
 

  

Abstract—We propose two ways of modeling the teacher 

relocation problem in the ECLiPSe constraint logic programming 

system, implement them and compare their performance through 

simulation. The first one relies on logic variables that take on 

boolean values. The second one involves the use of the built-in 

predicates “element” and “occurrences.” Simulations confirm 

that the approach that uses the built-in predicates performs 

better in general. 

 

I.  INTRODUCTION 

In [1] we defined the “teacher relocation problem,” and 

proposed a model for it in the constraint logic programming 

language ECL
i
PS

e
 [4] that made use of boolean-valued logic 

variables. The teacher relocation problem concerns school 

teachers wishing to relocate to other schools and who state 

their preferences in terms of which schools they want to move 

to. The problem, in simple terms, is to come up with a 

relocation scheme in which a utility function (the “happiness” 

of teachers) is maximized while not violating quota 

constraints of schools. This is an instance of the class of 

discrete optimization problems, and requires exponential 

search for its solution.   

In this paper we improve upon our previous solution by 

adapting a different approach to modeling the problem, which 

makes use of two high-level built-in constraint predicates that 

are available in ECLiPSe, namely the “element” predicate and 

the “occurrence” predicate. We compare the two solutions by 

running simulations using both models. We conclude that 

using high-level built-in constraint solving predicates is 

advantageous in this case compared to the previous solution 

of using Boolean-valued logic variables.  

Constraint Logic Programming (CLP) is indeed very 

 

 

convenient for both modeling and solving discrete 

optimization problems, since the problem can be formulated 

as a set of variables and constraints between these variables. 

The goal is to find an assignment of values to variables such 

that none of the constraints are violated. There can be a cost 

function which has to be minimized/maximized in the final 

solution. Once the model is set up, the built-in search and 

constraint solving mechanisms of the CLP system take care of 

the rest [2][3][5].  

The remainder of this paper is as follows. In section II, we 

formally define teacher relocation problem. In section III we 

model it using two different strategies in ECLiPSe, the first 

strategy being the one described in [1]. We then test both 

models under different scenarios in section IV. Results show 

that the modeling approach using built-in predicates out-

performs the other one. In section V we have a brief survey of 

related work and finally in section VI we have the conclusion 

and future research directions. 

 

II.    DESCRIPTION, FORMAL SPECIFICATION AND 

TIME COMPLEXITY OF THE TEACHER RELOCATION 

PROBLEM 

Each teacher who wishes to relocate can state two choices 

in order of preference. An implicit, but undesirable third 

choice on the part of the teacher is to stay in his/her current 

school. Teachers who do not wish to relocate do not make any 

choices, and are not forcibly relocated.   

Teachers state their choices in order of preference. A 

specific teacher’s happiness is given very naturally by 

order(teacher, assignment(teacher)), where order(t,s) is the 

position (first, second etc.) of school s in the preference 

declaration of teacher t.  Here, smaller numbers mean more 

happiness.  

The goal of the system is to maximize the overall happiness 

of teachers, which corresponds to minimizing the value of the 
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subject to the constraint in each school that the number of 

teachers at the school never exceeds its capacity 

(understaffing is a possibility, and occurs frequently in North 

Cyprus).  This is modeled by the use of quotas, which specify 

the teacher deficiency (vacant positions) in each school before 

relocation is initiated. So for each school, the following 

constraint must be satisfied in a final solution: 

 

incomingTeachers outgoingTeachers quota≤ +       (2) 

 

Another obvious constraint is that a teacher cannot be 

assigned to more than one school, hence the function 

assignment. 

For N teachers, the best case time complexity is N, where 

each teacher is assigned to his/her first choice without 

violating any constraints. For the worst case analysis, all 

possible combinations of assignments must be considered, 

which gives us 3
N
.  

 

III. TWO DIFFERENT MODELS  USING CLP 

In this section, two different models for the problem 

specified in Section II are presented, using the ECLiPSe 

Constraint Programming Language. We start with the data 

structures used to represent teachers, their choices and school 

information. 

A. Data Representation 

To store the information about teachers, we use the  

structure teacher(Teachername, ALSchool) for each teacher. 

Teachername is the name of the teacher and ALSchool is the 

current school of the teacher. Each teacher name is assumed 

to be unique. 

A teacher’s choices are represented as 

choice(Teachername, SchoolName, ChoiceNo, AppYear), 

where Teachername is the name of the teacher, SchoolName 

specifies the name of the school which the teacher wants 

relocate to, ChoiceNo represents the order of preference of 

this school and AppYear is the application year of the teacher 

for relocation.  So, choice(‘Geoge Washington’, ‘Talented 

Kids High School’, 1, 2005) would mean that George 

Washington’s first choice would be to move to Talented Kids 

High School, and he first made his application to relocate in 

2005. 

Information about schools is given by school(Schoolname, 

Countyname, Quota, MaxCapacity), where SchoolName is the 

name of the school, Countyname specifies the county which 

the school belongs to, Quota is the number of vacancies at  

the school, and MaxCapacity specifies the maximum number 

of teachers which the school can employ. 

 
solve(Cost):- 

   findall(X,teacher(X,_),Teacherlist), 

   increment_loop(Teacherlist,1,Cost),!. 

Fig.  1.  The “solve” predicate 

 

Note that not all the information represented in the database 

is used in the solutions that we present, but they are included 

to allow the possibility of different utility functions in the 

future. 

 

B. Techniques Common to Both Approaches 

An incremental strategy is adopted in both approaches. 

First, an assignment is tried where only the first choice of each 

teacher is taken into account. If this does not yield a solution, 

then the first two choices are considered. If still no solution is 

generated, then the first three choices are considered (the third 

choice being implicit – stay at your own school, i.e. do not 

relocate). Our simulations in [1] confirm the advantage of 

using this incremental approach. 

Another technique common to both approaches is the usage 

of a “base value” for a solution. A base value of the utility 

function is found for just any relocation scheme which does 

not violate the constraints. If a partial solution results in a 

utility function value that already exceeds the base value, then 

that branch of the search space is pruned. The base value is 

computed by the solve1 predicate (used in Figures 2 and 3).  

 

C. The First Modeling Approach 

The main predicate in the program is solve, given in 

Fig. 1. Its output parameter Cost is the minimum cost of the 

solution if it exists. The solution itself is printed on the screen. 

solve generates the teacher list  using the database, and 

passes it on to the increment_loop predicate, which 

actually does the job. The second actual parameter of 

increment_loop denotes that only the first choices will 

be considered when the search begins. increment_loop 

implements the incremental search technique.  

The increment_loop predicate definition, given in Fig.  

2, gets Teacherlist and Minhappiness as input 

parameters and outputs the Cost. Predicate willbelabeled 

generates the list Clist1, which will be flattened by the 

flatten predicate to generate a list of the form [ ( 

Teachername, Schoolname, R, Cost), …. ] in its Clist 

output parameter. The domain of R is [-1,0] if Schoolname is 

either a school preferred by Teachername or it is his/her 

current school. Otherwise the domain of R is [0].  

This is the main point of difference between this approach 

and the next: here we use -1 to represent that a teacher is 

assigned to a school, and 0 that s/he is not (our choice of -1, 

rather than 1, to represent a teacher being assigned to a school 

is technical and is not of major importance: the built-in 

indomain predicate assigns values to variables in  

 



 

increment_loop(Teacherlist, 

               Minhappiness,Cost):- 

   willbelabeled(Teacherlist,Minhappiness, 

             [],Clist1), 

   flatten(Clist1,Clist), 

   each_teacher(Teacherlist,Clist), 

   findall(Y,school(Y,_,_,_),Schoollist),               

   createoutoflist(Teacherlist,Schoollist, 

               [],Outlist,Clist), 

   flatten(Outlist,Outoflist), 

   findinginoutlist(Schoollist,Clist, 

                [],Schoolinlist), 

   findinginoutlist(Schoollist,Outoflist, 

                [],Schooloutlist), 

   quotaconstraint(Schoollist,Schoolinlist, 

                Schooloutlist), 

   solve1(RefCost), 

   length(Teacherlist,LT), 

   bb_min((our_labeling(Clist, 0, RefCost, 

          Cost)), Cost,bb_options with  

          [from:LT]), 

   (nonvar(Cost),showreplacement(Clist),!); 

   (Minhappiness1 is Minhappiness+1, 

               increment_loop(Teacherlist,    

               Minhappiness1,Cost)). 

Fig.  2.  The “increment_loop” predicate for the first approach 

 

increasing numeric order, and in our labeling predicate this 

would result in a teacher not being assigned to a school). In 

the second approach, we shall use the built-in element 

constraint predicate.  

Then each_teacher predicate is called. It gets 

Teacherlist and Clist as input. It is the first constraint 

of the program which constrains a teacher to locate only to 

one school. A teacher cannot exist in more than one school at 

the same time. In order to prevent the relocation of a teacher 

to more than one school, the sum of all the R values of each 

teacher in Clist is constrained to be -1. 

 

       SumofRs # = -1                                                          (3) 

 

We also need to make sure that the constraint  

 

      (Incoming-Outgoing)#<=Quota                                (4) 

 

is not violated for any school. The quotaconstraint 

predicate achieves this. It takes Schoollist, 

Schoolinlist, and Schooloutlist as parameters. 

It constrains each school such that the difference between the 

number of incoming teachers and outgoing teachers to the 

school is smaller than or equal to the quota of the school. Its 

parameters are generated as follows: The list of schools 

Schoollist is generated and passed  as an input 

parameter to the createoutoflist predicate, together 

with Teacherlist and Clist. The predicate 

createoutoflist generates the Outlist, flattened 

into Outoflist, which has the same structure as 

Clist, except that the R value of a teacher becomes -1 in 

the school which he/she wants to move out from. 

Outoflist contains information about which schools 

teachers are moving out of. 

Then findinginoutlist predicate is called two 

times. In first call, it takes Schoollist and Clist as 

input parameters and generates Schoolinlist as 

output. It keeps the information of the number of coming 

teachers to each school and has the structure  [(Schoolname, 

NumberOfComingTeachers),…]. In second call of the 

findinginoutlist predicate, Schoollist and 

Outoflist are passed as input parameters to generate 

Schooloutlist which has the same structure with 

Schoolinlist but keeps the number of outgoing teachers 

for each school:  [ ( Schoolname, 

NumberOfOutgoingTeachers) ]. 

The solve1 predicate is then called to get a baseline cost 

in its RefCost parameter. solve1 just finds any feasible 

solution, without any consideration of optimality. We use this 

value to prune the search space when we make incremental 

assignments: if the current “cost” has already exceeded the 

reference cost, that branch of the search space is not explored 

any further. Refcost is passed as a parameter to 

our_labeling predicate, which performs assignments to 

teachers, keeping track of the value of the utility function 

(happiness of the teachers). 

Next we have a call to the minimization predicate 

bb_min(Goal,Cost,Options). bb_min/3 is a built-in predicate 

which finds a solution of the Goal that minimizes the value of 

Cost [4]. The goal to be satisfied is our_labeling( 

Clist, 0, RefCost, Cost), where Cost is to be 

minimized. In our case, Cost is the cumulative happiness 

of teachers, as already discussed.  

Then we have an OR (;) structure. If the program has 

already found the minimum cost, the showreplacement 

predicate is called, which prints the teacher names, their 

assigned schools, as well as the rank of the school in the 

preference order of the teachers. If no solution was found, the 

Cost variable is free,  Minhappiness is incremented by 

1 and increment_loop is called recursively to try to 

find a solution by including one more preference of the 

teachers to the search space. 

D. The Second Modeling Approach 

Similarly to the first approach, the main predicate is 

solve and the parameter Cost is the minimum cost of the 

solution (Fig. 1). The teacher list generated by the solve 

predicate is passed on to the increment_loop predicate, 

given in Fig. 3. The increment_loop predicate calls 

the for_each_teacher predicate that constrains the 

teacher choices with the value of  MinHappiness and 

generates a List of the form [(Teachernamei, Happinessi, 

Schooli),..]. The for_each_teacher predicate assigns a 

school from the list of teacher choices for each teacher using 

built-in predicate   element.  The  element  predicate     has    

signature  

 



 

increment_loop(Teacherlist, 

               MinHappiness,Cost):- 

   findall(Y,school(Y,_,_,_),Schoollist),  

   for_each_teacher(MinHappiness, 

               Teacherlist,[],List), 

   coming_teacher_list(List,[],ComersList), 

   outgoing_teacher_list(Teacherlist, 

               [],OutgoingList), 

   constraint_quotas(Schoollist,ComersList, 

               OutgoingList), 

      solve1(RefCost), 

      length(Teacherlist,LT), 

   bb_min((our_labeling(List, RefCost, 0, 

   Cost)),Cost,bb_options with  

       [from:LT]), ! , 

  ((nonvar(Cost),showreplacement(List),!); 

   (MinHappiness1 is MinHappiness+1,            

               increment_loop(Teacherlist, 

               MinHappiness1,Cost)). 

Fig. 3. The “increment_loop” predicate for second approach 

 

element(?Index, ++List, ?Value), where Value is the Index'th 

element of the integer list List [4]. The 

for_each_teacher predicate makes a call to element( 
Happiness1, [ FirstSchool,SecondSchool, 

CurrentSchool], School1). The School1 variable 

shows which school Teacher1 is tentatively assigned to and 

Happiness1 is the order of Shool1 among the choices of 

Teacher1. As mentioned above, this is the main difference 

of the two approaches.  

Then we have the following constraint, which implements 

the incremental search technique. 

 

       Happinessi   #=< MinHappiness            (5) 
 

It constrains teacher i to be assigned to the first, first two, or 

first three choices, in that order (again, the third choice is the 

implicit “stay at your current school” option).  

The coming_teacher_list predicate gets the List 

as an input parameter and generates  ComersList which 

has the structure of  [(Teachernamei, AssignedSchooli)]. This 

list depicts which teacher is assigned to which school. 

Similarly the outgoing_teacher_list predicate gets 

Teacherlist as an input parameter and generates 

OutgoingList which has the structure [(Teachernamei, 

VacatedSchool)]. 

Then, as before, we need to make sure that the capacity of 

each school is not exceeded in an assignment. The 

constraint_quotas predicate does this (Fig. 4). It takes 

Schoollist, ComersList, OutgoingList as 

input parameters and constrains each school such that the 

difference between the number of incoming teachers and 

outgoing teachers to the school does not exceed the quota of 

the school. The occurrences/3 built-in predicate is used to 

determine the number of incoming and outgoing teachers to 

each school (the number of times a school occurs in the list of 

schools to which teachers are relocated  is computed using 

this built-in predicate; similarly with outgoing teachers). 

 

constraint_quotas([],_,_). 
constraint_quotas([H|T], 

                  Comers_list, 

                  Outgoing_list):-                     

    pred1(Comers_list,[],Comers_list1), 

    pred1(Outgoing_list,[],Outgoing_list1),                

    occurrences(H,Comers_list1,NewTeachers), 

    occurrences(H,Outgoing_list1, 

                  OutgoingTeachers), 

    school(H,_,Quota,_), 

    NewTeachers-OutgoingTeachers #<=Quota,            

    constraint_quotas(T,Comers_list, 

                  Outgoing_list). 

pred1([],A,A). 

pred1([(H,S)|T],Acc,Acc2):-

append(Acc,[S],Acc1),pred1(T,Acc1,Acc2). 

Fig.  4. The “constraint_quotas” predicate 

 

The predicate occurrences has signature occurrences(+Value, 

+List, ?N) and constrains its arguments such that Value occurs 

exactly N times in List [4]. 

The remainder of the increment_loop predicate is the 

same as the one in the first approach. 

IV. COMPARISON OF THE TWO APPROACHES 

We simulated both approaches to see the difference in their 

performance. We generated instances of the problem for 

different number of teachers and quotas in schools. The 

number of schools was fixed at 10. For a specific number of 

teachers, the program corresponding to each approach was run 

multiple times, where in every run the number of empty slots 

in each school was randomly determined from 1 up to a 

maximum number. The average time taken to find the 

optimum solution for a specific number of teachers was then 

noted for either approach. 

Fig.  5 depicts the performance of the two approaches 

where the number of vacant slots in each school varies 

randomly from 1 to 5.  
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Fig.  5. Number of Teachers vs. CPU time - quota changes from 1 to 5 
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Fig.  6.  Number of Teachers vs. CPU time - quota changes from 1 to 10 

 

 

It is clearly seen that approach 2 takes less time, by a factor of 

2 for 50 teachers, to solve the problem.  

The solution of the problem becomes easier when we 

increase the number of empty slots in each school, because the 

teachers can be assigned more easily, possibly without 

requiring the relocation of other teachers from a school. In 

Fig. 6, the number of empty slots varies randomly from 1 to 

10. We see that either approach requires far less time now to 

solve the problem, but the second approach still outperforms 

the first, and even to a greater degree (a factor of almost 14) 

than when the quotas changed from 1 to 5.  

Fig. 7 depicts the worst case scenario, where empty slots of 

the schools are all zero.  Approach 2 still performs better. 

However, it is not possible to obtain a solution in a reasonable 

amount of time when the number of teachers exceeds 30 using 

either approach. This is to be expected, given the exponential 

nature of the search space. 
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Fig. 7.  Number of Teachers vs. CPU time - all quotas zero 

 

V.  RELATED WORK 

 

Solution of many kinds of scheduling problems has been 

attempted using Constraint Logic Programming. We have not 

found, beside ours in [1], any that attempts to solve the 

teacher relocation problem in literature though. In [6], the 

Hospitals/Residents Problem is presented, which bears some 

resemblance to the teacher relocation problem. In the 

Hospitals/Residents Problem, each resident is paired with an 

acceptable hospital, in such a way that a hospital’s capacity is 

never exceeded. Both the hospitals and residents have 

preferences, and a “stable” matching is attempted, where 

neither the resident, nor the hospital, would rather be paired 

with something/someone else. The authors investigate four 

different techniques, two of them being similar to our 

assignment of binary values to variables in first approach.   

In [7], the author presents a solution to sport tournament 

scheduling using the finite domain library of ECLiPSe. He 

makes use of a constraint-based depth-first branch and bound 

procedure. The optimal solution is found in reasonable time 

except in some situations. He also proposes a local search 

procedure in order to provide an approximate solution in 

shorter time. The authors in [7] examine incremental search in 

AI applications by focusing on Lifelong Planning A*. In [9] 

the authors present a methodology to solve a job-shop 

scheduling problem using constraint logic programming. They 

investigate a new strategy to find the optimal solution which 

involves step by step decreasing of the upper and lower 

bounds of the search space of the branch and bound 

evaluation function. The authors in [10] present a solution to 

university timetabling problem using the ECLiPSe constraint 

logic programming language by stating the constraints in the 

most suitable order. 

 

VI. CONCLUSION AND FUTURE RESEARCH 

DIRECTIONS 

 

We modeled the teacher relocation problem, defined 

originally in [1], using two different approaches in the 

constraint logic programming system ECLiPSe and compared 

their performance under different scenarios. The first 

approach uses logic variables with boolean values. The 

second approach uses the built-in predicates “element” and 

“occurrence.” In both approaches, incremental search and 

pruning techniques are used to speed up the solution process. 

Simulations confirm that the approach that uses the built-in 

predicates performs better in general. This result probably 

should not come as a surprise, given that built-in predicates 

are expected to be implemented to perform efficiently.  

For future work, given that the framework is already 

established, we envisage making the utility function much 

more representative of the interests of all involved, such as 

schools, the ministry of education and even parents. A WEB 

interface can be used to accept the preferences of all parties 

involved.  
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