, answer((Q)o) — rhs € successapswer iff Ths € Den((Q)o).

2.3 Translation of DataLog to DFL

A Datalog program is composed of facts and implications. If “fact” is a fact, we generate the DFL
rule “fact — true.” If “a < b & c & d ...” is an implication, we generate the rule “a — b and

131

cand d” If Datalog programs are translated in this fashion to DFL programs, then the DFL
program has the same meaning as the source Datalog program. In fact there is almost a one-to-
one correspondence between bottom-up evaluation of the original Datalog program, using “naive”
evaluation, and the execution of algorithm 1 on the DFL program translated from the Datalog
program. Datalog programs with negation are treated similarly, with “not”s remaining intact. For
example, “a <~ b & not(c) &d ...” would be translated as “a — b and not(c) and d” In the
next section we discuss how we can extend DFL and the query evalaution algorithm to deal with
negation.

3 DataFunLog With Negation

In this section, we generalize DFL programs to allow for the function “not” to appear either in the
condition or body of a rule. We shall call such programs DFLN programs. In order to accomodate
negation, we introduce a special atom “failure” into DOM.

We also assume the following rules will be part of every database, in addition to those added
to a DFL database:

true and failure — false true or failure — true
failure and true — false failure or true — true
failure and false — false failure or false — false

false and failure — false false or failure — false
failure and failure — false failure or failure — false
not(true) — false not(false) — true
not(failure) — true

as well as the set of rules {x=x — true | x € DOM} | {x=y — false | x,y € DOM and x # y}

In order for the query evaluation algorithm for DFLN programs to work, the DFLN program
needs to be stratified. A DFLN program is stratified if there are no two function names f and g such
that g occurs negatively in either the condition or the right hand side of a rule defining f, and ¢
depends on f. The reason we want to classify function names into strata is that we want to put an
order on the computation of functions. Suppose we are given the set of rules {f(...) : ...not(g(b))
...— rhs, g(a) — true}. DOM={a, b, true, false, failure}. We want to deduce that g(b) must be
false, since it is not provable jfrom the given facts (i.e. we want to make the so-called closed world
assumption). We can achieve this by computing all the values X for which g(X) is true, and setting
to false (failure) all other instantiations of X in g(X). This process would result in our adding
“g(b) — failure” to the provable facts (as well as the rules g(true) — failure, g(false) — failure
and g(failure) — failure) so that when we need to evaluate “not(g(b)),” we will have a value
for g(b). Of course this should be done BEFORE we try to compute f. Since the computation of
f needs g to be already computed before it can proceed, the computation of g should not depend,
even indirectly, on f.

The rules making up a DFLN program have a stratification if all the function names can be
assigned integer values such that for any two functions f and g, if there exists the rule “f(...)
cond — rhs,” then:

e stratum(f) > stratum(g) if g occurs positively in “cond” or in “rhs”

132

Algorithm 2 Finding the answer to a given query for DFLN programs:

1. Let @ be the query. Stratify the DFLN program. Let S[X] = the set of function names at
stratum X.

2. For X:=1 to NumberQOfStrata do

e Compute the success sets for the functions in S[X], using the success sets of functions in
S[1] U Sf2] U ...U S/X] and the raw sets of functions in S[X] by ezecuting algorithm 1

e Let f be an n-ary function name in S[X]

o Lettempy = { f(ai,...,a,) = failure | ay,...,a, € DOM and f(ai,...,a,) = rhs ¢
successy for any constant rhs }

e successy := successy |J tempy

3. Endfor

4. The answer is the contents of succesSanswer

Figure 2: Finding the answer to a given query for DFLN programs
e stratum(f) > stratum(g) if g occurs negatively in “cond” or in “rhs”

The algorithm for computing the result of a query is given in figure 2. Our reasoning about
termination and the nature of the computed answer holds true for DFLN programs in the same
manner as for DFL programs.

4 Related Work

The logic data model has been extended to include objects [1, 2, 9], higher order logic that supports
structured data, object identity and sets [10], higher order syntax [5] and various other features to
improve its expressiveness. Chomicki [6] extends the logic model by allowing function symbols to
appear in logic programs in a restricted way. Besides these, there are countless others which extend
the logic data model in various ways, and we couldn’t hope to cite them all here.

However, we shall not compare DFL with any of these models which extend the logic model.
We shall instead compare it with Datalog, and assert that it acts as a good a platform as Datalog
for the extensions made to Datalog that are cited above.

DFL, as we have seen, subsumes the logic model as defined by Datalog. As such, DFL shares
all the advantages of the Datalog model, such as treating procedural and factual information in
a uniform manner. Its syntax is simple and uniform, just like Datalog’s. In addition, however,
DFL gives us much more flexibility than Datalog in that we have a choice between the relational
and functional styles of programming in one unified framework, which permits us to write easier
to understand programs and pose more intuitive queries. The examples we have given in this
presentation help to demonstrate this point.

133

Along similar lines with DFL, Poulovassilis [12] adapts a functional language to the area of
deductive databases. The language developed (PFL) has features in common with both logic
based deductive database languages, and with functional programming languages. The data model
developed there is elegant. However, the syntax and semantics of PFL is not as simple and uniform
as in Datalog or DFL, a major strength of both models.

Another approach to deductive databases is given by Bryant and Pan in [4] whereby the Two-
Level Grammar specification language is adopted to the area of deductive databases. This scheme
also has some of the advantages of logic and functional programming, in addition to a natural-
language like syntax. It represents however a different line of research than what we presented
here.

5 Conclusions

A data model (called DataFunLog, or DFL for short) has been presented which adopts func-
tional /logic programming to the area of deductive databases. We have developed a bottom-up
query evaluation algorithm for answering queries under this model. The DFL model was then
extended to the DFLN model which deals with negation by explicitly making the closed world
assumption. We introduced the notion of a stratified DFLN program, and explained its desirabil-
ity. We developed an extended query evaluation algorithm which can answer queries on DFLN
programs. Our model subsumes the logic model as defined by Datalog. The availability of both
the functional and relational (logic) styles of programming in one unified framework facilitates
more natural representation of data, both procedural and factual, and more intuitive formulation
of queries.

DFL (also DFLN) currently is at the conceptual level; we have not implemented the bottom-up
query evaluation algorithms. In an actual implementation, the query evaluation algorithm for DFL
programs (which is the counterpart of the naive evaluation algorithm for Datalog programs) would
need to be modified so that unnecessary computation is avoided (much in the spirit of the semi-
naive evaluation algorithm for Datalog programs) and also made more goal-directed by making use
of the function dependencies. These modifications are relatively straightforward. Other database
issues that would need to be considered in an actual implementation include updates, deletions,
integrity constraints and concurrency control. Our algorithms have been proven to be sound and
complete with respect to a standard reduction semantics and to terminate and these proofs are
given in [3].

Future directions for further developing the DFL model include the incorporation of higher
order functions (a very distinctive characteristic of functional programming), complex objects,
which would allow more authentic representation of certain kinds of information, and program
transformation techniques similar to the magic sets transformation for Datalog programs (e.g. see
[14]) that preserve the meaning of the original program but result in more efficient execution of the
bottom-up evaluation procedures.

134

References

[1]

[10]

[11]

[12]

[13]

[14]

Abiteboul, S., Grumbach, S., Voisard, A., Waller, E. (1989) An Extensible Rule-Based Lan-
guage with Complex Objects and Data-Functions. Proceedings of the Second International
Workshop on Database Programming Languages, pp. 298-314.

Alashqur, A. M., Su, S. Y. W., Lam, H. (1991) A Rule-Based Language for Deductive Object-
Oriented Databases. Proceedings of the Sixth International Conference on Data Engineering,
pp. 58-67.

Bayram, Z. O., Bryant, B. R. (1992) A Deductive Database Model Based on Conditional Term
Rewriting Systems. Technical Report, Department of Computer and Information Sciences,
University of Alabama at Birmingham.

Bryant, B. R., Pan, A. (1992) Two-Level Grammar: A Functional/Logic Query Language for
Database and Knowledge-Base Systems. Proceedings of the 1992 International Conference on
Logic Programming and Automated Reasoning, Springer-Verlag Lecture Notes in Artificial
Intelligence, Vol. 624, pp. 78-83.

Chen, W., Kifer, M., Warren, D. S. (1989) HiLog as a Platform for Database Languages (or
why predicate calculus in not enough). Proceedings of the Second International Workshop on
Database Programming Languages, pp. 315-329.

Chomicki, J. O. (1990) Functional Deductive Databases: Query Processing in the Presence of
Limited Function Symbols. Ph.D. Dissertation, Rutgers University.

DeGroot, D., Lindstrom, G. (1986) Logic Programming: Functions, Equations, and Relations.
Prentice-Hall.

Dershowitz, N., Okada, M. (1988) Conditional Equational Programming and the Theory of
Conditional Term Rewriting. Proceedings of the International Conference on Fifth Generation
Computer Systems, pp. 337-346.

Lou, Y., Ozsoyoglu, Z. M. (1991) LLO: an Object-Oriented Deductive Language with Methods
and Method Inheritance. SIGMOD Record, Vol. 20, No. 2, pp. 198-207.

Manchanda, Sanjay. (1989) “Higher-Order” Logic As a Data Model. Proceedings of the Second
International Workshop on Database Programming Languages, pp. 330-341.

Minker, J. (1988) Foundations of Deductive Databases and Logic Programming. Morgan Kauf-
man.

Poulovassilis, A., Small, C. (1991) A Functional Programming Approach to Deductive
Databases. Proceedings of the Seventeenth International Conference on Very Large Data Bases,
pp- 491-500.

Reddy, Uday S. (1985) Narrowing as the Operational Semantics of Functional Languages.
Proceedings of the 1985 Symposium on Logic Programming, pp. 138-151.

Ullman, Jeffrey D. (1988) Principles of Database and Knowledge-Base Systems, Volumes I
and II. Computer Science Press.

135

