
SSST (State-Space Search Tool):
 A Probabilistic Forward-Chained Exper t System Shell with

Full Backtracking

Zeki O. Bayram

Computer Engineering Department
Bo

�
aziçi University

Bebek 80815/Istanbul-Turkey
internet: bayram@boun.edu.tr

Abstract
We describe a probabilistic backtracking forward-chained expert system shell that
performs a best-first search of the state-space consisting of working memory states. The
state space that needs to be traversed can be narrowed significantly through tactful use of
the context mechanism. Fail conditions detect forbidden working memory states and
cause immediate backtracking. Heuristic information about which rules should have
higher priority are encoded in the rules at the granularity level of condition elements in
the form of importance factors. Facts in the working memory have associated with
them confidence factors, which allows the representation of uncertain information. The
paradigm that results as the combination of this specific set of features permits declarative
specification of the state space required for the solution of many kinds of scheduling
problems and other kinds of problems requiring intelligent search of the state space with
possible backtracking.

K eywords: Expert system shell, forward chaining, backtracking, context, heuristic,
intelligent search, inference

1. Introduction

Forward chaining inference engines start with an initial state of the world (as described
by the initial contents of the working memory), and seek to reach a goal state through
repeated application of a certain set of transformations, usually specified in the form of if-
then rules [[5],[7]]. The deficiency of most current forward chaining expert system shells
is that they allow a single line of reasoning (also called hill climbing). If, upon reaching
a certain state the system cannot proceed any further (possibly because a wrong choice
was made earlier in the selection of which rule to fire), the system stops without finding a
solution. The main reason for this deficiency is efficiency: saving the choice points at
every iteration certainly consumes a lot of space.

State Space Search Tool (SSST) is an expert system shell with an inference engine
that does allow backtracking. In SSST the efficiency problem is dealt with in three ways:
(1) by making the search space small through a context mechanism, (2) by careful

pruning of branches in the search tree that cannot possibly lead to a solution using fail
conditions, and (3) by guiding the search through heuristic information encoded in the
rules at a very fine level of granularity through importance factors. Fail conditions are
predicates on the working memory which describe forbidden working memory states. If a
fail condition is satisfied (made true) by the current working memory, immediate
backtracking is initiated to explore other branches of the search space. As such, fail
conditions help to specify constraints on the working memory states. Through clever use
of these three mechanisms, the search space can be cut down dramatically and full
backtracking becomes practical.

SSST programs are also declarative in the sense that (production) rules describe
relationships that may exist among working memory states, fail conditions describe
forbidden memory states, and success conditions (called end_goal in SSST syntax)
describe final working memory states beyond which no further inferencing needs to be
made, since the working memory already contains a solution. After the initial working
memory is given, all the rest is up the system.

SSST is not complete in a theoretical sense, in that a line of reasoning may be infinite,
with no solutions on the path, while at the same time a solution may exist on another
unexplored branch. However, a theoretically complete system requires a full breadth-first
search of the state space which is an impractical proposition in terms of time efficiency. It
is by a similar efficiency consideration that the Prolog language [[6]] also uses a depth-
first strategy, even though it is incomplete for SLD resolution, the operational semantics
of Prolog.

In the remainder of this paper we describe the knowledge representation, execution
model of SSST and give one (due to lack of space) example of its use. We then compare
SSST with some other expert system shells in its class and conclude with a summary and
further research directions.

2. Knowledge Representation in SSST

2.1 Working Memory Elements

Knowledge is represented in the form of facts in the working memory. Before a fact can
be added to the working memory, its template must be made known to the system through
the literalize command. Suppose we wish to place information about a car into the
working memory. Assume that a car has the attributes owner , color and age. First, the
command

is given to the system. This needs to be done only once. Then, to place information about
a car into working memory, the following command is given.

?- literalize(car (owner ,color ,age)).

?- make(car (0.5, owner george, color green, age 5)).

This means that we are 50% confident that there is a car whose color is green, age is 5 and
is owned by george. It is possible to leave some attributes unspecified: they are taken to
be nil. If the working memory does not contain an entry for a given fact, its confidence
factor is taken to be -1.0.

2.2 Production Memory

The production memory consists of a set of productions. Each production is an if-then
rule of the form

2.2.1 Left-Hand-Side Conditions

Each condition element (CE) is one of
• An SSST goal which is meant to match a fact in the working memory. The template of

the goal should have been by a literalize command. An example of an SSST goal is:
car (1, owner mar y) . The first argument to car is the importance factor .
Such a goal is true if it has an importance factor IF, it matches a working memory
element with confidence factor CF, and IF*CF>0. An SSST goal usually has logical
variables in them. For example, in car (1, owner X, col or r ed) , X is a logical
variable. Logical variables are bound to terms in the working memory through simple
first order unification. If the variable occurs anywhere else in the rule, either on the
left hand side or right hand side, the value it is originally bound to is substituted for all
the other occurrences. Logical variables always start with a capital letter, as in Prolog
systems.

• eval uat e(i mpor t ance_f act or , goal) where goal is a goal to be satisfied
by the underlying CLP(R) interpreter. This kind of CE evaluates to true if the goal
succeeds and the i mpor t ance_f act or > 0, or if it fails and
i mpor t ance_f act or < 0.

• one_t r ue(i mpor t ance_f act or , condi t i on_el ement 1 and
condi t i on_el ement 2 and . . .) . This is like the or operator. It is true only
if at least one of its components is true and its importance_factor > 0, or if none of its
components is true and its importance_factor < 0. Note that the syntactic construct
"and" used here is nothing more than a connector, and does not have the "logical and"
meaning.

 rule(rule_name,
 list_of_contexts_in_which_the_rule_is_active,
 condition_element1 and
 condition_element2 and

 condition_elementn

 -->
 r ight_hand_side_action1 and
 r ight_hand_side_action2 and

 r ight_hand_side_actionm).

• al l _t r ue(i mpor t ance_f act or , condi t i on_el ement 1 and
condi t i on_el ement 2 and . . .) . This is the and operator. It is true if all its
components are true and its importance_factor > 0, or not all of its components are
true and its importance_factor < 0. Again note that "and" is used only as a connector.

• not _t r ue(i mpor t ance_f act or , condi t i on_el ement 1 and
condi t i on_el ement 2 and . . .) . This is the not operator. It is false if all
its components are true and its importance_factor > 0, or there is no condition under
which all its components can be true, but its importance_factor is negative. It is true
otherwise. The "and" here can really be seen as the "logical and".

2.2.2 Right-Hand-Side Actions

The following is the list of right hand side actions.
• r emove(i ndex) where index is the position on the left hand side of the CE to be

removed. It causes the removal of the fact which matched the CE from the working
memory.

• make(CF, w_m_e) . Causes the addition to the working memory element w_m_e
to the working memory with confidence factor CF.

• modi f y(i ndex, CF, at t r i but e_name1 at t r i but e_val ue1,
at t r i but e_name2 at t r i but e_val ue2,) . Causes the modification of
the working memory element matched by the CE on the left whose position is index on
the left hand side.

• eval uat e(goal) where goal is a goal to be satisfied by the underlying CLP(R)
interpreter.

• add_cont ext (a_cont ext _name) which adds a_cont ext _name to the
current list of active contexts

• r emove_cont ext (a_cont ext _name) which removes a_cont ext _name
from the current list of active contexts.

Right hand side actions are usually grouped together using the "and" syntactic construct,
which again has no relation to the "logical and".

Note that the language of SSST is very small in terms of the primitives. This is
because all facilities of the underlying CLP(R) interpreter are available to be called upon
both on the left hand side and right hand side of the rules (for example, input, output
operations etc.).

2.3 Initializing the Working Memory and Active Contexts

Before facts can be added to the working memory, their templates must be declared to the
system through the literalize command. Also, before contexts can be added to the active
contexts list, they must be declared by the "context" command. As an example of a
template declaration, we may have:

?- literalize(pref(student,course)).

This declares the predicate "pref" to have two attributes, "student" and "course". Note the
"?-" which means this is treated as a CLP(R) goal to be evaluated when the input file is
being read. Next, in order to place an initial fact into the working memory, we use the
make command, as shown below:

The above code is part of a full example given later on. Here, we are declaring that
student "sema" has a preference for course "cmpe150" with a desire as strong as "1.0", has
a preference for course "cmpe420" with a desire as strong as "0.9", and has a preference
for course "cmpe220" with a desire as strong as "0.8". The conflict resolution mechanism
of SSST will guarantee that if there is a rule which matches all three facts, the instantiation
obtained using the first fact will have higher precedence over the instantiation obtained
using the second fact, and similarly for second and third facts. Again notice the use of
"?-".

The following code shows how to declare contexts and initialize the active context
list.

2.4 Success Conditions

A success condition is a predicate on the working memory elements. If the current
working memory satisfies a success condition, the inference engine stops, prints the
contents of the working memory, asks for whether another answer is required, and if the
answer is positive, it backtracks. Otherwise, no further inferencing is done. Syntactically,
an end condition is similar to a left hand side condition and is written as end_goal(name,
context_list, a_condition). An example of an end condition is given below.

2.5 Fail Conditions

A fail condition is like a consistency check on the working memory. It says that a working
memory under which the condition holds true is invalid. A fail condition, if satisfied by the
working memory, causes immediate backtracking. Syntactically, it is written as
fail_condition(name, context_list, a_condition). An example of a fail condition is given
below:

?- make(pref(1.0, student sema, course cmpe150)).
?- make(pref(0.9, student sema, course cmpe420)).
?- make(pref(0.8, student sema, course cmpe220)).

context(left).
context(r ight).
?- add_context(left).

end_goal(e1, [r ight],
 id(1, cannibals_left 0, missionar ies_left 0, boat r ight)).

3. Execution Model of SSST

3.1 Inference Algorithm

In Figure 1 we give the execution model of SSST. This model performs a full search of
the state-space, backtracking if necessary to find a solution. A choice point for
backtracking occurs where a rule selection is made from the conflict set for application to
the current working memory and the conflict set contains other rules that apply to the
same working memory. Rule selection is done according to a measure (to be described
shortly) of how well each rule in the conflict set matches the current working memory.
First, the rule with highest score is selected, and upon backtracking, other rules in the
conflict set are selected, in decreasing order of their score.

Figure 1: Abstract M odel of Execution of SSST

Success conditions permit the description of the conditions under which
computation may stop, and fail conditions specify unallowed working memory states,
causing immediate backtracking. The algorithm is recursive, with the working memory,
conflict set and set of active contexts being arguments to the INFER function.

The context mechanism allows the constraining of the state space, resulting in more
efficient execution (both in terms of speed and space), since a rule is applicable only if at
least member of its context list is active at the time of the match operation. apply(...)
takes as arguments a working memory, a rule and a context list and returns a pair: an
updated working memory and an updated context list. This function applies its rule
argument to its working memory argument, and updates the working memory and context

fail_condition(f1, [left,r ight],
 id(1, cannibals_left C, missionar ies_left M) and
 evaluate(1,C>M) and
 evaluate(1,M>0)).

function INFER (CS1,WM 1,CTX1) : boolean
Begin
 For each rule R in CS1 do
 begin
 (WM 2,CTX2) := apply(WM 1,R,CTX1);
 if WM 2 satisfies any end condition, pr int WM 2 and return(TRUE);
 if WM 2 satisfies any fail condition then
 continue with the next rule in CS1;
 CS2 := match (WM 2, CTX2);
 if INFER (CS2, WM 2, CTX2) then return(TRUE);
 end_for ;
 return(FALSE);
End;

Begin main
 Working_memory := initialize_with_facts();
 Context := Form_initial_set_of_contexts();
 Conflict_set := match(Working_memory, Context);
 return INFER(Conflict_set, Working_memory, Context);
End main;

list according to the actions specified in the rule. match(...) matches only the rules that are
active in the current context list against the current working memory, returning a new
conflict set of instantiated rules.

For the sake of simplicity, the algorithm has been presented at a very high level of
abstraction, and without the techniques used to avoid iteration over the rule base and
working memory inside the match(...) function.

3.2 Conflict Resolution

The match phase in forward chaining causes a confidence factor to be associated with
each condition element (CE) on the left hand side of a rule (which is the confidence factor
of the working memory element that unified with the condition element). Since each CE
already had an importance factor (IF) associated with it, we can then compute, for each
rule matched against the working memory, a score, denoting how well the rule matched
the working memory. That score is given by CF IFi

i
i

�
* , where i is the index of each

condition element (its relative position on the left hand side). An instantiated rule is
placed in the conflict set only if each CE in the rule has positive CF*IF and if CF IFi

i
i

�
*

is greater than some threshold, usually zero. The rules are then ranked in the conflict set
according to their scores, those with highest scores being on top, with rules with higher
scores taking precedence over rules with lower scores. Upon backtracking, all rules in the
conflict are tried. This is an implementation of the "best-first" conflict resolution strategy
with backtracking.

4. An Example SSST Program: Assignment of Teaching
Assistants to Courses Problem
This is a problem that surfaced in the Computer Engineering Department of Bogazici
University. A fixed number of teaching assistants are to be assigned to a fixed number of
computer courses as assistants. Each assistant fills out a form of preferences, listing his/her
preference from highest to lowest. For each course the number of teaching assistant
needed is fixed. Below we give a solution to this problem in SSST. As a simplification, we
assume that there are only three students, "duygu," "sema" and "cenk." Also we include
only three preferences for each student. The algorithm cycles through the students, trying
to give each student their first choice, then their second choice etc.

First we declare a context called "all" and make it active. In this example, only one
context is used.

Next, we declare the templates for facts in the working memory.

context(all).
?- add_context(all).

We then initialize the working memory with facts regarding students and their preferences.
For example, "sema" is a Ph.D. student and will assist in at most 2 courses.

Next we add the preferences of students. Note how "confidence factors" are used to
specify preferences.

Then we add information regarding how many teaching assistants are required for each
course. We start allocating courses to student with "sema".

We place an order in which students will be considered for allocation of courses. We shall
cycle around "sema," "cenk," "duygu" and then back to "sema". This order is established
using CLP(R) facts rather than SSST facts, since confidence factors are not needed here.

Now we come to the rules. r1 says that if the current student S has not been assigned its
maximum number of courses, he has a preference for a course C and the course C still
requires student assistants, assign the student S to the course C, remove the course
preference which has been assigned, decrease by one the number of students required for
the course C, decrease by one the number of courses the student can be assigned to (since
one assignment has just been made), and make the next student the current one.

?- literalize(pref(student,course)).
?- literalize(assigned(student,course)).
?- literalize(requires(course,no_students)).
?- literalize(cur rent_student(student)).
?- literalize(info(student,class,remaining)).

?- make(info(1, student sema, class phd, remaining 2)).
?- make(info(1, student cenk, class masters,remaining 2)).
?- make(info(1, student duygu, class phd, remaining 2)).

?- make(pref(1.0, student sema, course cmpe150)).
?- make(pref(0.9, student sema, course cmpe420)).
?- make(pref(0.8, student sema, course cmpe220)).

?- make(pref(1.0, student cenk, course cmpe420)).
?- make(pref(0.9, student cenk, course cmpe520)).
?- make(pref(0.8, student cenk, course cmpe350)).

?- make(pref(1.0, student duygu, course cmpe220)).
?- make(pref(0.9, student duygu, course cmpe520)).
?- make(pref(0.8, student duygu, course cmpe350)).

?- make(requires(1, course cmpe150, no_students 2)).
?- make(requires(1, course cmpe220, no_students 2)).
?- make(requires(1, course cmpe350, no_students 1)).
?- make(cur rent_student(1, student sema)).

next(sema, cenk).
next(cenk,duygu).
next(duygu,sema).

In rule r1a, if the current student has already been assigned its total maximum number of
courses, and there is a student who has not been assigned its maximum number of courses,
go on to the next student in hopes of finding a solution.

Rule r1b is similar to rule r1a, except we take no notice of the student's preference.
Even though both this rule and rule r1 will usually match the same working memory,
because of the conflict resolution strategy, rule r1 will always take precedence, and r1b
will apply only upon backtracking, if a solution cannot be found by taking into account
students desires. This is the guarantee that at least a solution will be found, except when
no solution is theoretically possible, i.e. when the total number of assignments possible is
less then to total number of required assignments.

Finally, we have the success condition which evaluates to true when all courses have been
assigned their required number of students.

rule(r1, [all],
 cur rent_student(1, student S) and
 info(1, student S, remaining R) and
 evaluate(1, R>0) and
 pref(1, student S, course C) and
 requires(1, course C, no_students N) and
 evaluate(1, N>0) and
 assigned(-1, student S, course C) and
 evaluate(1, next(S, S2))
 -->
 remove(4) and
 make(assigned(1, student S, course C)) and
 modify(5, 1.0, no_students (N-1)) and
 modify(1, 1.0, student S2) and
 modify(2, 1.0, remaining (R-1))).

rule(r1a, [all],
 cur rent_student(1, student S) and
 info(1, student S, remaining 0) and
 info(1, student S3, remaining R) and
 evaluate(1, R>0) and
 evaluate(1, next(S, S2))
 -->
 modify(1, 1.0, student S2)).

rule(r1b, [all],
 cur rent_student(1, student S) and
 info(1, student S, remaining R) and
 evaluate(1, R>0) and
 requires(1, course C, no_students N) and
 evaluate(1, N>0) and
 assigned(-1, student S, course C) and
 evaluate(1, next(S, S2))
 -->
 make(assigned(1, student S, course C)) and
 modify(4, 1.0, no_students (N-1)) and
 modify(1, 1.0, student S2) and
 modify(2, 1.0, remaining (R-1))).

One solution found by SSST is given below.

Note in this solution how the problem has been specified declaratively, the number of rules
required is very small, preferences of students have been easily incorporated into rules to
guide the system in conflict resolution so that students' preferences are honored as much
as possible, and the presence of the end condition simplified the rules actually used during
forward chaining.

5. Related Work
There is an abundance of Expert System Shells with varying features. These include

object-oriented extensions to the basic paradigm of knowledge representation, context
mechanisms for rule partitioning, focus of attention mechanisms including varying rule
priorities at run time, two way integration with other software systems, such as
programming languages and database systems, truth maintenance and graphical
development tools among others. [[1],[3],[4],[5],[7]] contain detailed surveys of various
currently available Expert System Shells and their features. None of these tools surveyed
has the specific combination of features which allows a full search of the state-space,
declarative specification of the problem in terms of rules, fail conditions and success
conditions, and incorporation of heuristic information inside rules at the granularity level
of condition elements.

6. Conclusions and Further Work
We presented a probabilistic forward chaining expert system shell with full backtracking.
Knowledge representation is declarative in the form of if-then rules, fail conditions and
success conditions. Heuristics about rule priorities are specified at the granularity of
condition elements. Working memory elements have confidence factors associated with
them, which permits representation of uncertain knowledge. The paradigm of computation
that results from the combination of features present in SSST make it most suitable for the
precise specification and efficient solution of problems requiring possible backtracking in
the search of state-space for their solution. Scheduling problems are good examples of
such problems.

Future work on SSST includes improving the efficiency of the interpreter through
optimizations of its various components, as well as addition of object oriented
functionality to replace the current system of templates and facts.

end_goal(g1,[all],not_true(1, requires(1, course C, no_students N) and
 evaluate(1, N>0))).

assigned(1, student cenk, course cmpe150)
assigned(1, student sema, course cmpe220)
assigned(1, student duygu, course cmpe220)
assigned(1, student cenk, course cmpe350)
assigned(1, student sema, course cmpe150)

REFERENCES
[1] Kuru,S., Akin, L., Bayram, Z. Boðaziçi University, Computer Engineering

Department Technical Report. The Evaluation of Real Time AI Tools, 1994
[2] Stylianou,C.A., Smith, D.R., Madey,G.R. An Empirical Model For the Evaluation

and Selection of Expert System Shells, 1993
[3] Gevarter,W.B. The Nature and Evaluation of Commercial Expert System Building

Tools. Computer Magazine, May 1987, pp 24-41
[4] Mettrey, W. A Comparative Evaluation of Expert System Tools, IEEE Computer,

February 1991, pp. 19-31
[5] Alty, J.L., Coombs,M.J. Expert Systems,NCC Publications, 1984
[6] Clocksin,W.F., Mellish,C.S., Programming in Prolog, Springer-Verlag, 1981
[7] Hayes-Roth,F., Waterman A.D., Lenat,D.B. (editors) Building Expert Systems,

Addison Wesley, 1983

