
 1

A Deductive Declarative Object-Oriented Data Model and
Query Language based on Narrowing

Zeki O. Bayram

Computer Engineer ing Department
Bogazici University

Bebek 80815/Istanbul-Turkey
internet: bayram@boun.edu.tr

Fax: 90 212 287 2461
Tel: 90 212 263 1500

Barrett R. Bryant

Depar tment of Computer and
Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294-1170, USA

internet: bryant@cis.uab.edu
Fax: 1 205 934-5473
Tel: 1 205 934-2213

Faik Hakan Bilgen

Computer Engineer ing Department
Bogazici University

Bebek 80815/Istanbul-Turkey

Abstract
The pure object-oriented data model is not convenient for describing inter-object relationships
and can result in very involved and hard to understand queries. Augmenting the object-
oriented model with declarative description of the relationships between objects using
conditional rewrite rules is a convenient way to address the problem. Under this scheme,
inter-object relationships are described declaratively using conditional rewrite rules, and
queries are posed also declaratively in the form of equations to be solved. In this paper, we
describe an experimental system written in Smalltalk which demonstrates the feasibility and
appeal of this approach. Various examples are also given.

Keywords: Declarative, object-oriented, query, data model, database, deductive

1. Introduction
In the object-oriented model of data, real world entities whose representation is needed in the
database are directly represented as database objects that are instances of some class. Each
object has a certain set of attributes, and a unique object identifier.

Although in this model real world objects are represented very authentically, external
relationships among objects are necessarily represented through the use of pointer valued
attributes, which necessitates the physical traversal of pointers representing relationships in
answering a query. This is less than ideal, since external relationships among objects are
declarative, and should be handled that way. In fact, ideally the only pointer valued attributes
in an object should be those which relate a part to its component subparts.

We present a solution to this problem which utilizes conditional rewrite rules to
represent relationships among objects and a separate object-oriented module for dealing with
objects. In [7] we defined a deductive database model (DataFunLog) based on conditional
rewrite rules and showed how conditional rewrite rules can be used to declaratively define
and query deductive databases. There was no object-oriented functionality in DataFunLog
though. The model we develop here, similar to DataFunLog in that both use conditional
rewrite rules to define deductive databases, does have object-oriented functionality, permits
the posing of queries in the form of equations to be solved, and inter-object relationships can
be described through conditional rewrite rules in the model. The operational semantics for
answering queries is narrowing and e-unification through transformations.

 2

In terms of implementation, this model is the result of a synthesis between a
functional/logic/object-oriented programming language (FLOOP [8]) and a pure object-
oriented database system NGO (for Next Generation Opal). Since both NGO and FLOOP are
implemented in Smalltalk, their integration has been seamless.

2. Components of the System
In this section we describe the components of the declarative object oriented database system.

2.1 Next Generation Opal
Next Generation Opal (NGO) is a minimal object-oriented database system. It is modeled after
the Gemstone object oriented database system [9] which uses the Opal query language. NGO
provides a type system for the attributes of objects, as well as sets whose contents can only be
of a certain type. The system automatically defines methods to access the attributes of objects
and set those attributes to certain values. A subset of the attributes of objects belonging to
some class can be specified to form a key. If a set contains objects of a given type, and these
objects have a certain set of attributes defined as a key for the objects, this information causes
the automatic definition of a method for this set of attributes, which, when given a set of
values for keys, associatively searches for an object in the set whose key matches the argument
given to the method. This is not necessarily part of the object-oriented data model, but it
facilitates writing queries. Of course, the user can define any other methods for any class.

NGO is implemented through the definition of two new classes and the necessary methods in
Smalltalk. These classes are called Tuple and MySet and are depicted in Figure 1. They act as
abstract superclasses: they are not meant to have instances of their own, but rather provide
the methods their subclasses need. User defined object types (in the relational model, these are
called relation schemes) are defined as subclasses of Tuple. Entity sets (alternatively, sets of
objects) are defined as subclasses of MySet, whose contents are instances of some subclass of
Tuple. Note that in Smalltalk, all references to objects are via pointers, and adding an object to
a set means adding its pointer to an object to the set. Hence, an object can be "in" more than
one set at any given time.

2.2 The FLOOP language
The language of implementation of FLOOP, as well as the underlying object-oriented
component, is Smalltalk.

FLOOP programs consist of conditional rewrite rules of the form f(a1,a2,...,an):(b1=d1

,b2=d2,...,bm=dm)→rhs where a1, a2 , ..., an, b1, d1, b2, d2, ... ,bm ,dm and rhs are all terms, and f
is a function name. a1, a2, ..., an are not allowed to contain any function names. The
operational semantics for FLOOP is narrowing and e-unification through the method of

Obj ect subclass: #Tuple
 instanceVar iableNames: 'attr ibuteValuePairs '
 classVar iableNames: 'KeyDictionary TypeDictionary '
 poolDictionar ies: 'CharacterConstants '

Set var iableSubclass: #M ySet
 instanceVar iableNames: ' '
 classVar iableNames: 'SetTypeDictionary'
 poolDictionar ies: 'CharacterConstants'

Figure 1: Definition of the classes Tuple and MySet

 3

transformations [8,13,17]. The transformations employed implement an innermost narrowing
strategy and can handle arbitrary object-expressions by making calls to an underlying object-
expression evaluator. The interpreter for FLOOP is written in Smalltalk/V [1] and the
Smalltalk interpreter is the underlying object-expression evaluator.

2.3 Marriage of NGO and FLOOP
Since a rewrite rule in FLOOP can contain any kind of Smalltalk object, these objects can
naturally be instances of subclasses of Tuple, and the integration of two tools comes naturally.

3. Problem Definition
In this section, we specify a simple but realistic database scheme which will be the basis for
comparison of the pure object oriented model and the declarative model developed in this
paper. The problem is to represent three sets of objects, namely courses, students and
teachers, the relationships among them and answer queries about the objects. There are only
two explicit relationships among objects: teachers teach courses and students take courses.
The relationship between teachers and courses is one-to-many and the relationship between
students and courses is many-to-many.

The attributes of a teacher are name, age, sex and salary. The attributes of a student are
name, age, sex and GPA. The attributes of a course are name and timeAt (the time the course
is taught at). Given this data definition, we would like to pose the following queries:
• What courses does student s1 take that are taught by teacher t2 ?
• Who are all the students of teacher t1 ?
• What other teachers teach a course at the same time that teacher t1 teaches a course ?

4. Solution Using NGO (Purely Object-Oriented)
In this section, we show a purely object-oriented solution to the problem described in the
previous section. We explain each section of the code as we proceed.

Create a subclass of Tuple, called Person, with attributes name, age and sex. The attributes
have type (class) Symbol, Integer and Character respectively (note that the hash mark in front
of a sequence of characters makes it a symbol in Smalltalk). Objects of type Person have a key
field, name. Person is an abstract superclass, since we shall not use it for creating objects, but
rather for defining the attributes that are common to both Teacher and Student classes.
Similarly, we have the definition of the Course entity type.

Next we have the definition of Teacher and Student, both descendants of Person.

Tuple subclass: #Person
 attr ibuteNames: 'name age sex'
 attr ibuteTypes: 'Symbol I nteger Character '
 key: 'name' .

Tuple subclass: #Course
 attr ibuteNames: 'name timeAt'
 attr ibuteTypes: 'Symbol Integer '
 key: 'name'.

 4

We see that the key attributes for Teacher and Student are empty. This is because both
Teacher objects and Student objects inherit the key of Person objects, i.e. name. In general,
the key attributes inherited from a parent are appended to the list of the key attributes defined
in a class. In this case, no attribute is defined as a key for Teacher, so the set of attributes
comprising the key for a teacher is consists only of ``name'' which is inherited from Person.
Also note that an attribute called teaches was necessary in order that the relationship between
teachers and the courses could be established (the chosen scheme of representing the
relationships among different objects is by no means the only one possible, but we believe it is
a reasonable one). For Student objects, an attribute takes of type CourseSet has been defined
which will contain the Course objects that a student takes.

These definitions define an instance of CourseSet to be a set containing Course objects, an
instance of StudentSet to be set containing Student objects and an instance of TeacherSet to
be a set of Teacher objects.Instances of these classes will be depositories for the objects we
shall create in the database, as well as being used in setting up the relationships among objects.

Declare the local variables to be used in the ensuing program segment and create the
containers for objects.

Create a student object, and add it to the students set. Note that attribute names are used by
NGO to automatically define methods by the same names for instances of a class. As an
example, the methods age and age: are defined for instances of class Person. The first method
returns the age attribute of the receiver, whereas the second one sets the age attribute to some
value (of type Integer, or an object that is an instance of a subclass of Integer). These methods
are inherited by subclasses of Person, that is why a Student object understands the messages
given to it above. Other Student objects are defined similarly.

Person subclass: #Teacher
 attr ibuteNames: ' teaches salary'
 attr ibuteTypes: 'CourseSet Integer '
 key: ' ' .

Person subclass: #Student
 attr ibuteNames: ' takes gpa'
 attr ibuteTypes: 'CourseSet Float'
 key: ' ' .

MySet subclass: #CourseSet ofType: #Course.
 M ySet subclass: #StudentSet ofType: #Student.
 M ySet subclass: #TeacherSet ofType: #Teacher .

| teachers students courses answer1 answer2 answer3 |
teachers := TeacherSet new.
students := StudentSet new.
courses := CourseSet new.

students add: ((Student new) name: #s1; age:20; sex:$M ; takes:(CourseSet new); gpa: (3.5)).

teachers add: ((Teacher new) name: #t1; age:37; sex:$F;
 teaches: (CourseSet new); salary: 10000).

 5

Add the teacher objects to the depository for such objects (i.e. the set teachers). Other
teachers are added similarly.

Add the course objects to the depository for such objects (i.e. the set courses).

Object creation has now been completed. Above, we define the relationships among objects.
The student whose name is s1 takes the course with the name c1. Note that the method name:
has been automatically defined for instances of class StudentSet since name is the key of a
Student object. This method name:anObject, which belongs to the students set, returns an
object that students contains whose name attribute matches anObject. Similarly with the set
courses.

More generally, if a set S1 (an instance of a subclass of MySet) contains objects that are
instances of some class C1 that is a descendant of Tuple and C1 has a key consisting of
attributes a1 , ... , an , then the method a1:, ... , an: is defined for S1 automatically by the
system. It returns the object in S1 whose key matches the argument of a1 : ... an (if one exists).

Teacher t1 teaches courses c1 and c2. The way it works is as follows: the object for t1 is
found in the set teachers, the attribute teaches of that object is obtained (which is a set), and
into that set the object for c1 (which comes from the set courses) is added. Next, we have the
queries implemented as Smalltalk programs.

4.1 What courses does s1 take that are taught by t2 ?

4.2 Who are the students of t1 ?

courses add: ((Course new) name: #c1; timeAt:10).

((students name: #s1) takes) add: (courses name:#c1).
((students name: #s1) takes) add: (courses name:#c4).

((teachers name: #t1) teaches) add: (courses name:#c1).
((teachers name: #t1) teaches) add: (courses name:#c3).

answer1 := CourseSet new.
 ((teachers name: #t2) teaches)
 do: [:course1 |
 ((students name: #s1) takes)
 do: [:course2 | (course1=course2)
 i fTrue:
 [answer1 add: course1]]].

answer2 := StudentSet new.
 students
 do:[:aStudent |
 ((teachers name: #t1) teaches)
 do: [:course1 |
 (aStudent takes)
 do: [:course2 |
 (course1 = course2)
 ifTrue: [answer2 add: aStudent]]]].

 6

4.3 What other teachers teach a course at the same time that t1 teaches a
course ?

4.4 Analysis of the Purely Object Oriented Solution
We note that in all these queries, we had to traverse sets of objects, perform tests on objects,
and place the resulting objects in an answer set. It is obvious that in all the above cases, the
intended meaning of the query is not readily observable from the code implementing the query,
and the level of nesting of iterations can be deep, even for simple queries.

5. Solving the Problem Declaratively
In this section we give a declarative solution to the specified problem. We first proceed with
the definition of Teacher, Student and Course classes, as in the NGO solution. Note that the
set valued attributes teaches and takes are no longer needed, neither do we need to define
keys.

We then declare the local variables for the Smalltalk code to follow. Then, objects are created
and relationships among them specified. rb is the set of rewrite rules.

Create the Student objects. Each student object is given a tag or an object identifier that
identifies the object uniquely. For example, the student whose name is s1 is given the tag s1.

answer3 := TeacherSet new.
 teachers do:
 [:aTeacher |
 (aTeacher teaches) do:
 [:course1|
 ((teachers name:#t1) teaches) do:
 [:course2|
 ((course1 timeAt)=(course2 timeAt)
 and: [(((aTeacher name)=#t1) not)])
 i fTrue:[answer3 add: aTeacher]]]].

Tuple subclass: #Person
 attr ibuteNames: 'name age sex'
 attr ibuteTypes: 'Symbol Integer Character ' .

 Tuple subclass: #Course
 attr ibuteNames: 'name timeAt'
 attr ibuteTypes: 'Symbol Integer '.

Person subclass: #Teacher
 attr ibuteNames: 'salary'
 attr ibuteTypes: ' Integer '.

Person subclass: #Student
 attr ibuteNames: 'gpa'
 attr ibuteTypes: 'Float' .

| rb answer1 answer2 answer3 |
rb := RuleBase new2.
rb addRules: '
 students({#s1}):() -> { (Student new) name: #s1; age:20; sex:$M ; gpa: (3.5) }.

 7

The tags shall be used in relating objects to one another. Note that we did not have to use
student names as object identifiers; we could have used any other symbol instead. But under
the circumstances, using them is more convenient and suggestive of the object the tags
represent.

Create the Teacher objects.

Create the Course objects. We are now ready to describe the relationships among objects.

Define the takes relationship. For example, the first two rules above describe the fact that
Student object s1 takes Course objects c1 and c4.

Here we define the teaches relationship between Teacher objects and Course objects. The first
two rules, for example, describe the fact that Teacher object t1 teaches Course objects c1 and
c3.

This is all that is required to create objects and relationships between objects. Next, we
come to the queries. This is where we shall see the real difference between stating the query
declaratively and imperatively (as was the case in the last section).

5.1 What courses does s1 take that are taught by t2 ?

The rule base rb that contains the rules making up the database is sent the message
solveEquations:instantiating: which causes the invocation of a method that solves the
equations given in the first argument and instantiates the variables specified in the second
argument with the computed substitution(s). The answer returned is a set of ordered lists of
terms. Terms in this context are object terms.

Note in the query the use of logical variables C and C2. Logical variables always start
with a capital letter in FLOOP. In the above query, we are interested only in the values that
C2 will be bound to, so that is the only variable that is specified in the argument to
instantiating.

teachers({#t1}):() ->
 { (Teacher new) name: #t1; age:37; sex:$F; salary: 10000 }.

courses({#c1}):() ->
 { (Course new) name: #c1; timeAt:10 }.

takes({#s1}):()->{#c1}.
takes({#s1}):()->{#c4}.
......

teaches({#t1}):()->{#c1}.
teaches({#t1}):()->{#c3}.

answer1 := rb solveEquations: ' (takes({#s1}) = C, teaches({#t2}) = C, courses(C)=C2) '
 instantiating: '(C2)'.

 8

In plain English, we could read the query as: Find all C2 such that C is (the tag of) a
course taken by s1, C is (the tag of) a course taught by t2 and C2 is the actual course object
represented by C.

5.2 Who are the students of t1 ?

In plain English, the query says: Find all S2 such that t1 teaches C1, S takes C1 and S2 is the
actual object represented by S.

5.3 What other teachers teach a course at the same time that t1 teaches a
course ?

This query can be stated in English as: Find all T2 such that C1 is a course taught by t1, C2 is
the actual Course object represented by C1, another teacher T teaches C3, T is different from
t1, C4 is the Course object represented by C3, C2 and C4 are taught at the same time, and T2
is the Teacher object represented by T. MSG(C2,{#timeAt}) sends the message timeAt the
object denoted by C2. Remember that timeAt is an attribute of courses objects and all
attributes are automatically defined as methods in NGO.

6. Discussion
Looking back at the previous sections of this paper, we have the following observations.
• We see that in the transition from the pure object-oriented data model to a combined

functional/logic/object-oriented model, the following changes have happened.
− Sets as depositories of objects are no longer needed. Function names act as classifiers

of objects. For example, the set teachers has been replaced by the (multi-valued)
function teachers.

− Explicit object identifiers permit the declarative definition of the relationship among
objects. The object identifier is in the form of a constant in the argument of the
function whose body creates the object.

• The clarity of the queries expressed in the combined functional/logic/object-oriented data
model is far superior to the same queries expressed in the pure object-oriented data model.

• In the combined scheme, we have lost nothing of the advantages that the pure object-
oriented model offers (classes, class hierarchies, inheritance, encapsulation, methods, etc.).
We have taken these features, and put them in a context where declarative description of
inter-object relationships and declarative posing of queries are possible.

• And finally, the examples presented do not involve recursively defined rules, but recursion
is fully permitted in FLOOP and thus is available in this combined functional/logic/object-
oriented data model.

answer2 := rb solveEquations: ' (teaches({#t1})=C1, takes(S)=C1, students(S)=S2)'
 instantiating: '(S2)' .

 answer := rb solveEquations:' (
 teaches({#t1}) = C1,
 courses(C1)=C2,
 teaches(T)=C3,
 NOT(T={#t1})=true,
 courses(C3)=C4,
 M SG(C2,{#timeAt}) = M SG(C4,{#timeAt}),
 teachers(T)=T2) '
 instantiating: '(T2)' .

 9

7. Related Work
Recently, the area of deductive databases and logic programming [12, 16] has been extended
to incorporate object-orientation and various deductive object-oriented database languages
have been proposed.

COL (Complex Object Language) [2,3,4,5] is a rule-based database language for
complex objects. It is an extension of Datalog [l8]. Complex objects in COL are typed trees
constructed recursively using tuple and set constructors. A distinguishing characteristic of
COL is the availability of data functions. Lou and Ozsoyoglu [14] propose extending Horn
clause logic languages with object-oriented features in the language LLO. LOGRES [10] is a
database system which supports classes of objects, with ``generalization hierarchies'' and
object sharing. It is rule-based, extends Datalog [l8] to support sets, multisets, sequences and
``controlled forms of negation.'' It permits queries and queries and updates through the rule-
based paradigm. Object id unification is possible.

A different approach to incorporating object oriented functionality into deductive
databases is taken in [11, 15] where higher order logic, which can be mapped into first order
logic, is proposed. These schemes are based upon extending predicate calculus with higher
order syntax which increases the modeling and programming capabilities of deductive
databases.

The MOOD project, described in [6] attempts to integrate concepts of object-oriented
and deductive databases by ``providing powerful knowledge modeling techniques via class
hierarchies of complex objects, dealing with object-bases primarily in a non-procedural,
declarative way, handling large object bases efficiently.''

8. Conclusion and Future Research Directions
We described a combined functional/logic/object-oriented database model that provides for the
declarative description of inter-object relationships through conditional rewrite rules and
permits queries to be posed declaratively in the form of a set of equations to be solved.

We demonstrated the utility of our approach in an example. Our example made clear that
in the pure object-oriented model, the necessity to represent inter-object relationships with
pointer valued attributes makes the representing of inter-object relationships and posing of
queries difficult to write and understand. On the other hand, representing inter-object
relationships using conditional rewrite rules and posing queries declaratively in the form of
equations to be solved was seen to be very natural and convenient.

Our system at this point is a research tool, designed to demonstrate the workability of our
idea. As such, it lacks many of the features needed in a full featured database system
(persistent objects, concurrency control, integrity constraints, schema evolution, etc.). Any
future work would include the incorporation of these features in our system without changing
the declarative nature of the representation of inter-object relationships and declarative posing
of queries.

References

 [1] The Smalltalk/V tutorial and programming handbook. Digital Inc., 1986.
 [2] Serge Abiteboul. Towards a deductive object-oriented database language. In Proceedings

of the First International Conference on Deductive and Object-Oriented Databases, pages
453-472. North Holland, Amsterdam, 1989.

 10

 [3] Serge Abiteboul and Stephane Grumbach. COL: a logic-based language for complex
objects. In Francois Bancilhon and Peter Buneman, editors, Advances in Database
Programming Languages, pages 347-374. ACM Press, New York, 1990.

 [4] Serge Abiteboul and Stephane Grumbach. A rule based language with functions and sets.
ACM Transactions on Database Systems, 16(1):1-30, 1991.

 [5] Serge Abiteboul, Stephane Grumbach, Agnes Voisard, and Emmanuel Waller. An
extensible rule-based language with complex objects and data-functions. In Proceedings of
the Second International Workshop on Database Programming Languages, pages 298-
314, 1989.

 [6] R. Bayer. MOOD: a knowledge-based system with object-oriented deduction. In Database
Systems For Advanced applications, pages 320-329. Dasfaa Steering Committee, Azabudai
2-4-2 Minato, Tokyo 106, Japan, 1991.

 [7] Zeki O. Bayram and Barrett R. Bryant. Conditional term rewriting as a deductive database
language. In Proceedings of the Deductive Database Workshop, 1992 Joint International
Conference and Symposium on Logic Programming, pages 126-136, 1992.

 [8] Zeki O. Bayram, Barrett R. Bryant and Hakan Akçalar. Functional-Logic Programming for
Smalltalkers: The FLOOP System. In: Proceedings of the tenth International Conference
on Computer and Information Sciences, pages 651-658, 1995.

 [9] P. Butterworth, A. Otis, and J. Stein. The Gemstone object database management system.
Communications of the ACM, 34(10):64-77, 1991.

[1] F. Cacace, S.Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-oriented
data modeling with a rule-based programming paradigm. In Proceedings of the 1990 ACM
SIGMOD International Conference on Managment of Data, pages 225-236, 1990.

[2] Weidong Chen, Micheal Kifer, and David S. Warren. Hilog as a platform for database
languages. In Proceedings of the Second International Workshop on Database
Programming Languages, pages 315-329,1989.

[3] J. Grant and J. Minker. Deductive database theories. Knowledge Engineering Reviews,
(4):267-304,1989.

[4] Steffen Holldobler. Conditional equational theories and complete sets of transformations. In
Proceedings of the International Conference on Fifth Generation Computer Systems,
pages 405-412, 1988.

[5] Yanjun Lou and Z. Meral Ozsoyoglu. LLO: an object-oriented deductive language with
methods and method inheritance. In Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data, pages 198-207, 1991.

[6] Sanjay Manchanda. Higher-order logic as a data model. In Proceedings of the Second
International Workshop on Database Programming Languages, pages 330-341, 1989.

[7] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan
Kaufman, Los Altos, California, 1988.

[8] Wayne Snyder and Christopher Lynch. An inference system for horn clause logic with
equality: A foundation for conditional e-unification and for logic programming in the
presence of equality. Technical Report BU-CS TR 90-014, Boston University, 1990.

[9] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes 1 and 2.
Computer Science Press, 1988.

