
Research Article
Prefiltering Strategy to Improve Performance of Semantic
Web Service Discovery

Samira Ghayekhloo and Zeki Bayram

Department of Computer Engineering, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin 10, Turkey

Correspondence should be addressed to Samira Ghayekhloo; sghayekhloo@gmail.com

Received 25 May 2015; Revised 12 August 2015; Accepted 14 September 2015

Academic Editor: Wan Fokkink

Copyright © 2015 S. Ghayekhloo and Z. Bayram. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Discovery of semantic Web services is a heavyweight task when the number of Web services or the complexity of ontologies
increases. In this paper, we present a new logical discovery framework based on semantic description of the capability of Web
services and user goals using F-logic. Our framework tackles the scalability problem and improves discovery performance by
adding two prefiltering stages to the discovery engine. The first stage is based on ontology comparison of user request and Web
service categories. In the second stage, yet more Web services are eliminated based upon a decomposition and analysis of concept
and instance attributes used inWeb service capabilities and the requested capabilities of the client, resulting in a much smaller pool
of Web services that need to be matched against the client request. Our prefiltering approach is evaluated using a newWeb service
repository, calledWSMO-FL test collection.The recall rate of the filtering process is 100% by design, since no relevantWeb services
are ever eliminated by the two prefiltering stages, and experimental results show that the precision rate is more than 53%.

1. Introduction

Semantic Web has been a popular topic of research since its
introduction by Berners-Lee et al. in 2001 [1]. Based on this
idea, automation of many tasks on the Internet is facilitated
through the addition of machine understandable seman-
tic information to Web resources. For instance, automatic
discovery of Web services based on their functionality or
composition of Web services which cannot fulfil the user
requests individually becomes possible [2].

In recent years, complexity of conceptual models (e.g.,
WSMO [3] and OWL-S [4]) for semantic description of
Web services as well as the increasing number of advertised
services in repositories made the discovery processes of
semantic Web services a heavyweight task [5]. In order to
deal with the problem of scalability, researchers proposed
various methods, such as indexing and caching mechanism
[6], preprocessing strategies before actual matching [7, 8],
and hybrid matchmakers that combine logic-based and non-
logic-based reasoning [9, 10].

This paper presents a new logical framework and two
prefiltering strategies to improve the speed and accuracy of

automated Web service discovery. Our discovery framework
is based on the WSMO conceptual model for semantically
describing user requests (goals), Web services, and domain
ontologies. During the discovery process, goal capability
descriptions such as inputs, outputs, preconditions, and
postconditions (effects) are compared with advertised Web
service capability descriptions in order to determine whether
they match or not. Logical inference is utilized for matching,
which guarantees that the capability requested by the goal is
indeed satisfied by the capability of the Web service and also
that theWeb service has all it needs before it starts execution.
Capability reasoning of goal and advertised services relies on
ontologies which are used both to describe the services and
goals and also to describe the common vocabulary needed by
the services and goals.

Our two prefiltering stages are used to eliminate Web
services that cannot possibly be successfully matched and
reduce the number of Web services which go through
the logic-based matching stage. Our first prefiltering stage
uses a categorization scheme of Web services. Our second
prefiltering stage uses a new technique of extracting attributes
and concepts of objects utilized in the goal and the Web

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 576463, 15 pages
http://dx.doi.org/10.1155/2015/576463



2 Scientific Programming

service pre- and postconditions. Our technique can deal with
objects and predicates that occur in a logical formula with
usage of the conjunction (and) logical operator. We also
make use of ontology-basedmediation between concepts and
attributes, so that two syntactically different symbols may be
declared to denote the same thing semantically.

The remainder of this paper is organized as follows.
Section 2 presents background information on the WSMO
model, F-Logic, FLORA-2, and our logical discovery frame-
work. In Section 3, F-Logic formalization of goal and Web
services is described. Section 4 describes our preprocessing
algorithms and shows how they work to reduce the run-time
processing requirements in the matching phase. Section 5
shows experimental results of utilizing our proposed algo-
rithms, as well as the evaluation of these results. In Section 6
we briefly describe related works on this field, and finally in
Section 7 we have the conclusions and future works.

2. Background

Our semantic Web service discovery framework focuses
on Web services, goals, ontologies, and mediators that are
semantically described based on the WSMO [11] model
and using the F-Logic [12] language as implemented in the
FLORA-2 [13] logic system.The following subsections briefly
introduce WSMO and its core elements, F-Logic, along with
its reasoner FLORA-2 and our logical semantic Web service
discovery framework.

2.1. WSMO Definition. Web services are semantically de-
scribed by providing a high level declarative specification
of Web service functionality and nonfunctional properties
in order to facilitate automatic discovery, composition, and
invocation of Web Services. Two prominent models in
semantic Web service descriptions are Web Service Mod-
elling Ontology (WSMO) [3] and Web Ontology Language
for Services (OWL-S) [4]. There also exist other special
purpose languages for the semantic description of Web
services, such as DIANE Service Description (DSD) language
[14] and Semantic Annotation for WSDL and XML schema
(SAWSDL) [15].

WSMO comprises four core elements, namely, ontology,
goal, Web service, and mediator. Ontology is defined as a
formal, explicit specification of a shared conceptualization
[16]. In the context of semantic Web services, ontology pro-
vides a common vocabulary to denote the types in the form
of classes or concepts, properties, and interrelationships of
concepts in a domain. Goal describes what the requester can
provide and what it expects from a Web service.Web service
description represents different functional andnonfunctional
features of a deployedWeb service. Finally,Mediator handles
heterogeneity problems that possibly arise between goals,
Web services, and ontologies.

2.2. F-Logic and FLORA-2. F-Logic (frame logic) is a pow-
erful logic language with object modelling capabilities. It is
used as a foundation for object-oriented logic programming
and knowledge representation. Two popular reasoners of

F-Logic are FLORA-2 and OntoBroker [17]. Our proposed
intelligent agent for semantic Web service discovery uses
the FLORA-2 reasoning engine. FLORA-2 is considered
as a comprehensive object-based knowledge representation
and reasoning platform. The implementation of FLORA-
2 is based on a set of run-time libraries and a compiler
to translate a unified language of F-Logic [12], HiLog [18],
and Transaction Logic [19, 20] into tabled Prolog code [13].
Basically, FLORA-2 supports a programing language that
is a dialect of F-Logic including numerous extensions that
involves a natural way to do meta-programming in the style
of HiLog, logical updates in the style of Transaction Logic,
and a form of defeasible reasoning described in [21].

2.3. Our Logical Semantic Web Service Discovery Framework.
In general, Web service discovery is the process of finding
appropriateWeb services with respect to the user request and
ranking of discovered services based on user preference. Our
discovery framework receives WSMO goal descriptions and
WSMOWeb service descriptions, all coded in F-Logic, along
with related mediators and ontologies as input entities and
for each goal returns an ordered list of Web services that can
satisfy the needs of the goal.

Figure 1 depicts the architecture of our discovery frame-
work. The framework consists of four stages: (i) the creation
andmaintenance of goals andWeb services alongwith related
domain ontologies and mediators, (ii) prefiltering stages,
(iii) matchmaker, and (iv) ranking stage. In the creation
and maintenance stage, Web service and goal descriptions
which are specified based on our modified WSMO model,
along with domain ontologies and mediators, are stored in
different repositories. In the prefiltering stages, for a given
goal, advertised Web services are filtered in two steps in
order to narrow down the list of Web services that can be
possible matches for the goal, the rest of the Web services
being eliminated from consideration. In the matchmaker
stage, the logical matchmaker checks whether each filtered
Web service can really execute in a way such that the user
goal is achieved. Finally, the ranking stage returns lists of
matchedWeb services based on user preference regarding the
minimization of some numeric result (e.g., the cost of a flight
between two cities).

Focus of this paper is on our novel filtering strategies that
we explain in detail in Section 4. Here we briefly describe our
logical matchmaker mechanism.

Our logical matchmaker algorithm makes use of pre-
conditions and postconditions of goals and Web services, as
well as related domain ontologies and mediators which are
imported in service descriptions. The proof commitments
(i.e., what must be proven before a match can succeed)
required for our logical inference based matching are given
as follows:

(1) Onts ∧ Mediator ∧ Goal.Pre ⊨ Ws.pre: the precon-
dition of the Web service (Ws.Pre) should be logi-
cally entailed by imported ontologies, mediators, and
what is provided/guaranteed by the goal precondition
(Goal.Pre).



Scientific Programming 3

1

2

3

4

Mediators Service 
repository

User 
request

Filtered service 
repository

Matchmaker
List of 

discovered 
services

Ranking 

List of ranked services
based on user 

preference 

Domain 
ontologies

Capability_based filtering

Category_based filtering

Figure 1: Proposed semantic Web service discovery framework including two prefiltering stages.

(2) Onts ∧ Mediator ∧ Goal.Pre ∧ (Ws.pre⇒Ws.post) ⊨
Goal.post: if the postconditions for the Web service
were satisfied, then the requirements of the goal
should be satisfied. Note how we assume that the
execution of the Web service guarantees the validity
of the implication inWs.pre⇒Ws.post.

3. Web Service and Goal
Specification in F-Logic

In Listings 1, 2, and 3 we have the meta-level concept
definitions ofWSMO[11], with several enhancements. Listing
1 contains the Goal concept, instances of which are used
to specify a user’s request. It has attributes for nonfunc-
tional properties (such as quality of service, response time,
and security), category information (such as transportation,
education, and food), ontologies that need to be consulted
that contain specific information about a domain (e.g.,
flight information ontology and geographical information
ontology), mediator information (ontologies that deal with
discrepancies in terms of defining equivalence classes of
terms and synonymous relationship between them), capabil-
ity needed from theWeb service, and the interface demanded
from the Web service (i.e., orchestration and choreography).

The hasCategory attribute has been newly introduced in our
framework in order to allow for filtering based on categories.

The Service concept given in Listing 2 is almost identical
to the Goal concept. Its two differences are as follows: (i)
it specifies the provided capability instead of the requested
capability, and (ii) it has an extra attribute called otherSource
(not in the original WSMO specification) which lists the
concepts that should be excluded from consideration in the
filtering phase, since objects that are instances of the listed
concepts should come from other sources, such as imported
ontologies, and are not in the goal.

Listing 3 is the definition of the Capability concept. It has
attributes for nonfunctional properties, imported ontologies,
mediators used, precondition, assumption, postcondition,
effect, and optimization.The optimization attribute allows the
user to specify that theWeb service returned by the discovery
engine should be optimized with respect to some measure
(e.g., price of a flight) and is an enhancement of the original
WSMO specification.

When a capability object is part of a goal, precondition
is a conjunction of embedded objects in the form of F-logic
molecules which specify the information provided by the
request to the Web service, and postcondition is a logical
expression possibly containing embedded objects, predicates,



4 Scientific Programming

Goal [|
hasNonFunctionalProperty⇒ NonFunctionalProperty,
hasCategory⇒ Category,
importsOntology⇒ Ontology,
usesMediator⇒Mediator,
requestsCapability⇒ Capability,
requestsInterface⇒ Interface
|].

Listing 1: Goal concept in our extended version of WSMO.

Service [|
hasNonFunctionalProperty⇒ NonFunctionalProperty,
hasCategory⇒ Category,
importsOntology⇒ Ontology,
usesMediator⇒Mediator,
hasCapability⇒ Capability,
hasInterface⇒ Interface,
otherSource⇒ OntologyConcept
|].

Listing 2: Web service concept in our extended version of WSMO.

Capability [|
hasNonFunctionalProperty⇒ NonFunctionalProperty,
importsOntology⇒ Ontology,
usesMediator⇒Mediator,
hasPrecondition⇒ Axiom,
hasAssumption⇒ Axiom,
hasPostcondition⇒ Axiom,
hasEffect⇒ Axiom,
optimization⇒ OptSpecification
|].

Listing 3: Capability concept in our extended version of WSMO.

conjunction, disjunction, and negation operators. All logic
variables in a goal postcondition are implicitly existentially
quantified.

However, inside aWeb service specification, precondition
is a logical expression possibly containing embedded objects
in the form of F-Logic molecules, predicates, conjunction,
disjunction, and negation operators, where all logic variables
are existentially quantified, and postcondition is a conjunc-
tion of embedded objects which specify the information
provided by theWeb service to the requester that is the result
of the Web service execution. Note the similarities between
the goal postcondition andWeb service precondition, as well
as the goal precondition and Web service postcondition.

Listings 4 and 5 show the main parts of a goal and a Web
service specifications, respectively, among various available
types of goals and Web services in our repository.

Listing 4 depicts capability descriptions of a goal instance,
which belongs to AirTransportation category and describes a
request for a flight ticket from Berlin to Istanbul and specifies
that the user wants Sabiha Gokcen as a destination airport.
The requester also demands flights that have a total cost less
than 500$ for 2 people, and each returned flight must have
the minimum cost among all other relevant flights. Note that
logic variables start with the “?” symbol.

Listing 5 depicts part of the capability and category
descriptions of a Web service instance in our Web service
repository. The Web service instance belongs to the Plane-
Transportation category and provides flight reservation for
users who request a flight from one place to another. This
Web service asks for source and destination cities, desired
departure and arrival date, and number of people who would
like to reserve this flight, consults two ontologies containing



Scientific Programming 5

Goal Instance
“Book a flight from Berlin to Istanbul”
hasCategory → AirTransportation,
requestsCapability → ${goal 1[

hasPrecondition→
${reqFlight[

originateCity → berlin,
terminalCity → istanbul,
departureDate → ?DDate,
returnDate → ?RDate,
numberPeople → 2

]:RequestTicket
},

hasPostcondition→
(${?BookTicket[

departureDate → ?DDate,
returnDate → ?RDate
fromAirport → ?FromAirport,
toAirport → ?ToAirport,
cost → ?TotalCost

]:Response
},
is equal(?ToAirport, Sabiha Gokcen),
less(?TotalCost, 500)

),
optimization→

${optObj[optCost → ?TotalCost]}
]

}

Listing 4: Part of goal instance specification dealing with the
capability desired and the category of the desired service.

flight information (FlightInfo ont) and geographical infor-
mation (Geographical ont), and returns the list of matching
flights ordered according tominimum cost.The precondition
needs two objects, one coming from the goal (instance
of RequestFlightTicket) and one coming from an imported
ontology (instance of Flight). The predicate mult multiplies
its first and second parameters and binds its third parameter
to the result. It is user-defined.

4. Proposed Two-Phase
Prefiltering Mechanism

We propose a solution to tackle the scalability problem by
adding two prefiltering stages before the logical matchmaker
stage of our discovery framework. We call these two pre-
processing algorithms, which offer different filtering levels,
Category based Filtering (Cat Filt) and Capability based Fil-
tering (Cap Filt).

Our algorithms that perform preprocessing reduce the
input data of service matchmaking, so that the matching
process is more streamlined; only logical reasoning about
Web services that really matter with respect to the goal is
carried out.

These preprocessing steps are performed through the
main predicate which is called %filterMain in Listing 6.

Web service
“Reserve a flight”
hasCategory → PlaneTransportation,
importsOntology →

{' . . ./FlightInfo ont.flr',
' . . ./Geographical ont.flr'},

hasCapability → ${ ws x[
hasPrecondition→

(${?ReqFlight[
startCity→ ?FromCity,
endCity→ ?ToCity,
departureDate→ ?DDate,
returnDate→ ?RDate,
numberPeople→ ?HNumber

]: RequestAirplainTicket }
,

${?SomeFlight[
departureDate→ ?DDate,
returnDate→ ?RDate,
fromAirport→ ?FromAirport,
toAirport→ ?ToAirport,
cost→ ?Cost

]:Flight }
,

mult(?Cost, ?HNumber, ?TotalCost)),
hasPostcondition→

${response[
departureDate→ ?DDate,
returnDate→ ?RDate,
fromAirport→ ?FromAirport,
toAirport→ ?ToAirport,
cost→ ?TotalCost

]:Response}
]

}

Listing 5: Part of Web service instance specification dealing with
the capability and the category of the provided service.

Output of this predicate is list of goals and their related Web
services which are inserted into the knowledge base called
RelatedGoalWsModule for the subsequent logical match-
maker phase. Listing 6 shows two filtering stages of this
predicate.

To facilitate understanding of the code, let us give a brief
introduction to object-oriented notation used in FLORA-2.
Suppose that O and C are two objects. O : C means that O is
an instance of C (in FLORA-2, an object can simultaneously
be a class). C :: D means that C is a subclass of D. Also for
user-defined equality, suppose that O1 and O2 are different
names (called id-terms in FLORA-2 terminology) that are
supposed to denote the same object. This fact is stated in
FLORA-2 with the notation O1 :=: O2. This facility enables
the user to state that two syntactically different (and typically
nonunifiable) terms represent the same object and can be
used to define synonymy between such terms.

For each goal-Web service pair, the first stage, Cat Filt,
uses the Global Cat Ont to check semantic similarity of the
goal category (𝐶𝑎𝑡𝑔) against theWeb service category (𝐶𝑎𝑡𝑤).



6 Scientific Programming

(1) %FilterMain:- ? Inserted = setof{ ?Ins |
//- - - - - - - - -First stage of filtering- Cat Filt- - - - - - - - - - - - - -

(2) ?GoalName[hasCategory→ ?GoalCat]@? GoalModule,
(3) ?WsName[hasCategory→ ?WsCat]@? WsModule,
(4) ((?WsCat :=: ?GoalCat); (?WsCat :: ?GoalCat); (?GoalCat ::?WsCat)),

//- - - - - - - - - -Second stage of filtering- Cap Filt- - - - - - - - - -
(5) %Filter Cap (?GoalName, ?WsName),
(6) alreadySelected(?WsName, GOAL)@FilteredWsModule,
(7) alreadySelected(?WsName, WEBSERVICE)@FilteredWsModule,
(8)
(9) insert{related(?GoalName, ?WsName)}@RelatedGoalWsModule,
(10) ?Ins=related(?GoalName, ?WsName)
(11) }.

Listing 6: Prefiltering process containing two filtering stages (lines 2 to 4: Cat Filt; lines 5 to 10: Cap Filt).

(1) Cat Filt(𝑔) = {𝑤 | 𝑔 has a category specified,
(2) 𝑤 ∈ 𝑊,
(3) 𝐶𝑎𝑡

𝑤
∈ Global Cat Ont,

(4) 𝐶𝑎𝑡
𝑔
∈ Global Cat Ont,

(5) (𝐶𝑎𝑡
𝑤
:: 𝐶𝑎𝑡

𝑔
or 𝐶𝑎𝑡

𝑔
:: 𝐶𝑎𝑡

𝑤
or 𝐶𝑎𝑡

𝑤
:=: 𝐶𝑎𝑡

𝑔
)} ∪

(6) {𝑤 | 𝑤 ∈ 𝑊, 𝑤 does not have a category specified} ∪
(7) {𝑤 | 𝑔 does not have a category specified, 𝑤 ∈ 𝑊}.

Formula 1: Definition of Cat Filt as a function.

According to Listing 6 line (4), if 𝐶𝑎𝑡𝑔 and 𝐶𝑎𝑡𝑤 are equal,
synonymous, or in an inheritance relationship with one
another, theWeb service is kept for the next stage; otherwise it
is discarded. In the second stage, Cap Filt, first attributes and
concepts of objects utilized in the goal and the Web service
pre- and postconditions are extracted by our new algorithm
(described in Section 4.2). Then, extracted concepts and
attributes as well as our ontology-based mediation are used
to select Web services which satisfy the following conditions.

(i)Their precondition concepts and attributes are a subset
of, equal to or synonymous with the goal precondition con-
cepts and attributes, and (ii) their postconditions’ concepts
and attributes are a superset of, equal to or synonymous with
the goal postcondition concepts and attributes. Each goal is
then logically tested for an exact match with only the Web
services that survive the two-phase filtering process.

Our current scheme of Cap Filt deals with logical
expressions involving only the conjunction operator, positive
molecules, and predicates. We shall consider extension of
the scheme to deal with any logical expression involving the
negation and disjunction operators as well as the conjunction
operator in future works.

In the following sections, we describe the two filtering
stages in more detail.

4.1. Filtering according to Categories (Cat Filt). The Cat Filt
stage filters the original Web services repository according
to both specified categories and synonyms defined in the

Global Cat Ont ontology. Figure 2 illustrates part of hierar-
chical structure of our specified domains in Global Cat Ont,
which currently contains the three major categories for
transportation, food, and education.

Global Cat Ont contains both structural knowledge (i.e.,
it defines subclass and superclass relationships between
concepts of three specified domains) and a dictionary of
synonymous concepts.

Formula 1 hows the abstract definition of Cat Filt in the
form of a function that takes a goal as a parameter. Here,
𝑔 and 𝑤 stand for goal instance and Web service instance,
respectively, and𝑊 is the Web service repository. The result
of the function is the union of three sets: (i) if the goal
specifies a category (𝐶𝑎𝑡𝑔), advertised Web services in the
registry which have categories matching the goal’s category,
(ii) Web services that have no category specified, and (iii)
all Web services in case no category is specified for the goal.
This definition guarantees that if there is any possibility of a
Web service matching the goal, it is never eliminated from
consideration in the next phase.

In order to better illustrate previous definitions, consider
a scenario where a user is searching for a flight lookup service
among the existing Web services described in the repository.
Suppose that goal category is PlaneTransportation and cate-
gories of advertised Web services are AeroplaneTransporta-
tion, RailwayTransportation, and AirTransportation consecu-
tively. Result of Cat Filt based on Global Cat Ont ontology
on the described scenario is illustrated in Table 1.



Scientific Programming 7

Category

Food Restaurant

Specific_food_itself

Cuisine_Food

Fast_food

Animal_based_food

Raw_food

Transportation AirTransportation

LandTransportation

WaterTransportation

PlaneTransportation

BalloonTransportation

ShipTransportation

BoatTransportation

Education

Personnel

Gender

Facilities

Mixed_sex

Single_gender

Food_manufacture

Marketing_and_retailing

Food_preparation

Figure 2: Part of the hierarchical structure of our specified domains in the category ontology Global Cat Ont.

Table 1: Results of Cat Filt algorithm on described scenario.

Cat
𝐺

Cat
𝑊𝐴

Cat
𝑊𝐵

Cat
𝑊𝐶

AeroplaneTransportation RailwayTransportation AirTransportation
PlaneTransportation √ × √

According to the concept relationships definition in
Global Cat Ont ontology, CatWA, AeroplaneTransportation,
is a synonym of PlaneTransportation and CatWC, AirTrans-
portation, is a subclass of PlaneTransportation. Thus, Web
services A and C remain as inputs of Cap Filt, and Web
service (B) is discarded as irrelevant.

The result of the Cat Filt stage is fed into the second stage
Cap Filt in order to eliminate even more Web services that
cannot possibly be a match for the given goal.

4.2. Filtering according to Capability Decomposition
(Cap Filt). Unlike other proposals mentioned in related
works, our Cap Filt algorithm eliminates irrelevant Web
services based on checking the attributes and concepts of
objects employed in the goal and the Web service pre- and
postconditions. This algorithm first extracts attributes and
concepts of objects in goal and Web service specifications
(it can deal with predicates and objects that occur in a
logical formula possibly including the conjunction logical
connective) and then analyzes semantic equivalency
between extracted attributes and concepts in order to filter
out unrelated Web services.

The level of similarity between such parameters is
obtained based on their hierarchical relationships inside this

ontology. In this work levels of semantic similarity between
parameters are defined as exact, plug-in, subsume, and fail.
Exact means two concepts or two attributes are exactly
identical in the same domain ontology. Similarity degree of
two concepts or two attributes is plug-in only if concept or
attribute of goal request is superclass of concept or attribute
of the Web service. Degree of two concepts or two attributes
is subsume only if concept or attribute of goal request is
subclass of concept or attribute of theWeb service. Finally fail
degree expresses that there is no semantic-based relationship
between two concepts or two attributes.

Also, our work, in order to gain more precise results
and tackle the problem that two concepts or two attributes
which are going to be investigated may not be equal syn-
tactically, uses WordNet [28], a dictionary of synonymous
words. Thus, synonym similarity between the goal and Web
service parameters in the Cap-Filt algorithm is calculated by
making use of the WordNet [29] online synonym diction-
ary.

As an illustration of the above definition, consider the
instances of a matched goal and Web service defined in
Section 3. List of concepts and attributes of our goal andWeb
service preconditions are shown in Table 2.



8 Scientific Programming

(1) %Filter Cap (?GoalName, ?WsName):-
//- - - - - - - - - -Pre-Condition- - - - - - - -

(2) ?GoalName[requestsCapability→ ?GCap]@?GoalModule,
(3) ?GCap ∼ ${? GCapability[
(4) hasPrecondition→ ?GoalPre, hasPostcondition→ ?GoalPost]}@?GoalModule,
(5) ?WsName[hasCapability→ ?Wcap]@?WsModule,
(6) ?Wcap ∼ ${? WSCapability[
(7) hasPrecondition→ ?WsPre, hasPostcondition→ ?WsPost]}@?WsModule,
(8) %FindGoalOrWsAtt (?GoalPre, GoalWsAttModule),
(9) %DC (?WsPre, ?Ws Pre Att Cnp),
(10) %Check Att Cnp (?WsName, ?Ws Pre Att Cnp, WEBSERVICE),

//- - - - - - - - - -Post-Condition- - - - - - - -
(11) deleteall{? A[? B→ ? V]:? C @GoalWsAttModule},
(12) %FindGoalOrWsAtt (?WsPost,GoalWsAttModule),
(13) %DC (?GoalPost, ?Goal Post Att Cnp),
(14) %Check Att Cnp (?WsName, ?Goal Post Att Cnp, GOAL).

Listing 7: Critical parts of the %filter Cap predicate.

Table 2: List of concepts and attributes obtained as a result of
%DC/2 predicate.

Name [(ConceptName, [List of attributes])]

Goal.Pre [[(RequestTicket, [originateCity, terminalCity,
departureDate, returnDate, numberPeople])]].

Ws.Pre
[[(RequestAirplainTicket, [startCity, endCity,
departureDate, returnDate, numberPeople]),
(Flight, [departureDate, returnDate, fromAirport,
toAirport, cost])]].

As it is shown in Table 2, originateCity and startCity
are the first attribute of goal precondition and Web service
precondition, respectively. Although the spelling of these two
attributes is different and they may not have any relation
in domain ontology, they have the identical meaning. Our
approach tackles this problem and considers the attributes
similar to each other through the dictionary of synonymous
words. We employ both semantic and synonymous equiva-
lency of pre- and postconditions.

Listing 7 depicts the critical parts of the %Filter Cap
predicate. The filtering, which is based on concepts and
attributes of objects in the capability specification of the Web
service and goal, is carried out in the following manner:

(1) Lines (2) to (7) read goal and Web service pre- and
postconditions from their individual’s modules.

(2) As the process of checking semantic and synonymous
similarity of goal and Web service specifications are
done in knowledge basemodule (GoalWsAttModule),
in Listing 7 line (8), attributes and concepts of goal
preconditions are inserted into GoalWsAttModule
through %FindGoalOrWsAtt/2 predicate.

(3) Attributes and concepts of Web service precon-
ditions are extracted via the %DC/2 predicate.

This transactional predicate decomposes a Web ser-
vice precondition, and then extracted concepts and
attributes are stored in different lists. Listing 7
line (9) depicts the calling of this predicate with
parameters ?WsPre (bound to a precondition) and
?Ws Pre Att Cnp (a free variable). As a result of
the call, ?Ws Pre Att Cnp gets bound to the list of
concepts and their corresponding attributes in the
Web service precondition.

(4) Finally, line (10) depicts %Check Att Cnp predicate
that implements Algorithm 1. It compares concepts
and attributes related to goal preconditions with con-
cepts and attributes associated with Web service pre-
conditions based on semantic equivalency between
them. Output is the name of related Web services
whose concepts and attributes exist in requested
goal, as explained below. Web service names that
pass through this level of filtering are stored in the
knowledge base called FilteredWsModule.

Comparison of goal and Web service postconditions is sim-
ilar to that of the preconditions, except for some changes in
predicates’ parameters.

(5) As it is shown in line (11) of Listing 7, contents
of knowledge base GoalWsAttModule which already
consisted of goal precondition’s attributes and con-
cepts are erased in order to be replaced with the new
data.

(6) Attributes and concepts of Web service postcondi-
tions are moved into GoalWsAttModule by %Find-
GoalOrWsAtt predicate in line (12) of Listing 7.

(7) Attributes and concepts of goal postconditions are
extracted via %DC/2 predicate, and the results are
stored in ?Goal Post Att Cnp variable as it is shown
in line (13).



Scientific Programming 9

Input: List1 of the form [(Concept, [ListOfAttributes]), . . .]
(extracted from either Goal.Pre orWs.Post)
List2 of the form [(Concept, [ListOfAttributes]), . . .]
(extracted from eitherWs.Pre or Goal.Post)
Tag (either GOAL or WEBSERVICE)

Output: (WsName, Tag) (as insertion into module FilteredWsModule)
(1) Let equiv(𝐴, 𝐵) = (𝐴 :: 𝐵) or (𝐵 :: 𝐴) or (𝐴 :=: 𝐵)
(2) PossibleMatch← True
(3) for all (Concept2, [ListOfAttributes2]) ∈ List2 do
(4) if not ∃ (Concept1, [ListOfAttributes1]) ∈ List1 (
(5) equiv(Concept1, Concept2) and
(6) ∀ (attribute2 ∈ [ListOfAttributes2]) (
(7) ∃ (attribute1 ∈ [ListOfAttributes1]) (
(8) equiv(attribute1, attribute2)
(9) )
(10) )
(11) )
(12) then
(13) PossibleMatch← False
(14) end if
(15) end for
(16) if
(17) PossibleMatch = True
(18) then
(19) Insert (WsName, Tag) into FilteredWsModule
(20) end if

Algorithm 1: Filtering by comparing concepts and attributes.

(8) In line (14), similar to line (10), %Check Att Cnp
predicate implements Algorithm 1. But this time it
checks concepts and attributes related to Web service
postconditions with concepts and attributes asso-
ciated with goal postconditions based on semantic
equivalency between them.

If all these checks succeed, then the pair of goal and its related
Web services is inserted into the knowledge base so that full
checking of the proof commitments can be carried out in the
next stage.

5. Experimental Results and Discussions

Proper test collection is needed in order to evaluate the
suitability and performance of service discovery frameworks.
Currently, two de facto test collections are OWLS-TC [30]
and SAWSDL-TC [31]. OWLS-TC, which mainly considers
input and output parameters, is applicable for approaches that
deal with OWL-SWeb services descriptions, and approaches
which employ SAWSDL Web service descriptions use the
SAWSDL-TC test collection.

The latest version of OWLS-TC at this time is version 4
[32]; it consists of 1083Web services and 42 queries which are
written in the OWL-S language. Unfortunately, the majority
of Web services in OWLS-TC are only partially described,
being based on input and output types. Only in the last
version (version 4), 160 Web services contain preconditions
and postconditions (effects) which are described in different

languages such as SWRL (SWRL: A Semantic Web Rule Lan-
guage, [33]) and PDDL (International Planning Competition,
[34]).

The SAWSDL-TC test collection is established to support
the performance appraisal of SAWSDL matchmakers. The
latest version of SAWSDL-TC, at this time, is version 3;
it consists of 1080 semantic Web services and 42 queries
which are described in the SAWSDL language. However,
descriptions of Web services and queries are only based on
input and output parameters [35].

The majority of approaches (such as [7, 9, 23–26]) that
work in our field and are mentioned in related works
evaluated efficiency and accuracy of their works based on
OWLS-TC version 3 test collection. Among all related works,
authors of [36] evaluated their proposal based on last version
of OWLS-TC test collection, but only input and output
parameters are considered for evaluation of their work.

Therefore, due to unavailability of an appropriate test
collection that covers main functional descriptions of Web
services such as preconditions and postconditions, as well as a
categorization scheme ofWeb services, we generated our own
test collection of Web service/goal specifications and used
this test collection tomeasure the gains in efficiency obtained
by employing our proposed prefiltering strategy. We called
our test collectionWSMO-FL [37].

WSMO-FL contains three different domains, namely,
transportation, food, and education, with 250 different F-
Logic Web services descriptions, 6 different F-Logic goals
descriptions, 22 concepts, and 1225 instances.



10 Scientific Programming

In this section, in order to validate our proposal, we per-
formed experimental evaluations described and the results
of that experimental study. For analysis, each test has been
run 20 times performed on a machine with Windows 7, a
2.93GHz Intel processor, and 4.00GB of RAM.

In order to determine the actual improvements of our
proposed prefiltering stages, we measured several indicators:
(i) the average response time of our semantic Web service
matchmaker with filtering (Filt Disc) and without filtering
(Naive Disc), (ii) the number of Web services that have
been effectively eliminated from the initial pool of available
Web services at each prefiltering stage, (iii) precision, and
(iv) recall. Due to the fact that our filtering stages never
eliminate any Web service from consideration unless they
are guaranteed to fail at the logical matching stage, it is no
surprise that recall rate is always 100%.

The results of the performed tests for the goal are given in
Table 3, showing the mean and median of the time it took to
match the goal against varying number of Web services. The
statistical measures (mean, median) were computed over 20
runs which yielded the raw data. Timing data was recorded
for the two cases of matchmaker using the prefiltering phases
Filt Disc andmatchmaker using no filtering at allNaive Disc.

Figure 3 graphically depicts the same information as a line
chart. It can be seen that when using Filt Disc, the average
response time is in range of 0.08 to 0.062 seconds, while for
the same goal andWeb services in Naive Disc it dramatically
increases and is in range of 0.08 to 17.5 seconds.

Figure 4 depicts the dramatic number of reductions in the
number of Web services that remain after each prefiltering
phase. The data has been collected by matching six different
goals and varying number of Web services for each goal. The
chart indicates that Cap Filt through the semantic equiva-
lency of goal and Web service concepts and attributes does
a very good job of eliminating irrelevant Web services, given
that most of the remaining Web services after its application
pass the Cat Filt stage.

To analyse the accuracy of our prefiltering stages, Table 4
gives the precision and recall values of the combined pre-
filtering stages for the same set of data obtained by running 6
requested goals against 250 Web services in the repository.

Precision is percentage of the retrieved Web services
that are actually relevant. In our context, “retrieved Web
services” means theWeb services that survived the two-stage
elimination process, and a Web service is “relevant” to a goal
if the logical matchmaker says so. With these definitions,
precision is formalized as follows [38]:

Precision

=
Number of Relevant Web services in the retrieved set

Number of Retrieved Web services
.

(1)

Recall is the portion of the relevant Web services that are
successfully retrieved. It is formalized as follows [38]:

Recall

=
Number of relevant Web services in the retrieved set
Number of all relevant Web services in the repository

.

(2)

Table 3: Statistical comparison of Filt Disc and Naive Disc.

Number of WSs Engine Mean time (sec) Median time (sec)

5 Filt Disc 0.08 0.09
Naive Disc 0.08 0.08

50 Filt Disc 0.27 0.27
Naive Disc 3.93 4.02

150 Filt Disc 0.45 0.51
Naive Disc 12.39 12.39

250 Filt Disc 0.62 0.60
Naive Disc 17.43 17.33

0

2

4

6

8

10

12

14

16

18

20

5 50 150 250

Re
sp

on
se

 ti
m

e (
se

c)

Number of WSs

Filt_Disc
Naive_Disc

Figure 3: Comparison of Filt Disc and Naive Disc.

0

50

100

150

200

250

300

Q1 Q2 Q3 Q4 Q5 Q6

N
um

be
r o

f w
eb

 se
rv

ic
es

Goals

Original repository
After Cat_Filt

After Cap_Filt
Matched set

Figure 4: Effectiveness of the two prefiltering stages in eliminating
irrelevant Web services.

As shown in Table 4, average precision for all request queries
is 53.72% which to some extent can be considered a good
precision rate. It means that around 55% of retrieved Web
services are exactly matched with the requested goal and
the others, around 45%, are irrelevant. However, the average
recall of queries has the highest possible rate, 100%.With this



Scientific Programming 11

Table 4: Precision and recall of combined prefiltering stages in each
requested goal.

Goal Q1 Q2 Q3 Q4 Q5 Q6 Average
Precision 41.6% 58.3% 57.1% 53.8% 56.5% 55% 53.72%
Recall 100% 100% 100% 100% 100% 100% 100%

100% recall rate, all the relevant Web services in Web service
repository are retrieved through the proposed prefiltering
stages, an important feature that sets out filtering strategy
apart from all the other proposals.

Figure 5 graphically shows the precision and recall rate
of each requested goal together with the average precision
line. The chart illustrates that precision rate of all requests
except the first one (Q1) is higher than the average. Low
precision rate of Q1 indicates that there exist many Web
services in the repository whose attributes and concepts are
semantically similar to the concepts’ name and attributes’
name of requested goal; however, the value of Web service
attributes defined in ontologies does not match the requested
value of goal attributes. Such Web services fail in the actual
logical matching procedure.

As we explained before, the reason of top average recall
rate is that all relevant Web services are retrieved by Cat Filt
and Cap Filt algorithms, which is another way of saying that
in the prefiltering stages, we only eliminate Web services that
the matcher would definitely reject. The reason for the not-
so-high average precision rate in prefiltering stages is that
although the retrieved Web services are similar to requested
goal due to semantic and synonymous equivalency of their
concepts and attributes in domain ontology, maybe some
Web services that will eventually be rejected pass through the
filters. However, in a real world situation where thousands
of categories exist and Web services, as well as goals, are
annotated by categories, precision would be expected to
rise significantly, since the majority of Web services under
consideration would be eliminated by the first stage of
filtering (Cat Filt).

Since our framework evaluation is based on our newly
generated test collection, WSMO-FL, a comparison between
the accuracy and performance of our work and the other
available works in the literature would not be very informa-
tive. However, an average of 100% for recall and 53.72% for
precision indicates a satisfactory accuracy of this work. It
should be pointed out that this accuracy was observed in a
more complex condition of goals andWeb services due to pre-
and postcondition parameters. The other studies mentioned
in related works did not consider these many complexities in
their goals and Web services.

6. Overview of Related Works

Recently, although a wealth of insightful efforts have pro-
posed different solutions to improve the semantic Web
discovery process and their related scalability issues, we could
not find any work that addresses the performance challenge
of discovery process in a similar way to our work. In this
section, we discuss proposals related to this field and analyse

0

20

40

60

80

100

Q1 Q2 Q3 Q4 Q5 Q6
Goals

Precision
Recall

Average
precision

Figure 5: Precision and recall of each requested goal along with the
average precision line.

their relationship with our solution, and their advantages are
compared to our approach.

Table 5 compares our work with the related works based
on several dimensions with respect to semantic Web service
discovery improvement. These dimensions are preprocess-
ing, discovery method, parameters, and frameworks. First
three dimensions are further subdivided into subdimensions.

Preprocessing is subdivided into nonfunctional properties
(NFPs) and functional properties (FPs). NFP here stands for
methods of adding some NFP elements to the Web service
and goal descriptions (e.g., categorization of each adver-
tised/requested Web service at design time). FP stands for
methods to compare functional parameters of goal and Web
services. Onemore level of subdivision used in preprocessing
factor is taxonomy (TX) (i.e., relationship between two con-
cepts/attributes is described by using a hierarchical diagram),
synonymity (SY) (i.e., syntactically two concepts/attributes
are different but they have the same or identical mean-
ing), and syntax (ST) (i.e., no synonymous or hierarchical
relationships exist between two concepts/attributes and they
are compared based on similarity of their string) similarity
method measurements for each mentioned NFP and FP.

Discovery method represents which kinds of service
matchmakers are used in the approaches: logic (LOG), non-
logic (NLOG), or hybrid method (HY) which is combination
of both logic and nonlogic methods.

Parameters demonstrates degree of completeness of a
research (whether it uses the major functional parameters of
goal and Web services or not). Major functional parameters
of goal and Web services in OWL-S and WSMO models are
input (I), output (O), precondition (PRE), and Postcondition
or effect (POS/EFF).

We summarise the result of the comparative study of
Web service discovery approaches in Table 5, where each
row represents an approach and the columns stand for main
dimensions in Web service discovery improvement. The
symbol “√” is used to denote that the specified approach
supports the corresponding dimension, and “—” means that
it does not.



12 Scientific Programming

Table 5: Comparison of this work with related works.

App.
Preprocessing Discovery method Parameters

FrameworkNFP FP
TX SY TX SY ST LOG NLOG HY I O PRE POS/EFF

[9] — — — — — — — √ √ √ — — OWL-S
[10] — — — — — — — √ √ √ — — WSMO
[6, 22] — — — — — √ — — √ √ √ √ WSMO
[23] — — — — — √ — — √ √ √ √ OWL-S
[24] — — — — — — — √ √ √ — — OWL-S
[25] √ — — — — √ — — √ √ — — OWL-S
[26] — √ — — — — — — √ √ — — OWL-S
[7] — — √ — — — — — √ √ — — OWL-S
[8] — — √ — — — — — √ √ — — WSMO
[27] — — — — √ √ — — √ √ √ √ WSMO
Our work √ √ √ √ — √ — — √ √ √ √ WSMO
Approach name (APP). Hybrid method (HY). Taxonomy (TX). Synonymity (SY). Syntax (ST). Logic (LOG). Functional properties (FPs). Output (O). Input
(I). Nonlogic (NLOG). Nonfunctional properties (NFPs). Precondition (PRE). Postcondition or effect (POS/EFF).

In order to highlight the advantages of our work with
respect to the prior researches, we classified the related works
into two groups: approaches that optimize semantic Web
service discovery through (a) improvement of matchmakers
and (b) application of prefiltering mechanism before actual
matchmakers. The former discusses the related works where
the only focus is to improve the performance of their
matchmaker engines by employing various methods. The
latter tries to reduce the size of original repository and the
filtered repository is used as input of actual matchmaker.

(a) ApproachesThat Improve theMatchmaker Engine. Regard-
ing the need to improve the discovery process and make
it more scalable, some approaches attempt to improve the
performance of the matchmaker engine without introducing
any extra preprocessing stages.

Klusch et al. [9] implemented a hybrid matchmaker
consisting of both approximated Information Retrieval (IR)
matching, such as syntactic similarity technique, and OWL-
DL logical reasoner to discover semantic Web services.
Authors used four variants to calculate the text similarity
of parameters, called cosine, loss-of-information, extended
Jacquard, and Jensen-Shannon. InOWLS-MX, the logical rea-
soner only considers degree of semantic similarity between
input and output parameters of OWL-S advertised/requested
services and available concepts in the specified domain ontol-
ogy. Later they developed their system to support WSMO
services, called WSMO-MX [10]. Their comprehensive eval-
uations demonstrate that both approaches presented high
precision in the S3 contest [39]. However, shortcomings of
their solution are as follows. (i) They are time consuming
because of high calculation costs related with both logic-
based matching and text-based similarity matching; (ii) they
retrieve Web services which are not related to the request.

The Klusch et al. approach can be improved if they
utilize our preprocessing strategies on top of their actual
matchmakers. For instance, by applying our prefiltering

stages before the hybridmatchmakers, especially on the logic-
based matchmaker, they can potentially decrease the size of
the initial Web service repository and consequently improve
the overall performance of matchmaker.

Stollberg et al. in [6, 22] improved the matching process
by implementing a caching mechanism that decreases the
size of search space and reduces the matchmaker operations.
The presented cache uses a Semantic Discovery Caching
(SDC) graph that stores connections between client requests
described as WSMO goal templates and their relevant Web
services. Thus, when a goal instance is received, first, the
system compares the goal instance with cached templates
with respect to semantic similarity and if there is a match,
merely the relevant Web services that are stored in the SDC
graph are used for subsequent discovery.

Authors of [6, 22] claim that they presented a standard
approach where both advertised and requested functional-
ities are formally expressed in terms of preconditions and
effects (postcondition). Also they used first-order logic as
the specification language for formal description of these
terms. Since our proposal also has been established in the
spirit of WSMO framework and developed to work on goals
and Web services capability which consist of inputs, outputs,
and pre- and postcondition, proposed caching approach
can be completed when our prefiltering mechanisms are
implemented before creating the caching graph. Thus, the
number of relevant Web services which are stored in graph
can be possibly decreased.

Authors of [23] introduced SPARQL as a language to
describe the preconditions and postconditions of OWL-S
Web services as well as user requests. They implemented a
matchmaker that works through agents called SPARQLent
(SPARQL agent). In this approach, a complete discovery
solution of their algorithm is discussed and shows how
SPARQL queries are used to modify and query the agent’s
knowledge base. Finally, they evaluated their proposal against
OWLS-MX via SME2 test tool [40].



Scientific Programming 13

Although the method offered in [23] is based on pre- and
postconditions of Web services and goals, their evaluation
is performed based on OWLS-TC V3, while presented Web
services descriptions in this test collection are without pre-
and postconditions. In addition, our prefiltering stages could
be also useful in avoiding SPARQL agent to load all available
Web services on the repository and as a result cause further
improvement to their agent performance.

Amorim et al. discuss a hybrid matchmaker calledOWL-
S Discovery. It is a combination of semantic filters based
on input and output parameters of requested/advertised
services and analysing eachneighbour relationship in domain
ontology [24]. Authors employed five levels of semantic
similarity between input and output parameters, namely,
exact, plug-in, subsume, fail, and sibling. Also, in order to
analyse each neighbour relationship in the concepts, they
use a dictionary to classify the concepts. Based on this
dictionary, concepts are either identical or synonymous or
neither synonymous nor identical, as in our work. At the
end they compare their work with Paolucci’s approach [41]
and the hybrid algorithm OWLS-MX through OWLS-TC v3
test collection. Our proposal also can be applied to the top
of OWL-S Discovery to further improve discovery processes.
But our work uses a more expressive model to describe user
requests and Web services descriptions as they contain pre-
and postconditions.

(b) Approaches Using Preprocessing Mechanisms. These ap-
proaches make use of preprocessing mechanisms that help
optimization of automatedWeb service discovery by narrow-
ing down the set of existing Web services in the repository
that will be considered by the service matchmaker. Prepro-
cessing mechanisms are further subdivided into two cate-
gories: (1) preprocessingmechanisms based on categorization
schemes ofNFPs and (2) preprocessingmechanisms based on
semantic similarity of FPs.

(1) Prefiltering Based onCategorization Schemes of NFPs.Most
of the efforts related to prefiltering techniques follow the clas-
sification methods: either exploit hierarchical categorization
schemes of Web services on the basis of domain ontologies
[25] or use dictionary of synonymous words [26]. The
filtering process is separate from matchmaker, so the results
of this prefiltering stage are then inspected through any
actual process of service matchmaking. The majority of the
mentioned proposals adapted OWLS-TC v3 test collection by
adding one element to the request andWeb service NFPs that
refer to service application domain.

Authors of [25, 26] implemented their categorization
proposals on OWL-S Web services and verified them with
respect to the OWLS-TC v3 data set. However, OWL-S
service description in this test collection does not contain
any information about service’s application domain. Thus,
in order to overcome the limitation of current OWL-S
service profile elements both approaches added one NFP to
the OWL-S service profile. Although both used the same
idea, their solution is different. In [25] the defined category
concept of the service request is compared with the defined
category concept of advertised Web services via hierarchical

categorization scheme in global category ontology. A Web
service is eliminated if it has no category relationship with the
request category. However, in [26] equivalency of requested
and advertisedWeb services category concepts are computed
via their relationship in the WordNet [28] dictionary of
synonyms words. This approach is lacking in its own match-
maker (i.e., evaluation is done via OWLS-MX matchmaker).

Although the idea of our first filtering stage is similar to
the mentioned proposals, it has the following novelties. (i)
Our proposed Cat filt stage enriches the WSMO framework
by adding an attribute called hasCategory to both goal
and Web service descriptions. (ii) In order to increase the
accuracy and performance of our categorization schemes,
this work takes into account semantic similarity relationship
between goal category and Web service category (i.e., if two
categories mean the same thing or inherit the same class).

(2) Prefiltering Based on Semantic Similarity of FPs. Authors
of [7, 8] also used preprocessing strategies before the actual
matching process. Their prefiltering is based on only FPs of
Web services. They present two different SPARQL queries
to facilitate the search process on a semantic Web service
registry. They automatically create SPARQL queries (called
Qall, Qsome) by analysing the user request, and by using these
two filtering queries they are able to perform two levels of
filtering on the initial Web service repository. Based on these
two queries, only Web services containing all (in the case of
Qall) or some (in the case ofQsome) concepts referred by a user
request are returned.

Our second filtering stage (Cap Filt) is similar to the
method proposed in [8]. Four major differences between our
work and theirs are that

(i) since in our prefiltering stage service descriptions
consist of all information about inputs, outputs, and
pre- and postconditions, we can obtainmore accurate
results than their strategies;

(ii) our algorithm not only considers the hierarchical
relationship of concepts and attributes but also takes
into account the similarity of requested/advertised
Web service concepts and attributes based on their
synonyms;

(iii) we employ an initial filtering phase based upon a
categorization scheme, which could actually improve
their performance as well if they used it beforeQall or
Qsome algorithm;

(iv) their approach consists only of a preprocessing stage
to filter the preliminary Web service repository and
they did not implement any service matchmaking, so
they cannot be evaluated on their own.

Among all the mentioned approaches, [27] is the clos-
est to our work. The INFRAWEBS project implements a
discovery framework which consists of two components,
prefiltering and discovery. In the prefiltering stage it uses
traditional Information Retrieval techniques, and a logic-
basedmatching implemented in Prolog is utilized as a service
matchmaker.



14 Scientific Programming

Although the INFRAWEBS project has similarities with
our work, some differences do stand out. Our prefiltering
stage considers semantic equivalency of both NFP and
FP of the requested/advertised services, analyzing objects,
attributes, and concepts. Our discovery engine works with
much richer descriptions of Web services and requests,
encoded in frame logic. Our implementation uses the
FLORA-2 language and execution environment, amuchmore
powerful alternative to plain Prolog. It is conceivable that a
combination of our approach and theirs can yield a discovery
framework that is more effective at eliminating useless Web
services than either approach alone.

7. Conclusions and Future Works

We have shown that the overall performance and accuracy of
semanticWeb service discovery frameworks can be improved
significantly through the introduction of prefiltering stages
that eliminate most of the irrelevant Web services from
consideration at the computationally expensive matching
stage. Specifically, in this paper, we proposed Category based
and Capability based prefiltering mechanisms for narrowing
down the number of Web service descriptions that need
to be considered in the matching phase to determine their
relevance to the current goal.

We evaluated the effectiveness of our proposal in a
novel test collection, WSMO-FL, which consists of 250 Web
service specifications of varying complexities and 6 goals.
Our filtering stages stand out due to their 100% recall rate
that is a consequence of their design, their ability to deal with
complex specifications of goals andWeb serviceswritten in an
enhanced version ofWSMO, and a reasonably high precision
rate, as demonstrated experimentally, which is bound to
increase considerably in the presence of a large number of
categories and goals/Web services that make use of those
categories. Our results also indicate that when the prefiltering
stages are employed in the system, as expected, the search
space is considerably reduced, and consequently response
time of the system is improved dramatically.

Our work has several further advantages, summed up in
the following:

(i) Unlike the majority of semantic Web service discov-
ery approaches which are only performed on input
and output concepts, our semantic Web service dis-
covery framework deals with concepts and attributes
of Web service and goal pre- and postconditions.

(ii) Our prefiltering stages are generic, so that they can be
applied (after necessary adaptations) to improve the
performance of other available service matchmakers.

(iii) 100% recall rate of our framework implies that our
method does not result in false negatives (FN) (i.e.,
Web services which are relevant but are classified
as irrelevant): all relevant Web services are retrieved
through the prefiltering algorithms.

(iv) Due to incomplete service descriptions in OWLS-
TC test collections (i.e., Web services are partially
described only based on input/output concepts), for

the first time we created a new test collection called
WSMO-FL, which contains fully defined Web ser-
vices and goals capabilities (i.e., Web services and
goals are described based on pre- and postcondi-
tions).

(v) To the best of our knowledge WSMO-FL is the first
larger test collection which is established based on
the WSMO conceptual model. It uses frame logic (F-
Logic) as a fully adequate expression language for
specifying pre- and postconditions which is missing
in currently available test collections.

For future work, we are planning to improve our scheme in
the following ways:

(i) extending the second stage so that it can work on any
logical expression containing the logical connectives
conjunction (and), disjunction (or), and negation (not)
to any nesting depth;

(ii) extending our new WSMO-FL test collection to (a)
have amuch larger number ofWeb services and goals,
as well as categories, (b) increase complexity of Web
service and goal pre- and postconditions, and (c)
expand the dictionary of synonymous words in the
existing domain ontologies.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] S. A.McIlraith, T. C. Son, andH. Zeng, “Semantic web services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.

[3] D. Roman, U. Keller, H. Lausen et al., “The Web service
modelling ontology,” Applied Ontology, vol. 1, no. 1, pp. 77–106,
2005.

[4] D. Martin, M. Burstein, J. Hobbs et al., “OWL-S: Semantic
Markup for Web Services,” W3C member submission 22, 2004.

[5] L. D. Ngan and R. Kanagasabai, “Semantic Web service dis-
covery: State-of-the-art and research challenges,” Personal and
Ubiquitous Computing, vol. 17, no. 8, pp. 1741–1752, 2013.

[6] M. Stollberg, M. Hepp, and J. Hoffman, “A caching mechanism
for semantic web service discovery,” in The Semantic Web: 6th
International Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11–15, 2007. Proceedings, vol. 4825 of Lecture Notes
in Computer Science, pp. 480–493, Springer, Berlin, Germany,
2007.

[7] J. M. Garćıa, D. Ruiz, and A. Ruiz-Cortés, “Improving semantic
web services discovery using SPARQL-based repository filter-
ing,”Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 17, pp. 12–24, 2012.

[8] J. Mara Garćıa, D. Ruiz, and A. Ruiz-Corts, “A lightweight
prototype implementation of SPARQL filters for WSMO-based
discovery,” Tech. Rep., Applied Software Engineering Research
Group-University of Seville., ISA-11-TR-01, 2011.



Scientific Programming 15

[9] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: a hybrid
Semantic Web service matchmaker for OWL-S services,” Web
Semantics, vol. 7, no. 2, pp. 121–133, 2009.

[10] M. Klusch and F. Kaufer, “WSMO-MX: a hybrid Semantic Web
service matchmaker,”Web Intelligence and Agent Systems, vol. 7,
no. 1, pp. 23–42, 2009.

[11] D. Fensel, H. Lausen, A. Polleres et al., “The concepts of
WSMO,” in Enabling Semantic Web Services: The Web Ser-
vice Modeling Ontology, pp. 63–81, Springer Science+Business
Media, 2007.

[12] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-
oriented and frame-based languages,” Journal of the ACM, vol.
42, no. 4, pp. 741–843, 1995.

[13] M. Kifer, G. Yang, H. Wan, and C. Zhao, FLORA-2: User’s
Manual, Version 1.0, Stony Brook University, Stony Brook, NY,
USA, 2014.

[14] U. Küster, B. König-Ries, M. Klein, and M. Stern, “DIANE:
a matchmaking-centered framework for automated service
discovery, composition, binding, and invocation on the web,”
International Journal of Electronic Commerce, vol. 12, no. 2, pp.
41–68, 2007.

[15] H. Lausen and J. Farrell, “Semantic annotations for WSDL and
XML schema,” W3C recommendation, 2007.

[16] T. R. Gruber, “A translation approach to portable ontology
specifications,”Knowledge Acquisition, vol. 5, no. 2, pp. 199–220,
1993.

[17] J. Angele, “OntoBroker: mature and approved semanticmiddle-
ware,” Semantic Web, vol. 5, no. 3, pp. 221–235, 2014.

[18] W. Chen, M. Kifer, and D. S. Warren, “HiLog: a foundation
for higher-order logic programming,” Journal of Logic Program-
ming, vol. 15, no. 3, pp. 187–230, 1993.

[19] A. Bonner and M. Kifer, “A logic for programming database
transactions,” in Logics for Databases and Information Systems,
pp. 117–166, 1998.

[20] A. J. Bonner and M. Kifer, “Overview of transaction logic,”
Theoretical Computer Science, vol. 133, no. 2, pp. 205–265, 1994.

[21] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang, “Logic
programming with defaults and argumentation theories,” in
Logic Programming, vol. 5649 of Lecture Notes in Computer
Science, pp. 432–448, Springer, Berlin, Germany, 2009.

[22] M. Stollberg, J. Hoffmann, and D. Fensel, “A caching technique
for optimizing automated service discovery,” International Jour-
nal of Semantic Computing (World Scientific), vol. 5, no. 1, pp.
1–31, 2011.

[23] M. L. Sbodio, D.Martin, and C.Moulin, “Discovering Semantic
Web services using SPARQL and intelligent agents,” Journal of
Web Semantics, vol. 8, no. 4, pp. 310–328, 2010.

[24] R. Amorim, D. B. Claro, D. Lopes, P. Albers, and A. Andrade,
“Improvingweb service discovery by a functional and structural
approach,” in Proceedings of the IEEE 9th International Confer-
ence onWeb Services (ICWS ’11), pp. 411–418, IEEE,Washington,
DC, USA, July 2011.

[25] T. Khdour, “Towards semantically filtering web services repos-
itory,” in Digital Information and Communication Technology
and Its Applications, vol. 167 of Communications in Computer
and Information Science, pp. 322–336, Springer, Berlin, Ger-
many, 2011.

[26] K. Mohebbi, S. Ibrahim, and M. Zamani, “A pre-matching filter
to improve the query response time of semantic web service
discovery,” Journal of Next Generation Information Technology,
vol. 4, no. 6, 2013.

[27] L. Kovács, A. Micsik, and P. Pallinge, “Two-phase semantic
web service discovery method for finding intersection matches
using logic programming,” in Proceedings of the Workshop on
Semantics for Web Services, Zurich, Switzerland, December
2006.

[28] C. Fellbaum, WordNet: An Electronic Lexical Database, Black-
well Publishing, Oxford, UK, 1998.

[29] https://wordnet.princeton.edu/.
[30] http://projects.semwebcentral.org/projects/owls-tc/.
[31] http://projects.semwebcentral.org/projects/sawsdl-tc.
[32] M. Klusch, M. A. Khalid, P. Kapahnke, B. Fries, and M. V.

Saarbrücken, OWLS-TC -OWL-S Service Retrieval Test Collec-
tion, User Manual, 2010.

[33] http://www.w3.org/Submission/SWRL/.
[34] C. Aeronautiques, A. Howe, C. Knoblock et al., The Planning

Domain Definition Language (PDDL), 1998.
[35] M.A.Khalid, B. Fries,M.Vasileski, P. Kapahnke, andM.Klusch,

SAWSDL-TC Service Retrieval Test Collection, User Manual,
Version 3.0, SAWSDL, Saarbrücken, Germany, 2010.

[36] Z. Cong, A. Fernandez, H. Billhardt, andM. Lujak, “Service dis-
covery acceleration with hierarchical clustering,” Information
Systems Frontiers, vol. 17, no. 4, pp. 799–808, 2014.

[37] http://cmpe.emu.edu.tr/samira/WSMO-FL.htm.
[38] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information

Retrieval, vol. 463, ACM Press, New York, NY, USA, 1999.
[39] M.Klusch, “Overview of the S3 contest: performance evaluation

of semantic service matchmakers,” in Semantic Web Services:
Advancement through Evaluation, pp. 17–34, Springer, Berlin,
Germany, 2012.

[40] http://projects.semwebcentral.org/projects/sme2/.
[41] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Seman-

tic matching of web services capabilities,” in The Semantic
Web—ISWC 2002: First International Semantic Web Conference
Sardinia, Italy, June 9–12, 2002 Proceedings, vol. 2342 of Lecture
Notes in Computer Science, pp. 333–347, Springer, Berlin, Ger-
many, 2002.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


