

Abstract—We propose two ways of modeling the teacher

relocation problem in the ECLiPSe constraint logic programming

system, implement them and compare their performance through

simulation. The first one relies on logic variables that take on

boolean values. The second one involves the use of the built-in

predicates “element” and “occurrences.” Simulations confirm

that the approach that uses the built-in predicates performs

better in general.

I. INTRODUCTION

In [1] we defined the “teacher relocation problem,” and

proposed a model for it in the constraint logic programming

language ECL
i
PS

e
 [4] that made use of boolean-valued logic

variables. The teacher relocation problem concerns school

teachers wishing to relocate to other schools and who state

their preferences in terms of which schools they want to move

to. The problem, in simple terms, is to come up with a

relocation scheme in which a utility function (the “happiness”

of teachers) is maximized while not violating quota

constraints of schools. This is an instance of the class of

discrete optimization problems, and requires exponential

search for its solution.

In this paper we improve upon our previous solution by

adapting a different approach to modeling the problem, which

makes use of two high-level built-in constraint predicates that

are available in ECLiPSe, namely the “element” predicate and

the “occurrence” predicate. We compare the two solutions by

running simulations using both models. We conclude that

using high-level built-in constraint solving predicates is

advantageous in this case compared to the previous solution

of using Boolean-valued logic variables.

Constraint Logic Programming (CLP) is indeed very

convenient for both modeling and solving discrete

optimization problems, since the problem can be formulated

as a set of variables and constraints between these variables.

The goal is to find an assignment of values to variables such

that none of the constraints are violated. There can be a cost

function which has to be minimized/maximized in the final

solution. Once the model is set up, the built-in search and

constraint solving mechanisms of the CLP system take care of

the rest [2][3][5].

The remainder of this paper is as follows. In section II, we

formally define teacher relocation problem. In section III we

model it using two different strategies in ECLiPSe, the first

strategy being the one described in [1]. We then test both

models under different scenarios in section IV. Results show

that the modeling approach using built-in predicates out-

performs the other one. In section V we have a brief survey of

related work and finally in section VI we have the conclusion

and future research directions.

II. DESCRIPTION, FORMAL SPECIFICATION AND

TIME COMPLEXITY OF THE TEACHER RELOCATION

PROBLEM

Each teacher who wishes to relocate can state two choices

in order of preference. An implicit, but undesirable third

choice on the part of the teacher is to stay in his/her current

school. Teachers who do not wish to relocate do not make any

choices, and are not forcibly relocated.

Teachers state their choices in order of preference. A

specific teacher’s happiness is given very naturally by

order(teacher, assignment(teacher)), where order(t,s) is the

position (first, second etc.) of school s in the preference

declaration of teacher t. Here, smaller numbers mean more

happiness.

The goal of the system is to maximize the overall happiness

of teachers, which corresponds to minimizing the value of the

Two Different Approaches of Modeling the

Teacher Relocation Problem in a Constraint

Logic Programming System and Their

Comparison

Nagehan Ilhan, Zeki Bayram
Computer Engineering Department, Eastern Mediterranean University

Famagusta, Turkish Republic of Northern Cyprus

{nagehan.ilhan, zeki.bayram}@emu.edu.tr

objective function

Re

(, ())
t TeachersWhoWishTo locate

order t assignment t
∈

∑ (1)

subject to the constraint in each school that the number of

teachers at the school never exceeds its capacity

(understaffing is a possibility, and occurs frequently in North

Cyprus). This is modeled by the use of quotas, which specify

the teacher deficiency (vacant positions) in each school before

relocation is initiated. So for each school, the following

constraint must be satisfied in a final solution:

incomingTeachers outgoingTeachers quota≤ + (2)

Another obvious constraint is that a teacher cannot be

assigned to more than one school, hence the function

assignment.

For N teachers, the best case time complexity is N, where

each teacher is assigned to his/her first choice without

violating any constraints. For the worst case analysis, all

possible combinations of assignments must be considered,

which gives us 3
N
.

III. TWO DIFFERENT MODELS USING CLP

In this section, two different models for the problem

specified in Section II are presented, using the ECLiPSe

Constraint Programming Language. We start with the data

structures used to represent teachers, their choices and school

information.

A. Data Representation

To store the information about teachers, we use the

structure teacher(Teachername, ALSchool) for each teacher.

Teachername is the name of the teacher and ALSchool is the

current school of the teacher. Each teacher name is assumed

to be unique.

A teacher’s choices are represented as

choice(Teachername, SchoolName, ChoiceNo, AppYear),

where Teachername is the name of the teacher, SchoolName

specifies the name of the school which the teacher wants

relocate to, ChoiceNo represents the order of preference of

this school and AppYear is the application year of the teacher

for relocation. So, choice(‘Geoge Washington’, ‘Talented

Kids High School’, 1, 2005) would mean that George

Washington’s first choice would be to move to Talented Kids

High School, and he first made his application to relocate in

2005.

Information about schools is given by school(Schoolname,

Countyname, Quota, MaxCapacity), where SchoolName is the

name of the school, Countyname specifies the county which

the school belongs to, Quota is the number of vacancies at

the school, and MaxCapacity specifies the maximum number

of teachers which the school can employ.

solve(Cost):-

 findall(X,teacher(X,_),Teacherlist),

 increment_loop(Teacherlist,1,Cost),!.

Fig. 1. The “solve” predicate

Note that not all the information represented in the database

is used in the solutions that we present, but they are included

to allow the possibility of different utility functions in the

future.

B. Techniques Common to Both Approaches

An incremental strategy is adopted in both approaches.

First, an assignment is tried where only the first choice of each

teacher is taken into account. If this does not yield a solution,

then the first two choices are considered. If still no solution is

generated, then the first three choices are considered (the third

choice being implicit – stay at your own school, i.e. do not

relocate). Our simulations in [1] confirm the advantage of

using this incremental approach.

Another technique common to both approaches is the usage

of a “base value” for a solution. A base value of the utility

function is found for just any relocation scheme which does

not violate the constraints. If a partial solution results in a

utility function value that already exceeds the base value, then

that branch of the search space is pruned. The base value is

computed by the solve1 predicate (used in Figures 2 and 3).

C. The First Modeling Approach

The main predicate in the program is solve, given in

Fig. 1. Its output parameter Cost is the minimum cost of the

solution if it exists. The solution itself is printed on the screen.

solve generates the teacher list using the database, and

passes it on to the increment_loop predicate, which

actually does the job. The second actual parameter of

increment_loop denotes that only the first choices will

be considered when the search begins. increment_loop

implements the incremental search technique.

The increment_loop predicate definition, given in Fig.

2, gets Teacherlist and Minhappiness as input

parameters and outputs the Cost. Predicate willbelabeled

generates the list Clist1, which will be flattened by the

flatten predicate to generate a list of the form [(

Teachername, Schoolname, R, Cost), ….] in its Clist

output parameter. The domain of R is [-1,0] if Schoolname is

either a school preferred by Teachername or it is his/her

current school. Otherwise the domain of R is [0].

This is the main point of difference between this approach

and the next: here we use -1 to represent that a teacher is

assigned to a school, and 0 that s/he is not (our choice of -1,

rather than 1, to represent a teacher being assigned to a school

is technical and is not of major importance: the built-in

indomain predicate assigns values to variables in

increment_loop(Teacherlist,

 Minhappiness,Cost):-

 willbelabeled(Teacherlist,Minhappiness,

 [],Clist1),

 flatten(Clist1,Clist),

 each_teacher(Teacherlist,Clist),

 findall(Y,school(Y,_,_,_),Schoollist),

 createoutoflist(Teacherlist,Schoollist,

 [],Outlist,Clist),

 flatten(Outlist,Outoflist),

 findinginoutlist(Schoollist,Clist,

 [],Schoolinlist),

 findinginoutlist(Schoollist,Outoflist,

 [],Schooloutlist),

 quotaconstraint(Schoollist,Schoolinlist,

 Schooloutlist),

 solve1(RefCost),

 length(Teacherlist,LT),

 bb_min((our_labeling(Clist, 0, RefCost,

 Cost)), Cost,bb_options with

 [from:LT]),

 (nonvar(Cost),showreplacement(Clist),!);

 (Minhappiness1 is Minhappiness+1,

 increment_loop(Teacherlist,

 Minhappiness1,Cost)).

Fig. 2. The “increment_loop” predicate for the first approach

increasing numeric order, and in our labeling predicate this

would result in a teacher not being assigned to a school). In

the second approach, we shall use the built-in element

constraint predicate.

Then each_teacher predicate is called. It gets

Teacherlist and Clist as input. It is the first constraint

of the program which constrains a teacher to locate only to

one school. A teacher cannot exist in more than one school at

the same time. In order to prevent the relocation of a teacher

to more than one school, the sum of all the R values of each

teacher in Clist is constrained to be -1.

 SumofRs # = -1 (3)

We also need to make sure that the constraint

 (Incoming-Outgoing)#<=Quota (4)

is not violated for any school. The quotaconstraint

predicate achieves this. It takes Schoollist,

Schoolinlist, and Schooloutlist as parameters.

It constrains each school such that the difference between the

number of incoming teachers and outgoing teachers to the

school is smaller than or equal to the quota of the school. Its

parameters are generated as follows: The list of schools

Schoollist is generated and passed as an input

parameter to the createoutoflist predicate, together

with Teacherlist and Clist. The predicate

createoutoflist generates the Outlist, flattened

into Outoflist, which has the same structure as

Clist, except that the R value of a teacher becomes -1 in

the school which he/she wants to move out from.

Outoflist contains information about which schools

teachers are moving out of.

Then findinginoutlist predicate is called two

times. In first call, it takes Schoollist and Clist as

input parameters and generates Schoolinlist as

output. It keeps the information of the number of coming

teachers to each school and has the structure [(Schoolname,

NumberOfComingTeachers),…]. In second call of the

findinginoutlist predicate, Schoollist and

Outoflist are passed as input parameters to generate

Schooloutlist which has the same structure with

Schoolinlist but keeps the number of outgoing teachers

for each school: [(Schoolname,

NumberOfOutgoingTeachers)].

The solve1 predicate is then called to get a baseline cost

in its RefCost parameter. solve1 just finds any feasible

solution, without any consideration of optimality. We use this

value to prune the search space when we make incremental

assignments: if the current “cost” has already exceeded the

reference cost, that branch of the search space is not explored

any further. Refcost is passed as a parameter to

our_labeling predicate, which performs assignments to

teachers, keeping track of the value of the utility function

(happiness of the teachers).

Next we have a call to the minimization predicate

bb_min(Goal,Cost,Options). bb_min/3 is a built-in predicate

which finds a solution of the Goal that minimizes the value of

Cost [4]. The goal to be satisfied is our_labeling(

Clist, 0, RefCost, Cost), where Cost is to be

minimized. In our case, Cost is the cumulative happiness

of teachers, as already discussed.

Then we have an OR (;) structure. If the program has

already found the minimum cost, the showreplacement

predicate is called, which prints the teacher names, their

assigned schools, as well as the rank of the school in the

preference order of the teachers. If no solution was found, the

Cost variable is free, Minhappiness is incremented by

1 and increment_loop is called recursively to try to

find a solution by including one more preference of the

teachers to the search space.

D. The Second Modeling Approach

Similarly to the first approach, the main predicate is

solve and the parameter Cost is the minimum cost of the

solution (Fig. 1). The teacher list generated by the solve

predicate is passed on to the increment_loop predicate,

given in Fig. 3. The increment_loop predicate calls

the for_each_teacher predicate that constrains the

teacher choices with the value of MinHappiness and

generates a List of the form [(Teachernamei, Happinessi,

Schooli),..]. The for_each_teacher predicate assigns a

school from the list of teacher choices for each teacher using

built-in predicate element. The element predicate has

signature

increment_loop(Teacherlist,

 MinHappiness,Cost):-

 findall(Y,school(Y,_,_,_),Schoollist),

 for_each_teacher(MinHappiness,

 Teacherlist,[],List),

 coming_teacher_list(List,[],ComersList),

 outgoing_teacher_list(Teacherlist,

 [],OutgoingList),

 constraint_quotas(Schoollist,ComersList,

 OutgoingList),

 solve1(RefCost),

 length(Teacherlist,LT),

 bb_min((our_labeling(List, RefCost, 0,

 Cost)),Cost,bb_options with

 [from:LT]), ! ,

 ((nonvar(Cost),showreplacement(List),!);

 (MinHappiness1 is MinHappiness+1,

 increment_loop(Teacherlist,

 MinHappiness1,Cost)).

Fig. 3. The “increment_loop” predicate for second approach

element(?Index, ++List, ?Value), where Value is the Index'th

element of the integer list List [4]. The

for_each_teacher predicate makes a call to element(
Happiness1, [FirstSchool,SecondSchool,

CurrentSchool], School1). The School1 variable

shows which school Teacher1 is tentatively assigned to and

Happiness1 is the order of Shool1 among the choices of

Teacher1. As mentioned above, this is the main difference

of the two approaches.

Then we have the following constraint, which implements

the incremental search technique.

 Happinessi #=< MinHappiness (5)

It constrains teacher i to be assigned to the first, first two, or

first three choices, in that order (again, the third choice is the

implicit “stay at your current school” option).

The coming_teacher_list predicate gets the List

as an input parameter and generates ComersList which

has the structure of [(Teachernamei, AssignedSchooli)]. This

list depicts which teacher is assigned to which school.

Similarly the outgoing_teacher_list predicate gets

Teacherlist as an input parameter and generates

OutgoingList which has the structure [(Teachernamei,

VacatedSchool)].

Then, as before, we need to make sure that the capacity of

each school is not exceeded in an assignment. The

constraint_quotas predicate does this (Fig. 4). It takes

Schoollist, ComersList, OutgoingList as

input parameters and constrains each school such that the

difference between the number of incoming teachers and

outgoing teachers to the school does not exceed the quota of

the school. The occurrences/3 built-in predicate is used to

determine the number of incoming and outgoing teachers to

each school (the number of times a school occurs in the list of

schools to which teachers are relocated is computed using

this built-in predicate; similarly with outgoing teachers).

constraint_quotas([],_,_).
constraint_quotas([H|T],

 Comers_list,

 Outgoing_list):-

 pred1(Comers_list,[],Comers_list1),

 pred1(Outgoing_list,[],Outgoing_list1),

 occurrences(H,Comers_list1,NewTeachers),

 occurrences(H,Outgoing_list1,

 OutgoingTeachers),

 school(H,_,Quota,_),

 NewTeachers-OutgoingTeachers #<=Quota,

 constraint_quotas(T,Comers_list,

 Outgoing_list).

pred1([],A,A).

pred1([(H,S)|T],Acc,Acc2):-

append(Acc,[S],Acc1),pred1(T,Acc1,Acc2).

Fig. 4. The “constraint_quotas” predicate

The predicate occurrences has signature occurrences(+Value,

+List, ?N) and constrains its arguments such that Value occurs

exactly N times in List [4].

The remainder of the increment_loop predicate is the

same as the one in the first approach.

IV. COMPARISON OF THE TWO APPROACHES

We simulated both approaches to see the difference in their

performance. We generated instances of the problem for

different number of teachers and quotas in schools. The

number of schools was fixed at 10. For a specific number of

teachers, the program corresponding to each approach was run

multiple times, where in every run the number of empty slots

in each school was randomly determined from 1 up to a

maximum number. The average time taken to find the

optimum solution for a specific number of teachers was then

noted for either approach.

Fig. 5 depicts the performance of the two approaches

where the number of vacant slots in each school varies

randomly from 1 to 5.

Quota changes 1 to 5

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

10 15 20 25 30 35 40 45 50

Number of Teachers

C
P

U
 t

im
e
 i
n

 s
e
c
.

Approach1

Approach2

Fig. 5. Number of Teachers vs. CPU time - quota changes from 1 to 5

Quota changes 1 to 10

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

10 15 20 25 30 35 40 45 50

Number of Teachers

C
P

U
 t

im
e
 i
n

 s
e
c
.

Approach1

Approach2

Fig. 6. Number of Teachers vs. CPU time - quota changes from 1 to 10

It is clearly seen that approach 2 takes less time, by a factor of

2 for 50 teachers, to solve the problem.

The solution of the problem becomes easier when we

increase the number of empty slots in each school, because the

teachers can be assigned more easily, possibly without

requiring the relocation of other teachers from a school. In

Fig. 6, the number of empty slots varies randomly from 1 to

10. We see that either approach requires far less time now to

solve the problem, but the second approach still outperforms

the first, and even to a greater degree (a factor of almost 14)

than when the quotas changed from 1 to 5.

Fig. 7 depicts the worst case scenario, where empty slots of

the schools are all zero. Approach 2 still performs better.

However, it is not possible to obtain a solution in a reasonable

amount of time when the number of teachers exceeds 30 using

either approach. This is to be expected, given the exponential

nature of the search space.

Worst Case

0,00

100,00

200,00

300,00

400,00

500,00

600,00

10 15 20 25 30

Number of Teachers

C
P

U
 t

im
e

 i
n

 s
e

c
.

Approach1

Approach2

Fig. 7. Number of Teachers vs. CPU time - all quotas zero

V. RELATED WORK

Solution of many kinds of scheduling problems has been

attempted using Constraint Logic Programming. We have not

found, beside ours in [1], any that attempts to solve the

teacher relocation problem in literature though. In [6], the

Hospitals/Residents Problem is presented, which bears some

resemblance to the teacher relocation problem. In the

Hospitals/Residents Problem, each resident is paired with an

acceptable hospital, in such a way that a hospital’s capacity is

never exceeded. Both the hospitals and residents have

preferences, and a “stable” matching is attempted, where

neither the resident, nor the hospital, would rather be paired

with something/someone else. The authors investigate four

different techniques, two of them being similar to our

assignment of binary values to variables in first approach.

In [7], the author presents a solution to sport tournament

scheduling using the finite domain library of ECLiPSe. He

makes use of a constraint-based depth-first branch and bound

procedure. The optimal solution is found in reasonable time

except in some situations. He also proposes a local search

procedure in order to provide an approximate solution in

shorter time. The authors in [7] examine incremental search in

AI applications by focusing on Lifelong Planning A*. In [9]

the authors present a methodology to solve a job-shop

scheduling problem using constraint logic programming. They

investigate a new strategy to find the optimal solution which

involves step by step decreasing of the upper and lower

bounds of the search space of the branch and bound

evaluation function. The authors in [10] present a solution to

university timetabling problem using the ECLiPSe constraint

logic programming language by stating the constraints in the

most suitable order.

VI. CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

We modeled the teacher relocation problem, defined

originally in [1], using two different approaches in the

constraint logic programming system ECLiPSe and compared

their performance under different scenarios. The first

approach uses logic variables with boolean values. The

second approach uses the built-in predicates “element” and

“occurrence.” In both approaches, incremental search and

pruning techniques are used to speed up the solution process.

Simulations confirm that the approach that uses the built-in

predicates performs better in general. This result probably

should not come as a surprise, given that built-in predicates

are expected to be implemented to perform efficiently.

For future work, given that the framework is already

established, we envisage making the utility function much

more representative of the interests of all involved, such as

schools, the ministry of education and even parents. A WEB

interface can be used to accept the preferences of all parties

involved.

REFERENCES

[1] N. Ilhan, Z. Bayram. “A constraint logic programming solution

to the teacher relocation problem”, accepted to the 2nd

International Computer Engineering Conference (ICENCO

2006), 26-28 December 2006, Cairo, Egypt.

[2] M. G. Wallace. “Practical applications of constraint

programming,” Constraints Journal, 1(1), 1996.

[3] J. Jaffar, M. J. Maher. “Constraint logic programming: A

survey,” Journal of Logic Programming, 19 & 20, 1994, pp.

503-581.

[4] IC-PARC. ECLiPSe 5.7 User Manual, 2003.

[5] K. Marriot, P. Stuckey, Programming with Constraints: An

introduction, The MIT Press, 1998.

[6] D. F. Manlove, G. O'Malley, P. Prosser, C. Unsworth, “A

Constraint Programming Approach to the Hospitals / Residents

Problem,” in Proceedings of the Fourth Workshop on

Modeling and Reformulating Constraint Satisfaction

Problems, held at the 11th International Conference on

Principles and Practice of Constraint Programming, (CP

2005), pp 28-43.

[7] A. Schaerf, “Scheduling Sport Tournaments using Constraint

Logic Programming,” in Proceedings of the 12th European

Conference on Artificial Intelligence (ECAI-96), 1996, pp.

634-639.

[8] S. Koenig, M. Likhackev, Y. Liu, D. Furcy, “Incremental

Heuristic Search in Artificial Intelligence”, AI Magazine,

25(2), 2004, pp 99-112.

[9] J. Paralic, J. Csonto, M. Schmotzer, “Optimal Scheduling

Using Constraint Logic Programming,” in Proceedings of 8th

Symposium on Information Systems IS'97, Varazdin, October

1997, pp. 65-72.

[10] M. Kambi, D. Gilbert, “Timetabling in Constraint Logic

Programming”, in Proceedings of INAP-96: Symposium and

Exhibition on Industrial Applications of Prolog, Tokyo, Japan,

1996.

