

Functional-Logic Programming for Smalltalkers:

The FLOOP system

Zeki O. Bayram

Computer Engineering Department
Bogazici University

Bebek 80815/Istanbul-Turkey
internet: bayram@boun.edu.tr

Fax: 90 212 287 2461
Tel: 90 212 263 1500

Barrett R. Bryant

Department of Computer and Information
Sciences

University of Alabama at Birmingham
Birmingham, AL 35294-1170, USA

internet: bryant@cis.uab.edu
Fax: 1 205 934-5473
Tel: 1 205 934-2213

Hakan Akcalar

Computer Engineering Department
Bogazici University

Bebek 80815/Istanbul-Turkey

Abstract

Motivated by the goal of being able to manipulate complex objects symbolically, we propose a method of

integrating functional, logic and object-oriented programming paradigms. Our method assumes the existence

of an object-expression evaluator (i.e. the underlying Smalltalk interpreter) and relies on transformations

and calls to this object-expression evaluator as its means of computation. Programs of the combined

paradigm consist of conditional rewrite rules augmented to incorporate object expressions.

 1

1 Introduction

In this paper, we propose a method of integrating three programming language paradigms, namely object-

oriented, functional and logic, in an intuitive, coherent and practical way. Integrating the three different

styles of programming, when successful, has the natural consequence of permitting the programmer to

approach different aspects of a problem in ways that are most convenient for those aspects, resulting in

maximum program development convenience and productivity. Through the integration, the advantages of

the component styles of programming naturally carry over.

The advantages of integrating functional and logic programming have been well demonstrated

[1,2,3,4,5,6,7,11,14,15]. We are taking those advantages one step further in FLOOP by incorporating

complex objects into the combined functional/logic paradigm. FLOOP is a system implemented in

Smalltalk that achieves the integration of functional, logic and object oriented programming paradigms

through a functional/logic interpreter based on transformations, an independent “object-evaluator” (i.e. the

Smalltalk interpreter [19]) for evaluating object oriented expressions and an interface between the two. A

FLOOP program consists of a set of conditional rewrite rules. The incorporation of the object oriented

functionality is achieved through allowing object expressions (Smalltalk expressions evaluating to objects)

to occur anywhere constants can in the rewrite rules. Object expressions can also contain logical variables.

The expressiveness of conditional term rewriting systems is well demonstrated [2,6]. In FLOOP, this

expressiveness is taken to greater heights since any object-oriented expression (more specifically, any

Smalltalk [19] expression) is allowed to appear anywhere in a rule where a constant can, and logical

variables can be bound to objects. Naturally, the definition of a term also has to be changed to accommodate

object-oriented expressions to be part of terms. Complex objects that are created in Smalltalk can thus be

manipulated symbolically just as ordinary constants can. Moreover, since almost everything in Smalltalk is

an object of some kind, including messages to objects, and a logical variable in a rule can be bound to an

object, we get some unexpected higher-order features in the language FLOOP.

The proposed method of integration dictates the use of conditional rewrite rules to describe

relationships between objects externally, but a different imperative language (namely, Smalltalk) to create

classes, class hierarchies, objects, and methods. To justify this separation of the object-oriented component

from the functional/logic component, we need to consider that in a language like Smalltalk, the main duty

of methods is to change the internal state of the objects they belong to, and to inform the “outside” world of

the internal state of the objects. Methods, then, need to be performing imperative actions when they are used

for changing the internal state of objects, and an imperative style of programming is most convenient for

that role. On the other hand, the relationships of objects to one another is declarative, and can be concisely

expressed using conditional equality in the form of rewrite rules.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction to the syntax

and semantics of FLOOP. Section 3 describes the set of transformations used as the operational semantics.

 2

Section 4 gives sample programs of the language, demonstrating the possibilities of being able to

manipulate complex objects symbolically. Section 5 compares other approaches to the integration of the

three paradigms to the transformations approach developed in this paper, and section 6 is the conclusion and

future research directions.

2 FLOOP: A Br ief Introduction to the System

In this section we give an informal introduction to the syntax and semantics of FLOOP programs. The

language of implementation, as well as the underlying object-oriented component, is Smalltalk (we are

assuming that the reader is familiar with Smalltalk, as well as basic term rewriting terminology). The

operational semantics, which relies on transformations, is described in detail in the next section.

In order that we may give a declarative reading to FLOOP programs, we need to place certain

restrictions on how methods should be written. These restrictions are:

• Let m be a method defined for the instances of a class C. If m changes the the internal state of an

object it belongs to, then its last statement should be ̂self; conversely if it returns some other object,

it must NOT change the internal state of the object it belongs to.

• If a message has arguments, the method activated by the message must not send state changing

messages to any of the arguments. Hence a method can change the state only of the object it belongs

to.

These restrictions allow us to regard methods as pure (polymorphic) functions without any side effects.

Further restrictions on the object oriented component are that each object must be able to respond to the

deepCopy message, returning a structurally equivalent copy of itself, as well as the = message upon the

receipt of which returns true if the argument to the message is structurally equivalent to itself, and false

otherwise.

In the following, we assume the existence of two disjoint sets of function symbols: the set of (data)

constructors, and the set of defined function symbols (also to be called function names).

We define an (augmented) term recursively as:

• A variable is a term (variables start with capital letters).

• A constant is a term (constants start with a small letter, and end with a delimiter like white space,

comma, or a right paranthesis).

• If f is a function name, and ai, 1≤ i ≤ n, are terms, then f(a1, a2, … ,an) is a term (called a function

application).

 3

• If c is a constructor, and ai , 1 ≤ I ≤ n, are terms, then c(a1, a2, … ,an) is a term (called a constructor

term).

• If anyExpression is a valid Smalltalk expression, then { anyExpression} is a term (called an object

term).

• If ai, 1 ≤ i ≤ n, are terms, then MSG(a1, a2, … ,an) is a term (called a message term). a1 should

eventually evaluate to an object, a2 should evaluate to a valid Smalltalk message understood by a1,

and a3, … ,an should eventually evaluate to objects to be passed as arguments to the method a2.

• If ai, bi, 1 ≤ i ≤ n, are terms, then NOT(a1 = b1, a2 = b2, … ,an = bn) is a term (called a negation term).

Informally, if the equations in the argument of the negated term cannot be shown to be true, then the

negated term is true.

A rewrite rule is of the form

f(a1, a2, … ,an) : (b1 = d1, b2 = d2, … ,bm = dm) → rhs

where a1, a2, … ,an, b1, d1, b2, d2, … ,bm, dm and rhs are all terms, and f is a function name. a1, a2, … ,an

are not allowed to contain any function names. f(a1, a2, … ,an) is called the left hand side of the rewrite

rule, (b1 = d1, b2 = d2, … ,bm = dm) is called the condition, and rhs is called the right hand side of the

rewrite rule.

The meaning of a rewrite rule such as the above is as follows. Let σ be a substitution that makes the rule

ground by substituting terms that contain only constructors, constants, or Smalltalk objects for each variable

in the rule. We say that for any such substitution σ, f(a1, a2, … ,an)σ is equal to (rhs)σ iff (b1 = d1)σ, (b2 =

d2)σ, … ,(bm = dm)σ can all be shown to be true using the equality axioms and all the other (conditional)

rules in the rulebase after all message terms have been simplified to single objects through being evaluated

by the Smalltalk interpreter. Note that because of the limitations placed on methods, they can be seen in

purely functional terms, taking in a set of objects as arguments, including the object to which they were

sent, and returning another object as an answer (which may very well be the object to which they were sent,

possibly with a different internal state). Thus we can give a fully declarative reading to rewrite rules. The

declarative reading of a FLOOP programs, then, is the conjunction of the declarative reading of the

individual rewrite rules in the program.

 4

3 Oper ational Semantics Through Tr ansfor mations

In this section, we give the set of transformations that form the core of the FLOOP interpreter. The method

of transformations for solving unification problems both in the first order and higher order cases, either

with or without equality, has been developed and advocated strongly by [8,10,12,16,17,18]. Indeed, the

method provides “an abstract and mathematically elegant means of analyzing the invariant properties of

unification in various settings by providing a clean separation of the logical issues from the specification of

procedural information” [18]. The usefulness of transformations is that they can be used (as we have done,

though in some restricted form due to efficiency considerations) as the operational semantics of

functional/logic languages in a very straightforward manner.

Our transformations, which are based on those in [10], force the binding of variables only to terms that

denote a value (i.e. a term that contains no defined function symbols and no subterm of the form MSG(…)).

This implements an eager strategy for parameter passing. Because of this eager strategy, our

transformations are not complete. The alternative of trying to achieve completeness would have resulted in

much more nondeterminism and inefficiency. The transformations (excluding the ones that deal with the

object oriented extensions to keep the discussion confined to first order equational logic) are sound,

however, since any rule that we use is either a restricted version of a rule in [10], or can be simulated by

narrowing and reflection as defined in [10].

3.1 The Transformation Algor ithm

A FLOOP program consists of a set of rules of the form

 f(t1, t2, … ,tn) : (r1 = s1, r2 = s2, … ,rm = sm) → t.

The goal of the transformation algorithm is to solve a set of equations of the form (e1 = d1, e2 = d2, …

,ep = dp), i.e. find values (terms that consist only of variables, constants, constructors or objects) for

variables in the equations such that the equalities can be shown to be true (using the rules in the program)

when the values are substituted in the place of variables in the equations. The methodology described below

returns answers in the form of sequential substitutions. We define a sequential substitution as a list of

pairs of terms, < a1/X1, a2/X2, … ,an/Xn >, where ai is a term that contains no function applications, and Xj is

any variable. Let the notation t[a/X] mean the term obtained when all occurrences of the variable X in t are

replaced by the term a (if a is an object term, then by a copy of a). Then the application of a sequential

substitution σ (e.g. < a1/X1, a2/X2, … ,an/Xn >) to a term t, (t)σ, is the term (((t)[a1/X1])[a2/X2]) …[an/Xn].

This is the same as applying γ (in the conventional sense) to t where γ is the composition of the

substitutions { a1/X1} , { a2/X2} , … , { an/Xn} .

 5

The Algor ithm: We start out with a pair of ordered lists of equations (F,S). F, which will eventually

become the basis for a solution, is empty. S is the original list of equations to be solved (i.e. the goal). If S

ever becomes empty as a result of the transformations, F wil l give us the desired solution. We perform the

transformations, always choosing the leftmost equation in S to operate on, until S becomes empty, in which

case we terminate successfully, or until no transformation applies, in which case we stop with failure. Upon

successful termination of the transformation sequence, if F is < X1=t1, X2=t2, … ,Xq=tq >, then the

sequential substitution < t1/X1, t2/X2, … ,tq/Xq > is an answer.

3.2 Transformations

Below is the set of transformations (described using terminology as consistent with [10] as possible) used

by the FLOOP interpreter. Lists are represented as < … > and • will mean list concatenation. To avoid

duplication, we shall regard a=b as representing b=a also. The pair of l ists will be represented by (L1,L2)

etc.

Removal of Trivial Equations:

 (L1, < a = a > •L2)
�

t (L1, L2)

if a is a variable, a constant or an object.

Var iable elimination 1:

 (L1, < X = a > •L2)
�

ve1 (L1• < X = a >, L2[a/X])

if X is a variable, and a is a variable, or a constant and X ≠ a.

Var iable elimination 2 (objects):

 (L1, < X = a > •L2)
�

ve2 (L1 • < X = copy(a) >, L2[a/X])

if X is a variable, and a is an object. Note that a copy of a is placed in F. Furthermore, each occurrence of X

in L2 is replaced by a distinct copy of a.

Imitation:

 (L1, < X = c(s1, … ,sn) > •L2)

 �
i (L1 • < X = c(Y1, … ,Yn) >, < Y1 = s1, … ,Yn = sn > • (L2[t/X]))

where c is a constructor, X is a variable, X does not occur in c(s1, … ,sn), c(s1, … ,sn) does not contain

any defined function symbols, t = c(Y1, … ,Yn), and Y1, … ,Yn are all new variables. This rule helps

incrementally bind a variable to its final value.

 6

Exposure 1:

 (L1, < X = t > • L2)
�

e1 (L1, < Y = t[α], X = t[α←Y] > • L2)

where X is a variable, Y is a new variable, t = c(a1, … ,an), c is a constructor, t[α] is the subterm of t at

address α, t[α ← Y] is the term obtained by replacing the subterm of t at address α with the term (in this

case variable) Y, t[α] = f(…), f is a defined function symbol, and f(…) is not a proper subterm of any g(…)

where g is a defined function symbol and g(…) = t[γ]. This rule exposes a reducible expression in a goal

equation so that lazy narrowing can be applied to it. The restriction that X be a variable ensures that the

imitation rule and this rule are not simultaneously applicable.

Exposure 2:

 (L1, < s = t > • L2)
�

e2 (L1, < Y = t[α], s = t[α ← Y] > • L2 >)

where Y is a new variable, t = MSG(a1, a2, … ,an'), s is any term and the rest is the same as in Exposure 1.

Note that there is no restriction on s.

Decomposition:

 (L1, < c(s1, … ,sn) = c(t1, … ,tn) > • L2)
�

d (L1, < s1 = t1, … ,sn = tn > • L2)

where c is a constructor, and s1, … ,sn, t1, … ,tn are all terms.

Lazy Narrowing:

 (L1, < t = f(s1, … ,sn) > • L2)

 �

ln (L1, < a1 = s1, … ,an = sn, b1 = d1, … ,bm = dm, t=rhs > • L2)

where f(a1, … ,an) : (b1 = d1, … ,bm = dm) → rhs is a rewrite rule where all variables have been renamed

so that they are different from the variables occurring in the two lists.

Simplification:

 (L1, < t = MSG(arg1, arg2, … ,argn) > • L2)
�

s (L1, < t = s > • L2)

where arg1, arg2, … ,argn are all either message terms or object terms. Let obj be the object returned by the

Smalltalk interpreter upon the evaluation of the message contained in arg2 to the object contained in arg1

with the arguments arg3 … argn; then s is the object term containing obj. If any argi is a message term, then

it is (recursively) simplified to obtain an object term to be used as described above.

 7

Negation:

 (L1, < t = NOT(a1 = b1, … ,an = bn) > • L2)
�

neg (L1, < t = bool > • L2)

where if < a1=b1, … ,an=bn > can be shown to have at least one solution (using the transformations

recursively) then bool is the constant false, otherwise, it is the constant true. This is a version of the closed

world assumption in the context of (conditional) equality theories.

This concludes the transformations. An observation about the first l ist is that at all times it contains

equations only of the form X=t where X is a variable and t is either a variable, a constant, an object, or a

term of the form c(Y1, … ,Yn) for some n, and each Yi is a variable. Consequently variables in the original

set of equations will not be bound to terms containing any defined function symbols, or terms of the form

MSG(…).

Example 1 To demonstrate how the transformations work, let P ={ f(X):()
� a } be a FLOOP program,

and E ={ Z=c(f(Z)) } be the set of equations to be solved. We have

 (<>, < Z = c(f(Z)) >)

 �
e1 (<>, < W1 = f(Z), Z = c(W1) >)

 �
ln (<>, < X1 = Z, W1 = a, Z = c(W1) >)

 �
ve1 (< X1 = Z >, < W1 = a, Z = c(W1) >)

 �
ve1 (< X1 = Z, W1 = a >, < Z = c(a) >)

 �
i (< X1 = Z, W1 = a, Z = c(W2) >, < W2 = a >)

 �

ve1 (< X1 = Z, W1 = a, Z = c(W2), W2 = a >, <>)

The answer substitution σ is obtained from the first list, i.e. σ = < Z/X1, a/W1, c(W2)/Z, a/W2 >

(remember that σ is a sequential substitution). We confirm that

 (Z)σ

 = (Z) < Z/X1, a/W1, c(W2)/Z, a/W2 >

 = (Z) < a/W1, c(W2)/Z, a/W2 >

 = (Z) < c(W2)/Z, a/W2 >

 = (c(W2)) < a/W2 >

 = (c(a))

as we had expected.

 8

4 FLOOP Through Examples

In this section we give two examples of FLOOP programs demonstrating the key features of the system. We

assume reader familiarity with Smalltalk.

Example 2 The following is the insertion sort algorithm that sorts any l ist of objects that accept the

messages < and >= . Each line in the program is numbered so that they can be explained in detail.

(1) | r b answer |

(2) r b : = Rul eBase new2.

(3) r b addConst r uct or : ' c' .

(4) r b addRul es: '

(5) i Sor t (ni l) : () - >ni l .

(6) i Sor t (c(H, T)) : () - >i nser t (H, i Sor t (T)) .

(7) i nser t (X, ni l) : () - >c(X, ni l) .

(8) i nser t (X, c(H, T)) : (MSG(X, { #<} , H) ={ t r ue}) - >c(X, c(H, T)) .

(9) i nser t (X, c(H, T)) : (MSG(X, { #>=} , H) ={ t r ue}) - >c(H, i nser t (X, T)) .

(10) l i st 1() : () - >c({ 4} , c({ 2} , c({ 5} , c({ 3} , ni l)))) ' .

(11) answer : = r b sol veEquat i ons: ' (X = i Sor t (l i s t 1())) '

 i nst ant i at i ng: ' (X) ' .

(12) ^ answer .

Explanation:

(1) Declare the local variables “rb” and “answer.” Note that the FLOOP interpreter is implemented in

Smalltalk, and the underlying object expression evaluator is also Smalltalk, hence the Smalltalk code

in “setting up” the FLOOP program.

(2) Assign a new instance of Rulebase to “rb.” “rb” will hold the rewrite rules that make up the FLOOP

program. “new2” is a class method for “Rulebase” that returns an instance of “Rulebase.”

(3) Declare “c” to be a constructor.

(4) Self explanatory.

(5) Self explanatory.

(6) Self explanatory.

(7) Self explanatory.

(8) is being sent the message “# < .” Note the free mixing of logical variables and messages to objects that

the variables will be instantiated to.

 9

(9) Similar to (7), except the message now is “# >= .”

(10) A constant function that evaluates to a list of Smalltalk objects is defined (note the curly brackets

around the numbers which signify that their contents are Smalltalk expressions to be evaluated).

(11) The rulebase (rb) is given the message to solve a set of equations, and instantiate the variable X with

the solutions found to the equations. In general, if '(X1, X2, … ,Xn)' is the list of variables to be

instantiated, then { (X1, X2, … ,Xn)σ | σ is a substitution found by the transformations } is what is

returned as an answer.

(12) Return the answer, in this case

 “ X: c(2 c(3 c(4 c(5 ni l)))) ”

In the Smalltalk implementation of FLOOP, every FLOOP program has to be in the format shown in

Example 2 . In this scheme an advantage that we notice is that we can have more than one rule base at any

given time, each containing a different set of rules. This amounts to having a module system of rewrite

rules.

Example 3 This following program demonstrates the true modeling capabilities of the combined

functional/logic/object-oriented paradigms. We have again labeled the program for easy explanation. This

program represents information about 4 cities, including the distances between them, and computes the

minimum traveling distance between two of the cities.

(1) | r b answer aSt r eam smal l est Di st ance aNumber |

(2) Tupl e subcl ass: #Ci t y

 at t r i but eNames: ' name popul at i on'

 at t r i but eTypes: ' Symbol I nt eger ' .

(3) r b : = Rul eBase new2.

(4) r b addConst r uct or : ' c' .

(5) r b addRul es: '

(6) ci t y(a) : () - >{ (Ci t y new) name: #At l ant a;

 popul at i on: 1600 } .

(7) ci t y(b) : () - >{ (Ci t y new) name: #Bi r mi ngham;

 popul at i on: 1000 } .

 10

(8) ci t y(c) : () - >{ (Ci t y new) name: #Cambr i dge;

 popul at i on: 3000 } .

(9) ci t y(d) : () - >{ (Ci t y new) name: #Denver ;

 popul at i on: 200 } .

(10) di st (a, b) : () - >{ 10} .

 di st (a, d) : () - >{ 50} .

 di st (b, c) : () - >{ 20} .

 di st (b, d) : () - >{ 30} .

 di st (c, d) : () - >{ 5} .

(11) t woWayDi st (X, Y) : () - >di st (X, Y) .

 t woWayDi st (X, Y) : () - >di st (Y, X) .

(12) member (X, ni l) : () - > f al se.

 member (X, c(X, Z)) : () - >t r ue.

 member (X, c(Y, Z)) : (NOT(X=Y) =t r ue) - >member (X, Z) .

(13) comp(Name1, Name2) : (ci t y(A) =C1,

 MSG(C1, { #name}) = Name1,

 c i t y(B) =C2,

 MSG(C2, { #name}) = Name2

)

 - > comput eDi st ance(c(A, ni l) , A, B) .

(14) comput eDi st ance(L, A, B) : () - >t woWayDi st (A, B) .

(15) comput eDi st ance(L, A, B) :

 (t woWayDi st (A, C) =D,

 NOT(C=B) =t r ue,

 member (C, L) =f al se,

 comput eDi st ance(c(C, L) , C, B) =E

)

 - > MSG(D, { #+} , E) ' .

(16) answer : = r b sol veEquat i ons: ' (W=comp({ #Denver } , { #At l ant a})) '

 i nst ant i at i ng: ' (W) ' .

(17) answer do:

 [: anOr der edCol l ect i on |

 aSt r eam : = ReadSt r eam on: anOr der edCol l ect i on.

 aNumber : = (aSt r eam peek) obj ect .

 (smal l est Di st ance i sNi l)

 11

 i f Tr ue: [smal l est Di st ance : = aNumber]

 i f Fal se: [(smal l est Di st ance > aNumber)

 i f Tr ue: [smal l est Di st ance : = aNumber]

]

] .

(18) ^ smal l est Di st ance

Explanation:

(1) Local variables for the Smalltalk code that follows.

(2) Tuple is a class whose instances respond to the = and deepCopy messages (as described in the text).

Subclasses of Tuple that are created with this message have attribute names with types, and each

instance of such a class responds to the message x and x: if x is an instance variable of its class. Here

we are creating “City” as a subclass of Tuple with instance variable names “name” and “population”

whose types are “Symbol” and “Integer” respectively.

(3) Get a new instance of class “Rulebase” which will hold the rewrite rules defining the FLOOP program.

(4) Define “c” to be a constructor.

(5) Add the rules contained in the string to the rulebase.

(6) The rule evaluates to the “City” object whose name attribute is “Atlanta” and population attribute is

1600 (numbers made up!). “a” (which is a plain constant) in the argument of the rewrite rule wil l be

used to easily refer to this object, and act as a kind of object identifier for it.

(7) Similar to (6)

(8) Similar to (6)

(9) Similar to (6)

(10) Distance between any two cities that are directly connected.

(11) Distance between any two cities without directionality.

(12) The familiar member function. Note that the condition part of a rule can contain only equations.

(13) Compute the distance between two cities whose names are Name1 and Name2. In the condition part,

we find the constants that are the object identifiers for the cities involved, and use them to compute the

 12

distance in the body of the rule. This is a perfect example of the separation of the internals of objects,

and their relationships to one another.

(14) See (15)

(15) L is the l ist of cities visited so far (to avoid infinite loops). These rules implement a graph traversal

algorithm, keeping track of the nodes visited so far in L. The underlying object evaluator (i.e.

Smalltalk) is used to evaluate the numerical expressions.

(16) Ask the rulebase to solve the given goal, instantiating only the variables specified as the answer.

(17) answer is assigned a Set of orderedCollections of Terms. Each term, if it contains an object, responds

to the message object and returns the object it contains. This piece of code checks each of the values W

was bound to, and returns the smallest of them (could have been done in many other ways too).

(18) Return smallestDistance as the answer, in this case “35.”

 13

5 Related Wor k

LIFE [11] and MaudeLog [13] are languages that represent significant efforts in joining the three paradigms

of functional, logic and object oriented programming.

LIFE (Logic, Inheritance, Functions, Equations) is based on the idea of generalizing the notion of a term

to an Order Sorted Feature (OSF for short) term which permits self reference, has attributes and belongs

to a sort. A hierarchy of sorts is possible, consequently LIFE has structured type inheritance. LIFE

programs consist of Prolog-style clauses and function definitions which are basically rewrite rules.

It is possible to write very expressive programs in LIFE mainly due to the OSF terms which allow for

complex constraints to be placed on their attributes, and an (obviously powerful) OSF term unifier that

unifies two OSF terms. However, to what degree does structured type inheritance (the only object oriented

feature in LIFE) qualify LIFE to be an object oriented language, when such ideas as local state in an object

, method definitions, inheritance of methods, method overriding and method refinement which are so

central to the object oriented paradigm are missing? These very features are what make object oriented

programs reusable, maintainable and robust. FLOOP, on the other hand, has all the facilities of the

underlying object oriented component (i.e. Smalltalk), in addition everything we have come to expect from

functional/logic programming, such as the logical variable, non-determinism and higher order functions,

in a coherent framework.

MaudeLog (an extension of Maude) which is described in [13] is based on rewriting logic. MaudeLog

unifies the paradigms of functional, relational and concurrent object oriented programming. MaudeLog

programs consist of rewrite rules in system modules, equations in functional modules and methods in

object oriented modules. Object oriented modules define the classes and the attributes of instances of the

class. The idea of a method belonging to an object and modifying only that object is generalized to a method

not belonging to any object, but rather a “set” of objects that it can operate upon. Methods are then rewrite

rules that expect to be passed as one of their parameters each object they “belong to” and which they can

modify. The result of a rewrite rule being applied to a set of objects is the same set of objects, but possibly

with different internal states. The whole process is dynamic, with a common store of objects and messages

to objects “floating in a vacuum.” If a message is applicable to a set of objects, the corresponding rewrite

rule is activated, possibly changing the internal state of the objects it operated upon, hence the concurrency.

MaudeLog is not directly comparable to FLOOP. It incorporates concurrency, and a new way of looking

at method definitions. Disregarding the concurrency aspect, however, despite the fact that the ideas behind

“rewriting logic” are simple, the language itself is very involved, and does not seem to be suitable for use as

a general purpose programming language. Another question is whether MaudeLog can be implemented

with reasonable efficiency: according to [13] its implementation is sti ll far away. We do have for FLOOP

however a working prototype, and the language FLOOP was designed with practicality in mind.

 14

6 Conclusion and Future Research Directions

In this paper, we described a way of integrating the three paradigms of functional, logic and object oriented

programming without sacrificing any of the desirable aspects of each component paradigm. The system we

designed allows programs consisting of conditional term rewriting systems to be run inside Smaltalk. A

fixed set of transformations are used for the operational semantics of the system. The main highlights of the

system are logical variables, programs composed of conditional rewrite rules that can contain arbitrary

object expressions, higher order features and all the facilities provided by the underlying object expression

evaluator (i.e. Smalltalk) such as creating classes, class hierarchies, and objects. The programs of the

combined paradigm stil l maintain a declarative reading, however one that takes into account the operational

aspect introduced by the calls for evaluation of object oriented expressions to the underlying object

expression evaluator.

Seen in a greater perspective, we believe that our method, by providing for declarative manipulation of

complex objects, lays the framework for maximum program development convenience and productivity.

This is aided by the fact that FLOOP has a simple syntax and very intuitive semantics (i.e. everything

works the way you would expect it to work). The programmer, using FLOOP, can approach different

aspects of a problem in ways that are most convenient for those aspects.

Future work in this direction would include developing a more rigorous declarative semantics for

FLOOP programs, as well as investigating the possibil ity of parallel execution.

References

[1] Aït-Kaci, H. An Overview of LIFE, in: Proceedings of the 1st International Database Workshop,

Springer-Verlag, LNCS 504, 1991, pp. 42-48.

[2] Bayram, Z.O., and Bryant, B.R., ROSE: A Higher Order Functional/Logic Programming Language,

Technical Report, CIS-TR-91-09, Department of Computer and Information Sciences, University of

Alabama at Birmingham, 1991.

[3] Bosco, P.G., and Giovannetti, E., IDEAL: An Ideal Deductive Applicative Language, in:

Proceedings of the 1986 Symposium on Logic Programming, 1986, pp. 89-94.

[4] DeGroot, D., and Lindstrom, G. (eds.), Logic Programming: Functions, Equations, and Relations,

Prentice-Hall, 1985.

[5] Dershowitz, N., and Plaisted, D., Logic Programming cum Applicative Programming, in:

Proceedings of the 1985 Symposium on Logic Programming, 1985, pp. 54-67.

[6] Dershowitz, N., and Okada, M., Conditional EquationalProgramming and the Theory of Conditional

Term Rewriting, in: Proceedings of the 1988 International Conference on Fifth Generation

Computer Systems, 1988, pp. 337-346.

 15

[7] Fribourg, L., SLOG: A Logic Programming Language Interpreter Based on Clausal Superposition

and Rewriting, in: Proceedings of the 1985 Symposium on Logic Programming, 1985, pp. 172-184.

[8] Gallier, J.H. and Snyder, W., A General Complete E-Unification Procedure, in: Rewriting

Techniques and Applications, Springer-Verlag, LNCS 256, 1987, pp. 216-227

[9] Giovannetti, E., and Moiso, C., A Completeness Result for E-unification Algorithms Based on

Conditional Narrowing, in: Foundations of Logic and Functional Programming Workshop,

Springer-Verlag, LNCS 306, 1986, pp. 157-167.

[10] Hölldobler, Steffen, Conditional Equational Theories and Complete Sets of Transformations, in:

Proceedings of the International Conference on Fifth Generation Computer Systems, 1988, pp

405-412.

[11] Levi, Giorgio et. al., A Complete Semantic Characterization Of K-Leaf, A Logic Language With

Partial Functions, in: Proceedings of the 1987 Symposium on Logic Programming, 1987, pp. 318-

327.

[12] Martelli, and A., Montanari, U., An Efficient Unification Algorithm, ACM Transactions on

Programming Languages and Systems 4:2 (1982) 258-282.

[13] Meseguer, J., A Logical Theory of Concurrent Objects and its Realization in the Maude Language,

Technical Report, SRI-CSL-92-08, July 1992.

[14] Reddy, Uday S., Narrowing as the Operational Semantics of Functional Languages, in: Proceedings

of the 1985 Symposium on Logic Programming, 1985, pp. 138-151.

[15] Silberman, Frank S. K., and Jayaraman, Baharat, A Domain-theoretic Approach to Functional and

Logic Programming, Technical Report, TUTR 91-109, Tulane University, 1991.

[16] Snyder, W., Higher Order E-Unification, Technical Report, BU-CS TR 90-008, Boston University,

1990.

[17] Snyder, W., and Lynch, C., An Inference System for Horn Clause Logic with Equality: A

Foundation for Conditional E-Unification and for Logic Programming in the Presence of Equality,

Technical Report, BU-CS TR 90-014, Boston University, 1990.

[18] Snyder, W. and Gallier, J., Higher-Order Unification Revisited: Complete Sets of Transformations,

Journal of Symbolic Computation,8 (1989) 101-140

[19] The Smalltalk/V Tutorial and Programming Handbook, Digitalk Inc., 1986.

