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Abstract 
The pure object-oriented data model is not convenient for describing inter-object relationships 
and can result in very involved and hard to understand queries. Augmenting the object-
oriented model with declarative description of the relationships between objects using 
conditional rewrite rules is  a convenient way  to address the problem. Under this scheme, 
inter-object relationships are described declaratively using conditional rewrite rules, and 
queries are posed also declaratively in the form of equations to be solved. In this paper, we 
describe an experimental system written in Smalltalk which demonstrates the feasibility and 
appeal of this approach. Various examples are also given. 
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1. Introduction 
In the object-oriented model of data, real world entities whose representation is needed in the 
database are directly represented as database objects that are instances of some class. Each 
object has a certain set of attributes, and a unique object identifier.  

Although in this model  real world objects are represented very authentically, external 
relationships among objects are necessarily represented through the use of pointer valued 
attributes, which necessitates the physical traversal of pointers representing relationships in 
answering a query. This is less than ideal, since external relationships among objects are 
declarative, and should be handled that way. In fact, ideally the only pointer valued attributes 
in an object should be those which relate a part to its component subparts. 

We present a solution to this problem which utilizes  conditional rewrite rules  to 
represent relationships among objects and a separate object-oriented module for dealing with 
objects. In [7] we defined a deductive database model (DataFunLog) based on conditional 
rewrite rules and  showed how conditional rewrite  rules can be used to declaratively define 
and query deductive databases. There was no object-oriented functionality in DataFunLog 
though. The model we develop here, similar to DataFunLog in that both use conditional 
rewrite rules to define deductive databases, does have object-oriented functionality, permits 
the  posing of queries in the form of equations to be solved, and inter-object relationships can 
be described through conditional rewrite rules in the model. The operational semantics  for 
answering queries is narrowing and e-unification through transformations.  
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In terms of implementation, this model is the result of a synthesis between a 
functional/logic/object-oriented programming language (FLOOP  [8]) and a pure object-
oriented database system NGO (for Next Generation Opal). Since both NGO and FLOOP are 
implemented in Smalltalk, their integration has been seamless. 

2. Components of the System 
In this section we describe the components of the  declarative object oriented database system. 

2.1 Next Generation Opal 
Next Generation Opal (NGO) is a minimal object-oriented database system. It is modeled after 
the Gemstone object oriented database system [9] which uses the Opal query language. NGO 
provides a type system for the attributes of objects, as well as sets whose contents can only be 
of a certain type. The system automatically defines methods to access the attributes of objects 
and set those attributes to certain values. A  subset of the attributes of objects belonging to 
some class can be specified to form a key. If a set contains objects of a given type, and these 
objects have a certain set of attributes defined as a key for the objects, this information causes 
the automatic definition of a method for this set of attributes, which, when given a set of 
values for keys, associatively searches for an object in the set whose key matches the argument 
given to the method. This is not necessarily part of the object-oriented data model, but it 
facilitates writing queries. Of course, the user can define any other methods for any class. 
 

NGO is implemented through the definition of two new classes and the necessary methods in 
Smalltalk. These classes are called Tuple and MySet and are depicted in  Figure 1. They act as 
abstract superclasses: they are not meant to have instances of their own, but rather provide 
the methods their subclasses need. User defined object types (in the relational model, these are 
called relation schemes) are defined as subclasses of Tuple. Entity sets (alternatively, sets of 
objects) are defined as subclasses of MySet, whose contents are instances of some subclass of 
Tuple. Note that in Smalltalk, all references to objects are via pointers, and adding an object to 
a set means adding its pointer to an object to the set. Hence, an object can be "in" more than 
one set at any given time.  

2.2 The FLOOP language 
The language of implementation of FLOOP, as well as the underlying object-oriented 
component, is  Smalltalk.  

FLOOP programs consist of conditional rewrite rules of the form f(a1,a2,...,an):(b1=d1 

,b2=d2,...,bm=dm)→rhs where a1, a2 , ..., an, b1, d1, b2, d2, ... ,bm ,dm and rhs are all terms, and f 
is a function name. a1, a2, ..., an are not allowed to contain any function names. The 
operational semantics for FLOOP is narrowing and e-unification through the method of 

Obj ect subclass: #Tuple 
    instanceVar iableNames:     'attr ibuteValuePairs '  
    classVar iableNames:  'KeyDictionary TypeDictionary '  
    poolDictionar ies:     'CharacterConstants '  
 
Set var iableSubclass: #M ySet 
    instanceVar iableNames: ' '  
    classVar iableNames:  'SetTypeDictionary'  
    poolDictionar ies:  'CharacterConstants'   

Figure 1:  Definition of the classes Tuple and MySet 
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transformations [8,13,17]. The transformations employed  implement an innermost narrowing 
strategy  and can handle arbitrary object-expressions by making calls to an underlying object-
expression evaluator. The interpreter for FLOOP is written in Smalltalk/V [1] and the 
Smalltalk interpreter is the underlying object-expression evaluator. 

2.3 Marriage of NGO and FLOOP 
Since a rewrite rule in FLOOP can contain any kind of Smalltalk object, these objects can 
naturally be instances of subclasses of Tuple, and the integration of two tools comes naturally. 

3. Problem Definition 
In this section, we specify a simple but realistic database scheme which will be the basis for 
comparison of the pure object oriented model and the declarative model developed in this 
paper.  The problem is to represent three sets of objects, namely courses, students and 
teachers, the relationships among them and answer queries about the objects. There are only 
two explicit  relationships among objects: teachers teach courses and  students take courses. 
The relationship between teachers and courses is one-to-many and the relationship between 
students and courses is many-to-many. 

The attributes of a teacher are name, age, sex and salary. The attributes of a student are 
name, age, sex and GPA. The attributes of a course are name and timeAt (the time the course 
is taught at). Given this data definition, we would like to pose the following queries: 
• What courses does student s1 take that are taught by teacher t2 ? 
• Who are all the students of teacher t1 ? 
• What other teachers teach a course at the same time that teacher t1 teaches a course ? 

4. Solution Using NGO (Purely Object-Oriented) 
In this section, we show a purely object-oriented solution to the problem described in the 
previous section. We explain each section of the code as we proceed.  
 

Create a subclass of Tuple, called Person, with attributes name, age and sex. The attributes 
have  type (class) Symbol, Integer and Character respectively (note that the hash mark in front 
of a sequence of characters makes it a symbol in Smalltalk). Objects of type Person have a key 
field, name. Person is an abstract superclass, since we shall not use it for creating objects, but 
rather for defining the attributes that are common to both Teacher and Student classes.  
Similarly, we have the definition of the Course entity type. 

 

Next we have the definition of  Teacher and Student, both descendants of Person. 
 

Tuple     subclass:  #Person     
              attr ibuteNames: 'name   age   sex'   
               attr ibuteTypes: 'Symbol  I nteger   Character '   
                            key: 'name' .  

Tuple           subclass: #Course  
         attr ibuteNames: 'name      timeAt'   
          attr ibuteTypes: 'Symbol   Integer '   
                              key: 'name'.  
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We see that the key attributes for Teacher and Student are empty. This is because both 
Teacher objects and Student objects inherit the key of Person objects, i.e. name. In general, 
the key attributes inherited from a parent are appended to the list of the key attributes defined 
in a class. In this case, no attribute is defined as a key for Teacher, so the set of attributes 
comprising the key for a teacher is consists only of  ``name''  which is inherited from Person. 
Also note that an attribute called teaches was necessary in order that the relationship between 
teachers and the courses could be established (the chosen scheme of representing the 
relationships among  different objects is by no means the only one possible, but we believe it is 
a reasonable one). For Student objects, an attribute takes of type CourseSet has been defined 
which will contain the Course objects that a student takes. 

 

These definitions define an instance of CourseSet to  be a set containing Course objects, an 
instance of  StudentSet to be set containing Student objects and an instance of TeacherSet to 
be a set of Teacher objects.Instances of these classes will be  depositories for  the objects we 
shall create in the database, as well as being used in setting up the relationships among objects. 

 

Declare the local variables to be used in the ensuing program segment and create the 
containers for objects.  

 

Create a student object, and add it to the students set. Note that attribute names are used by 
NGO to automatically define methods by the same names for instances of a class. As an 
example, the methods age and age: are defined for instances of class Person. The first method 
returns the age attribute of the receiver, whereas the second one sets the age attribute to some 
value (of type Integer, or an object that is an instance of a subclass of Integer). These methods 
are inherited by subclasses of Person, that is why a Student object understands the messages 
given to it above. Other Student objects are defined similarly. 

 

Person         subclass: #Teacher   
         attr ibuteNames: ' teaches        salary'   
           attr ibuteTypes: 'CourseSet  Integer '   
                             key: ' ' .  
 
Person         subclass: #Student  
         attr ibuteNames: ' takes            gpa'   
           attr ibuteTypes: 'CourseSet  Float'   
                               key: ' ' .  

MySet subclass: #CourseSet      ofType: #Course.  
 M ySet subclass: #StudentSet    ofType: #Student.  
 M ySet subclass: #TeacherSet    ofType: #Teacher .  

| teachers students courses  answer1 answer2 answer3  |  
teachers := TeacherSet new.  
students := StudentSet new.  
courses  := CourseSet new.  

students add: ( (Student new)    name: #s1;  age:20;  sex:$M ;  takes:(CourseSet new);       gpa: (3.5) ). 
  

teachers add: ( (Teacher new)   name: #t1;  age:37;   sex:$F;   
                                                      teaches: (CourseSet new);  salary: 10000 ).  
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Add the teacher objects to the depository for such objects (i.e. the set teachers). Other 
teachers are added similarly. 

 

 
Add the course objects to the depository for such objects (i.e. the set courses).  

 

Object creation has now been completed.  Above, we define  the relationships among objects. 
The student whose name is s1 takes the course with the name c1. Note that the method name: 
has been  automatically defined for instances of class StudentSet since name is the key of a 
Student object. This method name:anObject, which belongs to the students set, returns an 
object that students contains whose name attribute matches anObject. Similarly with the set 
courses. 

More generally, if a set S1 (an instance of a subclass of MySet) contains  objects that are 
instances of some class C1 that is a descendant of Tuple and C1 has a key consisting of 
attributes a1 , ... , an , then the method a1:, ... , an:  is defined for S1 automatically by the 
system. It returns the object in S1 whose key matches the argument of a1 : ... an (if one exists). 

 

Teacher t1 teaches courses c1 and c2.  The way it works is as follows: the object for t1 is 
found in the set teachers, the attribute teaches of that object is obtained (which is a set), and 
into that set the object for c1 (which comes from the set courses)  is added. Next, we have the 
queries implemented as Smalltalk programs. 

4.1 What courses does s1 take that are taught by t2 ?  

 

4.2 Who are the  students of t1 ? 

 

courses add: ( (Course new)   name: #c1;  timeAt:10 ). 
                                                                       

((students name: #s1) takes)  add: (courses name:#c1).  
((students name: #s1) takes)  add: (courses name:#c4).  

((teachers name: #t1) teaches) add: (courses name:#c1).  
((teachers name: #t1) teaches) add: (courses name:#c3).  

answer1 := CourseSet new.  
   ((teachers name: #t2)  teaches)  
          do: [ :course1 |  
                   ((students name: #s1) takes)  
                       do: [ :course2 | (course1=course2)  
                                           i fTrue:  
                                              [ answer1 add: course1 ] ] ].  

answer2 := StudentSet new.  
   students  
     do:[ :aStudent |  
            ((teachers name: #t1) teaches)  
                do: [ :course1 |  
                       (aStudent takes)  
                          do: [ :course2 |  
                                   (course1 =  course2)  
                                       ifTrue: [ answer2 add:  aStudent  ]]]].  
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4.3 What other teachers teach a course at the same time that t1 teaches a 
course ?  

4.4 Analysis of the Purely Object Oriented Solution  
We note that in all these queries, we had to traverse sets of objects, perform tests on objects, 
and place the resulting objects in an answer set. It is obvious that in all the above cases, the 
intended meaning of the query is not readily observable from the code implementing the query, 
and the level of nesting of iterations can be deep, even for simple queries. 

5. Solving the Problem Declaratively 
In this section we give a declarative solution to the specified problem. We first proceed with 
the definition of Teacher, Student and Course classes, as in the NGO solution. Note that the 
set valued attributes teaches and takes are no longer needed, neither do we need to define 
keys.  
 

We then declare the local variables for the Smalltalk code to follow.  Then, objects are created 
and relationships among them specified. rb is the set of rewrite rules.  

 

Create the Student objects. Each student object is given a tag or an object identifier that 
identifies the object uniquely. For example, the student whose name is s1 is given the tag s1. 

answer3 := TeacherSet new.  
    teachers do:  
       [ :aTeacher |  
           (aTeacher  teaches) do:  
              [ :course1|  
                   ((teachers name:#t1) teaches) do:  
                      [ :course2|  
                           ((course1 timeAt)=(course2 timeAt)  
                                and: [(((aTeacher  name)=#t1) not) ])  
                            i fTrue:[answer3 add: aTeacher ]]]].  

Tuple          subclass: #Person  
         attr ibuteNames: 'name   age      sex'   
           attr ibuteTypes: 'Symbol Integer   Character ' .  
  
 Tuple           subclass: #Course  
         attr ibuteNames: 'name     timeAt'   
           attr ibuteTypes: 'Symbol   Integer '.  
 
Person         subclass: #Teacher   
         attr ibuteNames: 'salary'   
           attr ibuteTypes: ' Integer '.  
                      
Person         subclass: #Student  
         attr ibuteNames: 'gpa'  
           attr ibuteTypes: 'Float' .  

|  rb  answer1 answer2 answer3 |  
rb := RuleBase new2.  
rb addRules: '   
   students({#s1}):() ->     {  (Student new)   name: #s1;  age:20;  sex:$M ;  gpa: (3.5) }.  
    ............ 
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The tags shall be used in relating objects to one another. Note that we did not have to use 
student names as object identifiers; we could have used any other symbol instead. But under 
the circumstances, using them is more convenient and suggestive of the object the tags 
represent. 

 

Create the Teacher objects. 
 

Create the Course objects.   We are now ready to describe the relationships among objects. 
 

Define the takes relationship. For example, the first two rules above describe the fact that 
Student object s1 takes Course objects c1 and c4. 

 

Here we define the teaches relationship between Teacher objects and Course objects. The first 
two rules, for example, describe the fact that Teacher object t1 teaches Course objects c1 and 
c3. 

This is all that is required to create objects and relationships between objects. Next, we 
come to the queries.  This is where we shall see the real difference between stating the query 
declaratively  and imperatively (as was the case in the last section). 

5.1 What courses does s1 take that are taught by t2 ? 

The rule base rb that contains the rules making up the database is sent the message 
solveEquations:instantiating: which causes the invocation of a method that solves the 
equations given in the first argument and instantiates the variables specified in the second 
argument with the computed substitution(s). The answer returned is a set of ordered lists of 
terms. Terms in this context are object terms. 

Note in the query the use of logical variables C and C2. Logical variables always start 
with a capital letter in FLOOP. In the above query, we are interested only in the values that 
C2 will be bound to, so that is the only variable that is specified in the argument to 
instantiating. 

teachers({#t1}):() ->  
            {  (Teacher  new)   name: #t1;  age:37;   sex:$F;  salary: 10000 }.  
    ............. 

courses({#c1}):() ->  
            {  (Course new)   name: #c1;    timeAt:10  }.  
             ........ 

takes({#s1}):()->{#c1}.  
takes({#s1}):()->{#c4}.  
...... 

teaches({#t1}):()->{#c1}.  
teaches({#t1}):()->{#c3}.  
   ...... 

answer1 := rb solveEquations: '   (   takes({#s1}) = C,  teaches({#t2}) = C,    courses(C)=C2 ) '   
                             instantiating: '(C2)'.     
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In plain English, we could read the query as: Find all C2 such that C is (the tag of) a 
course taken by s1, C is (the tag of) a course taught by t2 and C2 is the actual course object 
represented by C. 

5.2  Who are the students of t1 ? 

In plain English, the query says:  Find all S2 such that t1 teaches C1, S takes C1 and S2 is the 
actual object represented by S. 

5.3  What other teachers teach a course at the same time that t1 teaches a 
course ?  

This query can be stated in English as: Find all T2 such that C1 is a course taught by t1, C2 is 
the actual Course object represented by C1, another teacher T teaches C3, T is different from 
t1, C4 is the Course object represented by C3, C2 and C4 are taught at the same time, and T2 
is the Teacher object represented by T. MSG(C2,{#timeAt}) sends the message timeAt the 
object denoted by C2. Remember that timeAt is an attribute of  courses objects and all 
attributes are automatically defined as methods in NGO. 

6. Discussion 
Looking back at the previous  sections of this paper, we have the following observations.  
• We see that in the transition from the pure object-oriented data model to a combined 

functional/logic/object-oriented model, the following changes have happened. 
− Sets as depositories of objects are no longer needed. Function names act as classifiers 

of objects. For example, the set teachers has been replaced by the (multi-valued) 
function teachers.   

− Explicit object identifiers permit the declarative definition of the relationship among 
objects. The object identifier is in the form of a constant in the  argument of the 
function whose body creates the object. 

• The clarity of the queries expressed in the combined functional/logic/object-oriented data 
model is far superior to the same queries expressed in the pure object-oriented data model.  

• In the combined scheme, we have lost nothing of the advantages that the pure object-
oriented model offers (classes, class hierarchies, inheritance, encapsulation, methods, etc.). 
We have taken these features, and put them in a context where  declarative description of 
inter-object relationships and declarative posing of queries are possible. 

• And finally, the examples presented do not involve recursively defined rules, but recursion 
is fully permitted in FLOOP and thus is available in this combined  functional/logic/object-
oriented data model. 

answer2 := rb solveEquations: '  (   teaches({#t1})=C1,   takes(S)=C1,  students(S)=S2 )'   
                             instantiating: '( S2 )' . 

    answer := rb solveEquations:'  (  
                                    teaches({#t1}) = C1,  
                                    courses(C1)=C2,  
                                    teaches(T)=C3,     
                                    NOT(T={#t1})=true,   
                                    courses(C3)=C4,  
                                    M SG(C2,{#timeAt}) = M SG(C4,{#timeAt}),  
                                    teachers(T)=T2   ) '   
                  instantiating: '(T2)' .    
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7. Related Work 
Recently, the area of deductive databases and logic programming [12, 16] has been extended 
to incorporate object-orientation and various deductive object-oriented database languages 
have been proposed. 

COL (Complex Object Language) [2,3,4,5] is a rule-based database language  for 
complex objects. It is an extension of Datalog [l8]. Complex objects in COL are typed trees 
constructed recursively using tuple and set constructors. A distinguishing characteristic of 
COL is the availability of data functions.  Lou and Ozsoyoglu [14] propose extending Horn 
clause logic languages with object-oriented features in the language LLO. LOGRES [10] is a 
database system which supports classes of objects, with ``generalization hierarchies'' and 
object sharing. It is rule-based, extends Datalog [l8] to support sets, multisets, sequences and 
``controlled forms of negation.'' It permits queries and queries and updates through the rule-
based paradigm. Object id unification is possible.   

A different approach to incorporating object oriented functionality into deductive 
databases is taken in [11, 15] where higher order logic, which can be mapped into first order 
logic, is proposed. These schemes are based upon extending predicate calculus with higher 
order syntax which increases the modeling and programming capabilities of deductive 
databases.  

The MOOD project, described in [6] attempts to integrate concepts of object-oriented 
and deductive databases by ``providing powerful knowledge modeling techniques via class 
hierarchies of complex objects, dealing with object-bases primarily in a non-procedural, 
declarative way, handling large object bases efficiently.''  

8. Conclusion and Future Research Directions 
We described a combined functional/logic/object-oriented database model that provides for the 
declarative description of inter-object relationships through conditional rewrite rules and 
permits queries to be posed declaratively in the form of a set of equations to be solved.  

We demonstrated the utility of our approach in an example. Our example made clear that 
in the pure object-oriented model, the necessity to represent inter-object relationships with  
pointer valued attributes makes the representing of inter-object relationships and posing of  
queries difficult to write and understand. On the other hand, representing inter-object 
relationships using conditional rewrite rules and posing queries declaratively in the form of 
equations to be solved was seen to be very natural and convenient. 

Our system at this point is a research tool, designed to demonstrate the workability of our 
idea. As such, it lacks many of the features needed in a full featured database system 
(persistent objects, concurrency control, integrity constraints, schema evolution, etc.). Any 
future work would include the incorporation of these features in our system without changing 
the declarative nature of the representation of inter-object relationships and declarative posing 
of queries. 
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