
978-1-4244-5023-7/09/$25.00 ©2009 IEEE

September 14-16, 2009
METU
Northern Cyprus Campus663

XLambda: A Functional Programming Language
with XML Syntax

Ruhsan Onder
Department of Computer Engineering

Cyprus International University
Nicosia, T.R.N.Cyprus

Email: ronder@ciu.edu.tr

Zeki Bayram
Department of Computer Engineering

Eastern Mediterranean University
Famagusta, T.R.N.Cyprus

Email: zeki.bayram@emu.edu.tr

Abstract—We describe XLambda, a functional language with
XML syntax, and its processor which is implemented fully and
completely in XSLT. XLambda has all the basic features of a
functional language, such as defining named functions, opera-
tions on numbers, passing functions as parameters, constructing
arbitrary data structures etc. What sets XLambda apart from
the rest of the functional languages is not its feature set though,
but rather its syntax and processor which is implemented as an
XSLT stylesheet. Since most Web browsers have XSLT processors
already built in, XLambda has the potential to be used as
a scripting language in Browsers, much in the same way as
JavaScript, among other possibilities.

I. INTRODUCTION

Functional programming languages have a clean syntax
and well defined semantics. More importantly, control flow
is specified implicitly through function application, and the
resulting code is much more concise, easy to understand and
maintain. Examples of functional languages include Lisp [1],
Haskell [2] and CAML [3].

In this paper, we describe XLambda, a functional lan-
guage with XML syntax. XLambda was developed as part
of a project to implement the operational and denotational
semantics of programming languages in XSLT [4]. Its original
purpose was to serve as the object language in the implemen-
tation of the denotational semantics of another XML based
language, XIM [5]. It has evolved since then, with the addition
of list/tree construction primitives, into a real programming
language, with XML syntax. This, together with the fact that
its processor is implemented completely in XSLT [6], opens
up a whole new world of possibilities for XLambda that
are not available with more traditional functional languages.
These include using XLambda as a scripting language inside
browsers, since most browsers already have XSLT processors
in them. A more esoteric usage area would be encoding
the meaning of objects as lambda expressions (the standard
approach for specifying the meaning of program segments in
denotational semantics) and sending the meaning of an object,
together with the object, over the Internet to be analyzed
by the user of the object. Alternatively, XLambda could be
used to encode agents, to be executed on clients browsers,
since the environment that the agent requires for execution
(i.e. the interpreter for XLambda in the form of an XSLT
stylesheet), would travel with it. We have not as yet exploited

these areas of possible application for XLambda- they are part
of future work. What we describe here is XLambda itself, its
syntax, some example programs in XLambda, and a somewhat
detailed exposition of its implementation in XSLT.

The remainder of this paper is organized as follows. Section
II describes informally the syntax of XLambda. A formal
description as an XML Schema [7] could not be included due
to space considerations. Operational semantics of XLambda
is given in III. Section IV compares XLambda to the very
few langauges with similar features, and points out their
weaknesses compared to XLambda. Finally, we have the
conclusion and future research directions in section V.

II. XLAMBDA SYNTAX

In XLambda, an expression is either an integer (represented
by a <num> element), a λ-variable (represented by a <var>
element), an arithmetic expression (represented by an <op>
element), a boolean expression (represented by a <boolop>
element), a λ-abstraction (represented by a <lambda> ele-
ment), an application (represented by an <apply> element),
or a named function (represented by a <named function>
element). In addition to these expression variants we have
<if> elements to represent conditional constructs (if-then-
else), <pair> elements to represent lists or trees, and also
a <nil> element to indicate empty lists/trees.

The <op> and <boolop> elements for representing arith-
metic/boolean expressions have two child elements.

The <if> elements for the conditional construct have three
children. The first child represents the conditional expression.
The second child represents the then part, and the third child
represents the else part. Figure 1 is an example of if-then-else
construct.

The syntax specification of XLambda is general enough
to be able to represent any lambda calculus expression such
as (λ f. f 3) (λ x. x+1) whose XLambda representation is
depicted in Figure 2. The λ-reducer we implemented and
discussed in Section III can evaluate any λ-expression written
in XLambda syntax. Normal order evaluation is employed
for good termination behavior. α-reduction is used whenever
variable capture is a possibility.

Figure 3 depicts a function in XLambda that takes two
parameters and returns their sum. Figure 4 shows the definition

664

<if>
<apply>

<var name="e"/>
<var name="s"/>

</apply>
<apply>

<named_function name="add">
<num value="1"/>

</apply>
<apply>

<named_function name="add">
<num value="3"/>

</apply>
</if>

Fig. 1. XLambda code for the expression “if (e s) then (add 1) else (add
3)”

<apply>
<lambda var="f">

<apply>
<var name="f"/>
<num value="3"/>

</apply>
</lambda>
<lambda var="x">

<op opname="+">
<var name="x"/>
<num value="1"/>

</op>
</lambda>

</apply>

Fig. 2. XLambda code for the expression (λ f. f 3) (λ x. x+1)

of the well-known recursive factorial function.

III. IMPLEMENTATION OF XLAMBDA OPERATIONAL
SEMANTICS: λ-REDUCTION MACHINE IN XSLT

In this section, we describe in some detail the operational
semantics implementation of XLambda.

A. Evaluation at the Top-Level

We implemented the operational semantics of lambda cal-
culus to be able to evaluate XLambda code. In our implemen-
tation, we used β-reduction and α-conversion together with
a combination of lazy and eager evaluation strategies [8]. In
lazy evaluation, the leftmost outermost redex is first reduced
and evaluation of expressions that are passed as parameters
are deferred until their evaluation is required. That is, in
function applications of the form (e1 e2), e1 is reduced until
an unreducible form is reached (a λ-abstraction) and then β-
reduction is carried out. The advantage of lazy evaluation is
that it has better termination properties as a result of deferred
parameter evaluation and therefore can sometimes produce
results when an eager strategy would enter infinite recursion.
However, care should be taken to avoid evaluating the same
expression more than once. This can happen when a parameter
is used more than once in the body of a function. In this case,
eager evaluation is used to avoid the re-evaluation.

The top-level template for evaluating λ-expressions matches
the root node which encloses the expression and calls template
Evaluate with its first child as depicted in Figure 5.

<define_function name="add">
<lambda var="x">

<lambda var="y">
<op opname="+">

<var name="x"/>
<var name="y"/>

</op>
</lambda>

</lambda>
</define_function>

Fig. 3. A simple function that adds its two parameters

<define_function name="factorial">
<lambda var="n">

<if>
<boolOp test="eq">

<var name="n"/>
<num value="1"/>

</boolOp>

<num value="1"/>

<op opname="*">
<var name="n"/>
<apply>

<named_function name="factorial"/>
<op opname="-">

<var name="n"/>
<num value="1"/>

</op>
</apply>

</op>
</if>

</lambda>
</define_function>

Fig. 4. The well-known recursive factorial function

B. Template Evaluate of The Reducer

The template Evaluate whose algorithm is depicted in
Figure 6 uses the case construct to determine the type of
the incoming expression in parameter $prNode to take action
accordingly. If an <apply> element is under consideration, it
calls itself recursively with the left redex (that is the first child
of the <apply> element), and it makes another recursive call
with the returned result of the first recursive call. This is to
ensure that the leftmost redex is reduced to a λ-abstraction
(because the replacement in the next step can only take place
if the left redex is a λ-abstraction). Then the unevaluated right
redex is replaced in the result of the last recursive call. The
template Replace is called to perform the reduction. After this
replacement another recursive call is performed for evaluating
the result of the replacement.

In the case that the incoming expression to Evaluate is a

<xsl:template match="/">
<xsl:call-template name="Evaluate">

<xsl:with-param name="prNode" select="child::*[1]"/>
</xsl:call-template>

</xsl:template>

Fig. 5. The top-level template for evaluating λ-expressions written in
XLambda

665

input parameter:
$prNode (expression to be evaluated)
Case (the incoming parameter $prNode) of

• an <apply> element :
1) Call Evaluate recursively with the 1st child of <apply> to

evaluate left redex and store result in variable $Tex
2) Call Evaluate recursively with $Tex to evaluate result of step 1

and store result in variable $Expr
3) To reduce the right redex in the evaluated left redex call Reduce

with $Expr as parameter $redex, 2nd child of <apply> (the right
redex) as parameter $substitute and the bound variable of $Expr
as parameter $bound and store result in variable $reduced

4) Call Evaluate with the result of reduction in step 3 and return
result

• a <lambda>, <num>, <var>, <nil> element : return the node as
result

• a <named function> element : match the corresponding definition
of the named λ-abstraction in “auxiliaries.xml” and return it (that is
retrieve the <define function> element having attribute @name equal
to the attribute @name of incoming <named function> element)

• an <if> element : Evaluate 1st child (condition) with a recursive call
to Evaluate, if the returned result is equal to “1” call Evaluate with 2nd
child (then part), otherwise call Evaluate with 3rd child (else part)

• an <op> or <boolOp> element :
1) Call Evaluate with 1st child (left operand) get the attribute

@value of the returned result (since a <num> element is
returned) and store in variable $O1

2) Call Evaluate with 2nd child (right operand) get the attribute
@value of the returned result and store in variable $O2

3) Return the result of performing the corresponding operation
(indicated by the attribute @opname in case of <op> and @test
in case of <boolOp>) on $O1 and $O2 in a <num> element

• a <pair> element:
Call Evaluate with each child and return the result as a <pair>

• an <is-null> element :
Call Evaluate with the 1st child and test if the result of evaluation is
null. If it is so then return 1, otherwise return 0

• a <first> element :
Call Evaluate with the 1st child and return the first child of the result
of the evaluation

• a <rest> element :
Call Evaluate with the 1st child and return the second child of the result
of the evaluation

Fig. 6. Algorithm of the template Evaluate of the λ-reducer

<lambda> element (i.e. a λ-abstraction), it is returned back
as it is.

When an <if> element is encountered, first Evaluate is
called with its first child, the condition, then according to
the returned result Evaluate is called with either one of its
remaining two children (that is then part or else part).

In case of a <named function> the lambda code for
the corresponding named λ-abstraction is obtained from the
“auxiliaries.xml” document by the use of the “document()”
function provided by XSLT [6]. The “document()” function
provides access to the contents of the document whose path
is supplied. The fully qualified name of the file containing
named λ-abstractions of the auxiliary functions is supplied as
a parameter to the “document()” function and the XPath ex-
pression “//define function[@name= $prNode/@name]/child
::*[1]” is concatenated to this call for matching the corre-
sponding <define function> element which has the @name
attribute same as the @name attribute of the incoming
<named function> element in $prNode.

input parameters:
$redex (expression to be reduced)
$bound (bound variable of the redex)
$substitute (expression which will replace the occurrences of the $bound)
$flag (0:no substitution only α-conversion can be performed, 1:substitution is
allowed besides α-conversion)
Case (the incoming parameter $redex) of
a <lambda> element :

1) If this inner λ-abstraction binds a variable having the same name as
$bound (if $bound=$redex/@var)
Then no reduction is performed (an inner λ-scope binding the same
variable)
Call Replace for all children of $redex with $flag=0 (to prevent
substitution of the variable bound in the local scope and permit only
α conversion)

2) Else if this inner λ-abstraction binds a variable having the same name
with $substitute ($substitute/@name=$redex/@var) or substitute is an
expression rather than a single free variable
Then apply α-conversion with β-reduction
Rename bound variable of inner λ-expression and all of its occurrences
while substituting $bound with $substitute
Else (no need for α-conversion)
Perform substitution and Call Replace for all children of $redex

an <apply>, <op>, <boolOp>, <if>, <pair>, <is-null>, <first>,
<rest> element : Call Replace for all children of $redex
a <named function>, <num>, <nil> element : no substitution
a <var> element :

1) If <var> has the same name with $bound : if (flag=1) then substitute
<var> with $substitute else no substitution (variable is bound in the
inner scope)

2) Else if <var> has the same name with $substitute or $substitute is an
expression rather than a single free variable Then apply α-conversion
(rename <var>)
Else no substitution, no renaming

Fig. 7. Algorithm of the template Replace which performs β-reduction and
α-conversion as needed

<apply>
<lambda var="y">

<lambda var="x">
<op opname="+">

<var name="x"/>
<var name="y"/>

</op>
</lambda>

</lambda>
<var name="x"/>

</apply>

Fig. 8. XLambda code for (λ y.λ x. x+y)x

<lambda var="x1">
<op opname="+">

<var name="x1"/>
<var name="y"/>

</op>
</lambda>

Fig. 9. Result of evaluating expression of Figure 8, λ x1. x1+x

666

<apply>
<lambda var="x">

<apply>
<lambda var="y">

<lambda var="x">
<apply>

<var name="y"/>
<var name="x"/>

</apply>
</lambda>

</lambda>
<lambda var="z">

<op opname="+">
<var name="x"/>
<var name="z"/>

</op>
</lambda>

</apply>
</lambda>
<op opname="+">

<var name="z"/>
<num value="1"/>

</op>
</apply>

Fig. 10. XLambda code for (λ x.(λ y.λ x. y x)(λ z. x+z)) (z+1)

<lambda var="x1">
<apply>

<lambda var="z1">
<op opname="+">

<op opname="+">
<var name="z"/>
<num value="1"/>

</op>
<var name="z1"/>

</op>
</lambda>
<var name="x1"/>

</apply>
</lambda>

Fig. 11. Result of evaluating expression of Figure 10, λ x1. ((λ z1. z+1+z1)
x1)

<pair>
<num value="1"/>
<pair>

<num value="2"/>
<pair>

<num value="3"/>
<nil>

</pair>
</pair>

</pair>

Fig. 12. Representation of list [1,2,3] in XLambda

<rest>
<pair>

<num value="1"/>
<pair>

<num value="2"/>
<pair>

<num value="3"/>
<nil>

</pair>
</pair>

</pair>
</rest>

Fig. 13. Application of <rest> on the list of Figure 12

<pair>
<num value="2"/>
<pair>

<num value="3"/>
<nil>

</pair>
</pair>

Fig. 14. The result of evaluating the expression in Figure 13

For elements <var>, <num> and <nil>, the element itself
is returned. For <op> or <boolOp> elements, Evaluate is
called for each child and the specified mathematical or logical
operation is performed on the returned values. The result
of an evaluated operation is returned in a <num> element.
Therefore, each time the value returned from an evaluation is
required, the @value attribute of the returned result is taken.

When a <first> element is encountered, the template
Evaluate is called with its first child and the first child of the
result of the evaluation is returned. Likewise, in the processing
of a <rest> element, the template Evaluate is called with the
first child of the <rest> element and the second child of the
result of evaluation is returned. If an <is-null> element is
the case, the template Evaluate is called with its first child to
determine whether the result is null or not.

C. Template Replace for Performing β-Reduction and α-
Conversion

The template Replace whose algorithm is depicted in Figure
7 takes four parameters: the first one is the expression to be
reduced ($redex), the second one is the name of the bound
variable which will be replaced ($bound), while the third one
is the substitute expression ($substitute) that will replace the
occurrences of the bound variable. The fourth parameter is
$flag indicating if substitution will take place. This parameter
is necessary in order not to substitute a bound variable of an
inner scope which has the same name of the bound variable of
an outer one. This template checks all children of the redex to
find the bound variables to be replaced and replaces them with
the substitute expression. It also considers inner λ-abstractions
whose bound variable has the same name with the bound
variable that is being replaced. In such a case, this inner λ-
abstraction constitutes a local scope and therefore it remains
unreduced, only α-conversion is applied when necessary.
The conditions requiring α-conversion is considered by the
implementation of necessary condition checks to determine if
the substitute expression is a single variable having the same
name with a bound variable of an inner λ-abstraction. In such
a case, all the occurrences of the λ-variable in the inner scope
that has the same name will be renamed by concatenating ‘1’
to its name. Another condition is set to check if the substitute
expression is not a single variable but a composed expression
with free variables in it. In such a case, the occurrences of
the bound variable in the inner λ-scope is renamed without
further checking to see if there are matching names of the free

667

<first>
<rest>

<pair>
<num value="1"/>
<pair>

<num value="2"/>
<pair>

<num value="3"/>
<nil>

</pair>
</pair>

</pair>
</rest>

</first>

Fig. 15. Nested application of <first> and <rest> on the list of Figure 12

<apply>
<apply>

<named_fuction name="append"/>
<pair>

<num value="1"/>
<nil/>

</pair>
</apply>
<pair>

<num value="2"/>
<pair>

<num value="3"/>
<nil/>

</pair>
</pair>

</apply>

Fig. 16. XLambda code to append [2,3] to [1]

variables of the substitute expression and the bound variable
of the inner scope.

The template Replace, uses the case structure to determine
the type of the node under consideration and uses recursion
to check all children of the redex. When the redex incom-
ing within the parameter $redex is a <named function>, a
<num>, or a <nil> element representing an identifier, it
remains unchanged. In case of a <lambda> element under
consideration, the tests discussed above are performed to
decide either to leave the λ-abstraction unchanged, or apply
substitution of the occurrences of bound variable ($bound) and
perform rename in case of situations requiring α-conversion.
The same tests are applied for the case of the incoming redex
is a <var> element that is either a free or a bound variable.

When the incoming redex is one of the elements
<apply>, <if>, <op>, <boolOp>, <rest>, <first>, <is-
null> or <pair>, the template Replace is called for all
children recursively.

Figures 8 and 10 show two cases requiring α-conversion
(i.e. renaming). Figures 9 and 11 are the result of evaluating
these expressions with our λ-reducer.

D. Named Lambda Abstractions

The definitions of some named λ-abstractions such as
append and doWhile are stored in the “auxiliaries.xml” file,
whose partial contents is given in Figure 17. Named λ-
abstractions are applied on the required parameters by the use

of nested <apply> elements.

E. Implementation of the List/Tree Manipulation Functions

A list/tree is implemented using the <pair> element in
XLambda. An example of a list is given in Figure 12. The
list/tree manipulation functions are first to retrieve the first
element in a list, rest to retrieve the elements other than the
first one in a list and is-null to check if a given list is empty.
Figure 13 shows the application of rest on the list given in
Figure 12 and Figure 14 shows the result of evaluation. The
nested application of rest and first is given in Figure 15 which
yields <num value=“2”/> as the result. Figure 16 shows a
code fragment to append list [2,3] to another list [1]. The
evaluation of this code yields the list [1,2,3] as shown in Figure
12.

IV. RELATED WORK

The distinction of XLambda from the other functional
languages in literature such as Haskell [2], Lisp [1] and CAML
[3], is that, it combines Web technologies with the merits of
a functional language.

Meijer and Shields introduce XMλ in [9] to be used in place
of server side languages such as CGI Perl scripts [10], Active
Server Pages (ASP) [11] or Java Server Pages (JSP) [12] to
generate XML or HTML from query results in case of client
applications querying server databases. Their argument is that,
mixing static XML Web technologies together with dynamic
behavior of server side scripting languages creates a layering
up of languages and DOM APIs that are needed to access and
manipulate XML documents, and this results in the loss of the
connection between the generated documents and their DTDs
or Schemas. They suggest the use of a single XML based
functional language, namely XMλ, to produce XML or HTML
from the query results conforming to the provided DTDs or
Schemas. Nevertheless, they have not implemented XMλ yet.
On the other hand, XLambda together with its evaluator λ-
reducer, is a full-fledged functional language. XLambda can
be used in the same way as XMλ is proposed by Meijer and
Shields in [9].

Meijer and VanVelzen suggested the use of Haskell for
generating dynamic Web content in [13] and named their
approach as Haskell Server Pages (HSP). They claim to
benefit from the functional programming approach of Haskell
by implementing HSP as a simple preprocessor to Haskell.
However they have problems in pattern matching of XML
fragments and in the validation of XML documents against a
DTD without resorting to high level languages and APIs. They
were planning to remedy these problems by the use of XMλ
when it will be implemented [9]. The difference between HSP
and XLambda is that HSP is a server-side technology, whereas
XLambda runs on the client-side.

V. CONCLUSION AND FUTURE WORK

We described the syntax and operational semantics of a
novel functional language XLambda which has XML based
syntax. The fact that the operational semantics of XLambda

668

<auxiliaries>
<define_function name="append">

<lambda var="L1">
<lambda var="L2">

<if>
<is-null>
<var name="L1"/>

</is-null>
<var name="L2"/>
<pair>

<first>
<var name="L1"/>

</first>
<apply>

<apply>
<named_function name="append"/>
<rest>

<var name="L1"/>
</rest>

</apply>
<var name="L2"/>

</apply>
</pair>

</if>
</lambda>

</lambda>
</define_function>

<define_function name="doWhile">
<lambda var="e">

<lambda var="b">
<lambda var="s">

<if>
<apply>

<var name="e"/>
<var name="s"/>

</apply>
<apply>
<apply>

<apply>
<named_function name="doWhile"/>
<var name="e"/>

</apply>
<var name="b"/>

</apply>
<apply>

<var name="b"/>
<var name="s"/>

</apply>
</apply>
<var name="s"/>

</if>
</lambda>

</lambda>
</lambda>

</define_function>
</auxiliaries>

Fig. 17. The definitions of named abstractions

is implemented completely in XSLT makes XLambda unique
among all functional languages and opens up possibilities for
XLambda that are not available for other languages. These
possibilities include using it as a scripting language in Web
browsers without the need for browser add-ons, encoding the
meaning of objects as lambda expressions and sending the
meaning of an object, together with the object over the Internet
to users of the object, and encoding agents that run inside
browsers.

For future work, we are planning to explore the implemen-
tation of agents that run in client browsers, using XLambda.

REFERENCES

[1] P. Winston and B. Horn, Lisp. Reading, MA: Addison-Wesley, 1989.
[2] Haskell Community. (2009) HaskellWiki. [Online]. Available:

http://haskell.org/

[3] INRIA (French National Research Institute For Computer Science).
(2009) The CAML Language: Home. [Online]. Available:
http://caml.inria.fr/

[4] Ruhsan Onder, “Specification and Implementation of Programming
Language Semantics using Extensible Stylesheet Language Transforma-
tions,” Ph.D. dissertation, Eastern Mediterranean University, Famagusta,
North Cyprus, February 2008.

[5] R. Onder and Z. Bayram, “Interpreting Imperative Programming Lan-
guages In Extensible Stylesheet Language Transformations (XSLT),” in
Proceedings of the IASTED International Conference on Internet and
Multimedia Systems and Applications (EuroIMSA 2005), Grindelwald,
Switzerland, February 2005, pp. 131–136.

[6] W. W. W. Consortium. (2009) XSL Transformations (XSLT). [Online].
Available: http://www.w3.org/TR/xslt

[7] ——. (2009) W3C XML Schema. [Online]. Available:
http://www.w3.org/XML/Schema

[8] H. Barendregt and E. Barendsen, Introduction to Lambda Calculus. Pro-
gramming Methodology Group, University of Göteborg and Chalmers
University of Technology, 1988.

[9] E. Meijer and M. Shields, “XMλ: A functional language for constructing
and manipulating XML documents,” 1999, unpublished. [Online].
Available: http://www.cartesianclosed.com/pub/xmlambda/index.html

[10] L. D. Stein. (2009) Official guide to programming with cgi.pm.
[Online]. Available: http://www.wiley.com/legacy/compbooks/stein/

[11] S. Walther, ASP.NET 3.5 Unleashed. Sams, 2008.
[12] Sun Developer Network. (2009) JavaServer Pages Technology. [Online].

Available: http://java.sun.com/products/jsp/
[13] E. Meijer and D. van Velzen, “Haskell server pages - functional

programming and the battle for the middle tier,” Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8202, 2000.

