
Forward-Chained Rules for Specifying Algorithms
Zeki O. Bayram

Computer Engineering Department
Bogaziçi University

Bebek 80815/Istanbul-Turkey
e-mail: bayram@boun.edu.tr

Abstract
Data-Directed programming, where the logic of computation is encoded using forward-
chained rules, has been used primarily for expert system applications. In such
applications, human expertise in some domain is expressed in the form of if-then rules
and an inference engine is used to deduce new facts from existing ones. In this paper we
demonstrate that forward-chained rules need not be limited to such a role and can be used
to specify the logic of algorithms in a way that mimic the human understanding of these
algorithms. If this idea is extrapolated into specifying software systems in general, the
result is self-documenting and executable specifications.

Keywords: Expert system, forward chaining, context, heuristic, inference, algorithm,
specification, executable

1. Introduction
We humans tend to think of algorithms in an operational way, often as transitions from
one state to the next, with some start state and some ending state in mind. Consider
someone describing how to get from one place to the next, or someone describing how to
make tomato soup. These descriptions can very naturally be mapped onto state diagrams
with transitions from one state to the next.

We take this idea and apply it to the specification of software algorithms. We use
working memory states to represent states of the algorithm and forward-chained rules to
represent the transitions. This works because a forward chaining inference engine
implicitly traverses a dynamically constructed state machine, where the elements in the
working memory at any time is the current state and the next state will be achieved
through the application of a relevant rule to the current state.

2. A Language for Specifying Forward-Chained Rules
In [[1]] we described a probabilistic forward chained expert system shell with
backtracking (SSST- State Space Search Tool). A non-probabilistic version of SSST has
now been developed, which we call Discrete SSST, or DSSST, and we shall use DSSST
to encode algorithms in the ensuing sections. First we give a brief introduction to DSSST.

 1

2.1 Features of DSSST

DSSST features include
• a context mechanism for narrowing down the non-determinism at every transition

point
• rule priorities which determine the order in which rules will be applied during normal

execution and upon backtracking in case of more than one rule matching the current
working memory

• backtracking in case a dead-end is reached in the search process
• explicit success conditions which specify when the search can terminate
• explicit failure conditions which specify forbidden working-memory states, causing

immediate backtracking to take place in case they are satisfied by the working-
memory state reached

These features allow us to specify the search space of working memory states
declaratively, hence the name of the tool DSSST.

2.2 Syntax of DSSST

We informally give the form of DSSST syntactic elements as follows.

Rules:

rule(rule_name, rule_priority, list_of_contexts_in_which_the_rule_is_applicable,
 left_hand_side_conditions

 right_hand_side_actions).

Success Conditions:

end_goal(success_condition_name,
 list_of_contexts_in_which_the_condition_is_applicable,
 conditions).

Failure Conditions:

fail_condition(fail_condition_name,
 list_of_contexts_in_which_the_condition_is_applicable,
 conditions).

The semantics of the constructs in DSSST are fairly intuitive and we do not elaborate on

them much further. Conditions on the left hand side are patterns that match facts in the

working memory, n-ary connectors "not_true", "one_true" and "not_true", as well as the

built-in predicate "evaluate" which calls the underlying Prolog [[4]] interpreter to prove a

goal (actually a constraint-solving variant of Prolog, CLP(R) [[7]] was used to implement

DSSST).

 2

Actions on the right hand side include remove for removing working memory elements,

make for adding working memory elements, modify for modifying working memory

elements, add_context for adding a context to the currently active contexts, and

remove_context for making a currently active context inactive.

2.3 Declarations and actions needed to initialize DSSST

Working memory elements are also called "facts." Before a fact can be added to the
working memory, its template must be made known to the system through the literalize
command. As an example, if we wish to place information about a car into the working
memory and that a car has the attributes owner, color and age, the command

?- literalize(car(owner,color,age)).

must first be given to the system. Similarly, any contexts that will be used must be
declared at the start of a program run.

Working memory is initialized through the addition of facts by using the make command
as in the following example.

?- make(car(owner george, color green, age 5)).

3. Specifying Algorithms using forward chained rules

In this section we specify algorithms for two different kinds of computational problems

using forward chained rules. Note how in each case the algorithm specification mimics

the way we would normally describe the workings of the algorithm.

3.1 Prim's Minimal Spanning Tree Algorithm expressed as a DSSST
program

A minimal spanning tree for a weighted graph is a subgraph of the original graph that is a

tree (i.e. contains no cycles and is connected) and contains all the nodes of the original

graph. Prim's algorithm [[2]] starts from any node, and gradually builds a tree of

minimum cost. At every iteration, an arc is included if it is the lowest cost arc among the

 3

arcs which connect a node in the tree to a node outside the tree. The algorithm terminates

when all the nodes of the original graph are included in the tree.

Below is the DSSST program that describes this algorithm. We will explain each part as

we go along.

context(all).
?- add_context(all).

Here we are declaring "all" to be a context, and making it active.

?- literalize(arc(from,to,dist, status)).
/* status = in , out */

?- literalize(node(name, status)).
/* status = visited, not_visited */

We declare to DSSST that "arc" facts will have four attributes, and "node" facts will have
two, with the names shown.

?- make(node(name a, status not_visited)).
?- make(node(name b, status visited)).
.........

?- make(arc(from a, to b, dist 3, status out)).
?- make(arc(from b, to c, dist 4, status out)).
.........

Here we initialize the working memory with facts regarding nodes and the arcs
connecting them. The algorithm will start from node b.

end_goal(eg1,
 [all],
 not_true(node(status not_visited))).

Here we specify when the algorithm should end: when it is not true that there exists a
node that is not visited, i.e. when all nodes have been visited.

rule(compute, 10, [all],
 n1 := node(name N1, status visited) and
 n2 := node(name N2, status not_visited) and
 a1 := arc(from N1, to N2, dist Dist, status out) and
 not_true(node(name N1a, status visited) and
 node(name N2a, status not_visited) and
 arc(from N1a, to N2a, dist Dist_a,status out) and
 evaluate(Dist_a<Dist))
 -->
 modify(n2, status visited) and
 modify(a1, status in)).

 4

Finally, we have the rule (notice that only one rule is sufficient in this case) that builds

the tree. Here is what it says: if there is a node n1 that is visited (i.e. in the tree generated

so far), a node n2 that is not visited, an arc a1 connecting n1 and n2, and it is not true

that there is another arc of lesser weight which connects n1 and n2 (i.e. a1 is minimal),

then modify n2 so that its status field becomes visited (i.e. it is included in the spanning

tree) and modify a1 so that its status field becomes in (i.e. it also is included in the tree).

When the inferencing stops, all arcs that have their status field set to in will be

considered as included in the minimum spanning tree.

3.2 Specifying the generation of prime numbers in DSSST

Prime numbers are those integers that are divisible only by themselves and 1. Suppose

we want to generate all primes up to a certain number n. One way to do it would be to

start from 2, and check each odd number from 3 up to n (or n-1 if n is even) to see if it is

divisible by an already generated prime number. If it is not, then we can include it as a

prime number, and move on to the next odd number. Otherwise, we move directly on to

the next odd number.

Here is the DSSST program that implements this algorithm.

context(all).
?- add_context(all).

Only one context is needed, and we call it all.

?- literalize(prime(number)).
?- literalize(globals(current, last)).

?- make(prime(number 2)).
?- make(globals(current 3, last 20)).

Here we declare that 2 is a prime number, that the current number to be tested is 3 and
that we shall generate prime numbers up to 20.

end_goal(eg1,
 [all],
 globals(current X, last Y) and
 evaluate(X>Y)).

 5

Here we specify the termination condition: stop when the "current" number X is greater
than the "last" number Y.

/* X=A*Y+R */
divide(X,A,Y,R):- X<Y, A=0, R=X,!.
divide(X,A,Y,R):- divide(X-Y,A2,Y,R),A=A2+1.

Here we define the divide predicate in Prolog which returns the quotient and remainder
of a division operation. We will call this predicate as a left hand side condition to check
for divisibility.

rule(found_prime, 10, [all],
 g := globals(current X) and
 not_true(prime(number Y) and
 evaluate((divide(X,A,Y,R),R=0)))
 -->
 modify(g, current X+2) and
 make(prime(number X))).

Finally, we have the rules which compute the prime numbers. The above rule handles the
case when the current number is indeed prime. It says this: If the number that is being
currently considered (X) is not divisible by any previously generated prime number,
register it as a prime number and move on to the next odd number. The rule below
handles the case when X is divisible by a previously generated prime number and moves
on to the next odd number without registering X as a prime number.

rule(not_prime, 10, [all],
 g := globals(current X) and
 prime(number Y) and
 evaluate((divide(X,A,Y,R),R=0))
 -->
 modify(g, current X+2)).

4. Discussion

In both examples above, we note the closeness of the rule-based specifications of the

algorithms to the verbal ones. We could in fact very easily generate textual descriptions

of the algorithms just by reading out the rules. As such, algorithm specification using

rules is self-documenting.

The reader should not be misled into thinking that algorithm specification using rules

works only for small, insignificant problems. We have in fact used forward-chained rules

to specify many kinds of graph algorithms, including breadth-first, depth-first,

topological sort and Dijkstra's single-source-shortest path algorithms [[2]], AI problems

 6

such as man-wolf-cabbage-goat, 8-queens [[5],[6]], as well as a queue simulation

algorithm [[8]]. In all these cases, the rule-based specification could readily be translated

into a verbal description of the algorithm and vice versa.

5. Related Work

Rules-based systems have mainly been used for capturing the knowledge in a specific

domain traditionally requiring human expertise. [[3],[5],[6]] discuss many different rule-

based systems. A survey of literature has failed to find a usage of rules for describing

algorithms in the manner that was presented in this paper.

6. Conclusions and Future Work

We showed that rule-based systems can be used to describe algorithms in a way that

mimic their natural language description. Furthermore, specifications specified in the

form of rules are executable, hence increasing the designer's confidence that the

specification represents a correct solution for the problem under consideration.

Further work in this area would be in the direction of using rules for specifying software

systems in general. Executable specifications that are also self documenting would be

very valuable form a software engineering point of view.

REFERENCES
[1] Bayram, Z. SSST (State-Space Search Tool): A Probabilistic Forward-Chained

Expert System Shell With Full Backtracking, Proceedings of The Eleventh
Symposium on Computer and Information Sciences, 1996

[2] Data Structures and Algorithms,......
[3] Alty, J.L., Coombs,M.J. Expert Systems,NCC Publications, 1984
[4] Clocksin,W.F., Mellish,C.S., Programming in Prolog, Springer-Verlag, 1981
[5] Hayes-Roth,F., Waterman A.D., Lenat,D.B. (editors) Building Expert Systems,

Addison Wesley, 1983

 7

[6] Nilsson, N. J., Principles of Artificial Intelligence, Morgan Kauffman Publishers,
1986

[7] CLP(R) manual
[8] Dale, Data Structures in Pascal

 8

	Introduction
	A Language for Specifying Forward-Chained Rules
	Features of DSSST
	Syntax of DSSST
	Declarations and actions needed to initialize DSSST

	Specifying Algorithms using forward chained rules
	Prim's Minimal Spanning Tree Algorithm expressed as a DSSST
	Specifying the generation of prime numbers in DSSST

	Discussion
	Related Work
	Conclusions and Future Work

