Module 2
Stacks and Queues:. Abstract Data Types

A stack is one of the most important and useful non-prieifinear data structure in computer science. dnis
ordered collection of items into which new datangemay be added/inserted and from which items reay b
deleted at only one end, called tbp of the stack. As all the addition and deletion stack is done from the

top of the stack, the last added element will b&t femoved from the stack. That is why the stackso called
Last-in-First-out (LIFO). Note that the most frequently accessible elermetite stack is the top most elements,
whereas the least accessible element is the baitohe stack.

PRIMITIVE STACK OPERATIONS: PUSH AND POP
The primitive operations performed on the stackaaréollows:

PUSH: The process of adding (or inserting) a new elertettie top of the stack is called PUSH operation.
Pushing an element to a stack will add the new elerat the top. After every push operation theisop
incremented by one. If the array is full and no red@ment can be accommodated, then the stack owerfl
condition occurs.

POP: The process of deleting (or removing) an elemerhfthe top of stack is called POP operation. After
every pop operation the stack is decremented bylbtieere is no element in the stack and the pmgration is
performed then the stack underflow condition occurs

ARRAY AND LINKED IMPLEMENTATION OF STACK

Stack can be implemented in two ways:
1. Static implementation (using arrays)
2. Dynamic implementation (using pointers)

Static implementation uses arrays to create sgieltic implementation using arrays is a very sinigtdnique
but is not a flexible way, as the size of the stiaa& to be declared during the program design,usecafter that,
the size cannot be variede(,increased or decreased). Moreover static implertientas not an efficient method
when resource optimization is concernied ,(memory utilization). For example a stack is impleiee with
array size 50. That is before the stack operategirts, memory is allocated for the array of sizeNs@w if

there are only few elements (say 30) to be stareld stack, then rest of the statically allocateanory (in this
case 20) will be wasted, on the other hand if tlaeeemore number of elements to be stored in Hekgsay 60)
then we cannot change the size array to increasajtacity. The above said limitations can be @rarcby
dynamically implementing (is also called linked lispresentation) the stack using pointers.

STACK USING ARRAYS

Implementation of stack using arrays is a very snt@chnique. Algorithm for pushing (or add or irs@ new
element at the top of the stack and popping (aetdgbn element from the stack is given below.

Algorithm for push

Suppose STACK[SIZE] is a one dimensional arrayifgslementing the stack, which will hold the datniis.
TOP is the pointer that points to the top most eletof the stack. Let DATA is the data item to lsied.

1. If TOP = SIZE - 1, then:
(a) Display “The stack is in overflow condition”

Prepared by Data Structure Team, CSE Dept, Galgotias University

(b) Exit

2. TOP=TOP +1

3. STACK [TOP] = ITEM
4, Exit

Algorithm for pop

Suppose STACK[SIZE] is a one dimensional arrayiffgglementing the stack, which will hold the datenits.
TOP is the pointer that points to the top most elenof the stack. DATA is the popped (or deleteatpdtem
from the top of the stack.

1. If TOP < 0, then

(a) Display “The Stack is empty”

(b) Exit

2. Else remove the Top most element
3. DATA = STACK[TOP]

4. TOP=TOP -1

5. Exit

STACK USING LINKED LIST

Implementation issues of the stack (Last In Fst - LIFO) using linked list is illustrated in folving figures.

ToP
[T o
push (10}
TOR

/
EIE N

push (20

TOP

¥
| 30 | _l_,l 20 _l_._l 10 |Nl.._|

pueh (300

TOP

/
EXEERE

X = popdl =; X - 30}

TOR

el
| a0 | _I_.,l 20 _l_.l 10 |NL._ |

push (40

ALGORITHM FOR PUSH OPERATION

Suppose TOP is a pointer, which is pointing towdhgstopmost element of the stack. TOP is NULL wtien
stack is empty. DATA is the data item to be pushed.

1. Input the DATA to be pushed
2. Creat a New Node

3. NewNode -> DATA = DATA
4. NewNode- > Next = TOP

5. TOP = NewNode

6. Exit

Prepared by Data Structure Team, CSE Dept, Galgotias University

ALGORITHM FOR POP OPERATION

Suppose TOP is a pointer, which is pointing towaha@stopmost element of the stack. TOP is NULL wtien
stack is empty. TEMP is pointer variable to hol¢ andes address. DATA is the information on theenod
which is just deleted.

1.if (TOP is equal to NULL)

(a) Display “The stack is empty”

2. Else

(@) TEMP = TOP

(b) Display “The popped element TGP DATA”
(c) TOP = TOP-> Next

(d) TEMP —> Next = NULL

(e) Free the TEMP node

3. Exit

APPLICATIONS OF STACKS

There are a number of applications of stacks; thféleem are discussed briefly. Stack is internaigd by
compiler when we implement (or execute) any reserfuinction. If we want to implement a recursivadtion
non-recursively, stack is programmed explicitha@t is also used to evaluate a mathematical express
and to check the parentheses in an expression.

1) PREFIX AND POSTFIX EXPRESSIONS

Another application of stack is calculation of gixsexpression. There are basically three typesadétion for
an expression (mathematical expression; An exmessidefined as the number of operands or datssite
combined with several operators.)

1. Infix notation

2. Prefix notation

3. Postfix notation

Theinfix notation is what we come across in our general mathematioste the operator is written in-between
the operands. For example : The expression tovadeshtimbers A and B is written in infix notation as:

A+B

Note that the operator ‘+’ is written in betweee tiperands A and B.

Theprefix notation is a notation in which the operator(s) is writteridye the operands, it is also called polish
notation in the honor of the polish mathematician Qukasiewicz who developed this notation. Theesam
expression when written in prefix notation lookseti

+AB

As the operator ‘+’ is written before the operadand B, this notation is called prefix (pre meaes$ore).

In the postfix notation the operator(s) are written after the operandg,isaalled the postfix notation (post
means after), it is also known augfix notation or reverse polish notation. The above expression if written in
postfix expression looks like:

AB+

The prefix and postfix notations are not reallyaadkward to use as they might look. For example,fanction
to return the sum of two variables A and B (passedrgument) is called or invoked by the instructio
add(A, B). Note that the operatand (name of the function) precedes the operands ABarRecause the
postfix notation is most suitable for a computecatculate any expression(due to its reverse ctestic), and
is the universally accepted notation for desigrmnighmetic and Logical Unit (ALU) of the CPU (prossor).

Prepared by Data Structure Team, CSE Dept, Galgotias University

Therefore it is necessary to study the postfix thata Moreover the postfix notation is the way cartgy looks
towards arithmetic expression, any expression edtito the computer is first converted into postidtation,
stored in stack and then calculated. In the precgeséections we will study the conversion of theregpion
from one notation to other.

Advantages of using postfix notation

Human beings are quite used to work with matherabéigpressions imfix notation, which is rather complex.
One has to remember a set of nontrivial rules wisieg this notation and it must be applied to egpions in
order to determine the final value. These ruletibte precedence, BODMAS, and associativity. Usirigxi
notation, one cannot tell the order in which opereshould be applied. Whenever an infix expressmnsists
of more than one operator, the precedence rule®B&S) should be applied to decide which operatod(a
operand associated with that operator) is evalua&dBut in a postfix expression operands apjedore the
operator, so there is no need for operator precedend other rules. As soon as an operator appetis
postfix expression during scanning of postfix esgien the topmost operands are popped off andaécalated
by applying the encountered operator. Place thdtreack onto the stack; likewise at the end ofuimele
operation the final result will be there in thecta

Notation Conversions

Let A + B * C be the given expression, which isiwdix notation. To calculate this expression fofues 4, 3, 7
for A, B, C respectively we must follow certaineylcalled BODMAS in general mathematics) in ordehave
the right result. For example:

A+B*C=4+3*7=7*7=49

The answer is not correct; multiplication is todmne before the addition, because multiplicatios tiigher
precedence over addition. This means that an esipres calculated according to the operator’s gdeace not
the order as they look like. The error in the abcaleulation occurred, since there were no brazelefine the
precedence of the operators. Thus expression A € Ban be interpreted as A + (B * C). Using thiemative
method we can convey to the computer that multgilie has higher precedence over addition.

Operator precedence

Exponential operator Highest precedence
Multiplication/Division *, / Next precedence
Addition/Subtraction +, - Least precedence

CONVERTING INFIX TO POSTFIX EXPRESSION

The method of converting infix expression A + B *&postfix form is:
A + B * C Infix Form

A + (B * C) Parenthesized expression

A + (B C *) Convert the multiplication

A (B C *) + Convert the addition

A B C * + Postfix form

The rules to be remembered during infix to postfixiversion are:

1. Parenthesize the expression starting fromdefght.

2. During parenthesizing the expression, the ogkrassociated with operator having higher precedare
first parenthesized. For example in the above esgive

B * C is parenthesized first before A + B.

3. The sub-expression (part of expression), whahlieen converted into postfix, is to be treatesirgge
operand.

4. Once the expression is converted to postfix feemove the parenthesis.

Givepostfixformfor A+[(B+C)+(D+E)*F]/G

Solution. Evaluation order is

A+{[(BC+)+ (DE+)*F]/G}

A+{[(BC+)+ (DE+F*/G}

A+{[(BC+ (DE+F*+]/G}.

Prepared by Data Structure Team, CSE Dept, Galgotias University

A+[BC+DE+F*+ G/]
ABC + DE + F* + G / + Postfix Form

Algorithm

Suppose P is an arithmetic expression writtenfis imotation. This algorithm finds the equivaleragpfix
expression Q. Besides operands and operatorsfiPr{atation) may also contain left and right pateses. We
assume that the operators in P consists of onlgreqtial (”), multiplication (*), division ()] addition (+)
and subtraction (-). The algorithm uses a stadkmporarily hold the operators and left parerghe$he
postfix expression Q will be constructed from kefright using the operands from P and operatong;tware
removed from stack. We begin by pushing a left péaesis onto stack and adding a right parenthésieeaend
of P. the algorithm is completed when the stacnipty.

1. Push “(” onto stack, and add“)” to the end of P.

2. Scan P from left to right and repeat Steps@fiar each element of P until the stack is empty.

3. If an operand is encountered, add it to Q.

4. If a left parenthesis is encountered, pushtiv stack.

5. If an operator is encountered, then:

(a) Repeatedly pop from stack and add P each opdi@idhe top of stack),

which has the same precedence as, or higher precetiean .

(b) Add to stack.

6. If a right parenthesis is encountered, then:

(a) Repeatedly pop from stack and add to P (on the@tstack until a left

parenthesis is encountered.

(b) Remove the left parenthesis. [Do not add thepgafenthesis to P.]

7. Exit.

EVALUATION OF POSTFIX EXPRESSION
Following algorithm finds the RESULT of an arithriee¢xpression P written in postfix
notation. The following algorithm, which uses a SO to hold operands, evaluates P.

Algorithm

1. Add a right parenthesis “)” at the end of P.ifTécts as a sentinel.]

2. Scan P from left to right and repeat Steps 34fat each element of P until the sentinel “)érgcountered.
3. If an operand is encountered, put it on STACK.

4. If an operator is encountered, then:

(a) Remove the two top elements of STACK, where théestop element and B is
the next-to-top element.

(b) Evaluate B A.

(c) Place the result on to the STACK.

5. Result equal to the top element on STACK.

6. Exit.

2) RECURSION
Recursion occurs when a function is called byfitegleatedly; the function is called recursive fim. The
general algorithm model for any recursive functiomtains the following steps:

1. Prologue: Save the parameters, local variables, and retudreas.

2. Body: If the base criterion has been reached, then perfioe final computation and go to step 3; otherwise
perform the partial computation and go to step 1

(initiate a recursive call).

3. Epilogue: Restore the most recently saved parameters, lacables, and return address.

Each time a function call to itself is executea; finologue of the function saves necessary infoomat
required for its proper functioning. The Last-indtOut characteristics of a recursive functiompothat the
stack is the most obvious data structure to imptertiee recursive function. Programs compiled in erad

Prepared by Data Structure Team, CSE Dept, Galgotias University

high-level languages (even C) make use of a starcthé procedure or function invocation in mematthen
any procedure or function is called, a number ofdsqsuch as variables, return address and otgemants
and its data(s) for future use) are pushed ontptbgram stack. When the procedure or functionrnatithis
frame of data is popped off the stack.

As a function calls a (may be or may not be angthugrction, its arguments, return address and leagbbles
are pushed onto the stack. Since each functioninuits own environment or context, it becomes fiedor a
function to call itself — a technique knownrasursion. This capability is extremely useful and extenlsive
used — because many problems are elegantly spkoifisolved in a recursive way. The stack is aaregif
main memory within which programs temporarily stdega as they execute. For example, when a program
sends parameters to a function, the parameterdared on the stack. When the function completes it
execution these parameters are popped off fromstdek. When a function calls other function theent
contents (ie., variables) of the caller functioa pushed onto the stack with the address of theugtn just
next to the call instruction, this is done so after execution of called function, the compiler tacktrack (or
remember) the path from where it is sent to thieddlinction.

Disadvantages of Recursion

1. It consumes more storage space because theikecoalls along with automatic variables are stame the
stack.

2. The computer may run out of memory if the reimersalls are not checked.

3. It is not more efficient in terms of speed ardaition time.

4. According to some computer professionals, régardoes not offer any concrete advantage over non-
recursive procedures/functions.

5. If proper precautions are not taken, recursiay result in non-terminating iterations.

6. Recursion is not advocated when the problenbeathrough iteration. Recursion may be treated as a

software tool to be applied carefully and seledyive

3) TOWER OF HANOI PROBLEM

So far we have discussed the comparative defingimhdisadvantages of recursion with examples. Nows
look at the Tower of Hanoi problem and see how & use recursive technique to produce a logical and
elegant solution. The initial setup of the problisnshown below. Here three pegs (or towers) X, & Arexists.
There will be four different sized disks, say A,@and D. Each disk has a hole in the center dattban be
stacked on any of the pegs. At the beginning, tbleschre stacked on the X peg, that is the lagest] disk on
the bottom and the smallest sized disk on top awslin Fig. below

Y z

Fig: Initial Position of Towers of Hanoi

Here we have to transfer all the disks from sopeg X to the destination peg Z by using an inteliatedbeg
Y. Following are the rules to be followed duringrisfer :

1. Transferring the disks from the source peg ¢éodibstination peg such that at any point of transétion no
large size disk is placed on the smaller one.

2. Only one disk may be moved at a time.
3. Each disk must be stacked on any one of the pegs

Now Tower of Hanoi problem can be solved as shoelowvo :

Prepared by Data Structure Team, CSE Dept, Galgotias University

A

[1]

Move disk A froem the peg X i peg ¥

X ¥ z
C
A
’ J_\ J_\
Move disk B from the peg X to peg 2
X ¥ z
¥ A
=
D
Monve disk A from tho peg Y to pog £
X ¥ z
A
D c
| I |
Move disk C from the pog X to peg ¥
X ¥ z
A
D C B
| S |]
Movo diskk A fren tha peg I 1o peg X
X ¥ z
A B
D C
| | |

Move disk H from thw peg ¥ o peg Y

Prepared by Data Structure Team, CSE Dept, Galgotias University

i}
A
B

”] ©

Maove disk A from the pog X to peg ¥

X Y
A
B
= i
| | | |
Move disk [from the peg X topeg £
X Y
’J_‘B
= D
| | l
Muove disk & from the peg Y to peg £
X Y
B = i
| | | |

Move disk B from the peg ¥ to peg X

Prepared by Data Structure Team, CSE Dept, Galgotias University

. 1 1° I

Move disk A from the peg T to peg X

o

k4

X
X z
A C
B i
X

Mowve disk C froem the peg Y to peg £

Y

Move disk A from the peg X to peg ¥

z
B

c

A D

Move disk B from the peg X to peg £

X T

Move disk A from the tower Y to tower

We can generalize the solution to the Tower of Hanablem recursively as follows :

To moven disks from peg X to peg Z, using Y as auxiliary peg

1. If n=1, move the single disk from X to Z and stop.

2. Move the top{— 1) disks from the peg X to the peg Y, using Aasiliary.
3. Moventh disk to peg Z.

4. Now moven — 1 disk from Y to Z, using Z as auxiliary.

SIMULATING RECURSION

Simulating recursion means to simulate the recursive mechanism by using non-
recursive techniques. This is important as many languages like COBOL, FORTRAN
and many compilers do not support recursion. So recursive programs can be
programmed into non recursive techniques by simulating recursive techniques. To
create a correct solution in a non-recursive language the conversion from recursive
to non-recursive must be correct. In C language that supports recursion, a recursive

Prepared by Data Structure Team, CSE Dept, Galgotias University

solution is more expensive than a non-recursive one in terms of time as well as
space. So a program can be designed in recursive solution and then simulated to
the non-recursive solution to use in actual practice.

REMOVAL OF RECURSION
Recursive function can be changed into iterative with the help of looping.

¢ Convert recursive function to tail recursive
+ Convert tail recursive function to iterative.

TAIL RECURSION

Recursive procedures call themselves to work tosvarslolution to a problem. In
simple implementations this balloons the stackhasesting gets deeper and
deeper, reaches the solution, then returns thraligt the stack frames. This
waste is a common complaint about recursive progriauignin general. A function
call is said to be tail recursive if there is nathto do after the function returns
except return its value. Since the current recaergigtance is done executing at
that point, saving its stack frame is a waste. Bipalty, creating a new stack
frame on top of the current, finished, frame isaste. A compiler is said to
implement TailRecursion if it recognizes this case and repldoesaller in place
with the callee, so that instead of nesting thekstieeper, the current stack frame
is reused. This is equivalent in effect to a "GqTaid lets a programmer write
recursive definitions without worrying about spavefficiency (from this cause)
during execution. TailRecursion is then as effit@hiteration normally is.

The term TailCallOptimization is sometimes usedéscribe the generalization of
this transformation to non-recursive TailCalls. Hast-known example of a
language that does this is the SchemelLanguagehvughiequired to

support ProperTailCalls. Recursion is the basratien mechanism in Scheme.

Consider this recursive definition of the factofishction in C:
factorial (n) {
if (n ==20) return 1,
return n * factorial(n - 1);

}

This definition isnot tail-recursive since the recursive call to facbis not the

last thing in the function (its result has to betiplied by n). But watch this:
factorial 1(n, accumulator) {
if (n ==0) return accumnul at or;
return factoriall(n - 1, n * accunulator);

}

factorial (n) {
return factorial 1(n, 1);

Prepared by Data Structure Team, CSE Dept, Galgotias University

}

The tail-recursion of factoriall can be equivalgkkfined in terms of goto:
factorial 1(n, accumul ator) {
begi nni ng:
if (n ==0) return accumnul at or;
el se {
accunmul ator *= n;
n-=1;
got o begi nni ng;
}
}

QUEUES

A queue is logically &irstin first out (FIFO or first comefirst serve) linear data structure. The concept of queue
can be understood by our real life problems. Fangde a customer come and join in a queue to také&ain
ticket at the end (rear) and the ticket is isswethfthe front end of queue. That is, the custontes arrived

first will receive the ticket first. It means thastomers are serviced in the order in which theiyaat the

service centre. It is a homogeneous collectionerhents in which new elements are added at oneafet

rear, and the existing elements are deleted from athdrcalledront. The basic operations that can be
performed on queue are:

1. Insert (or add) an element to the queue (push)
2. Delete (or remove) an element from a queue (pop)

Push operation will insert (or add) an elementueug, at the rear end, by incrementing the arm@gxnPop
operation will delete (or remove) from the frontesy decrementing the array index and will assigndeleted
value to a variable. Total number of elements presethe queue is front-rear+1, when implementedg
arrays. Following figure will illustrate the basiperations on queue.

T 1 T 1 Fowr=—1
’ | [Frant 1
Ouieue is empty.
:rﬁ
Rear=10
o] [[[]
Rear
pushi10)
=m£
Rear =1
Lo[= | | |
Rear

pash{®

Prepared by Data Structure Team, CSE Dept, Galgotias University

Rear=2
lo]s[at] | | Ber?
Rear
puashid 1y
=m\|:
Rear=23
Lola [sr]ro] | [] o
A
Rear
pushi(TO)
nt
. Rear=3
[[oafzel []]
A
Rear

x = popl fa;x =100

Front

Rear =4
[[aledmels] [| i
Rear
meshil 1}
Frgnt
. . Rear=4
L[Jsefol] []
A
Rear
x = popl) e x =73
Front
. Rear=4
L ol [
Rear

x=popl) e, x=41)

ARRAY AND LINKED IMPLEMENTATION OF QUEUES

Queue can be implemented in two ways:
1. Using arrays (static)
2. Using pointers (dynamic)

Prepared by Data Structure Team, CSE Dept, Galgotias University

Let us discuss underflow and overflow conditionewla queue is implemented using arrays. If weatiyop
(or delete or remove) an element from queue whisneinpty, underflow occurs. It is not possiblelédete (or
take out) any element when there is no elemerfitdrgtieue. Suppose maximum size of the queue (wien i
implemented using arrays) is 50. If we try to p@mhinsert or add) an element to queue, overflosuos. When
gueue is full it is naturally not possible to ins@&ny more elements

ALGORITHM FOR QUEUE OPERATIONS

Let Q be the array of some specified size say SIZE

INSERTING AN ELEMENT INTO THE QUEUE

1. Initialize front=0 rear = -1

2. Input the value to be inserted and assign t@abkr “data”
3. If (rear >= SIZE)

(a) Display “Queue overflow”

(b) Exit

4. Else

(a) Rear = rear +1

5. Q[rear] = data

6. Exit

DELETING AN ELEMENT FROM QUEUE
1. If (rear< front)

(a) Front =0, rear = -1

(b) Display “The queue is empty”

(c) Exit

2. Else

(a) Data = Q[front]

3. Front = front +1

4. Exit

Suppose a queue Q has maximum size 5, say 5 elepustied and 2 elements popped.

Now if we attempt to add more elements, even thdugbeue cells are free, talements cannot be pushed.
Because in a queue, elements are always insertedraar end and henceear points to last location of the
queue array Q[4]. That is queue is full (overfloandition) though it is empty. This limitation caa bvercome
if we use circular queue.

QUEUE USING LINKED LIST

Queue is a First In First Out [FIFQ] data structuneplementation issues of the stack (Last In Kirst - LIFO)
using linked list is illustrated in the followingglires.

Prepared by Data Structure Team, CSE Dept, Galgotias University

I nfu./Ti
Franl
push (14
/Raw
0 NI
x
Front
push (2
Fear
Fa
ol Jem] e]
Frer
push (30
Feaar
5
[[e] —» | 1 —o] 20 [huLL
l
r’
Feont
push 40
Rear

v
ERCT e T

Xom= popll (Le: X = 100

ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE

REAR is a pointer in queue where the new elemertaidded. FRONT is a pointer, which is pointingh®
gueue where the elements are popped. DATA is anegieto be pushed.

1. Input the DATA element to be pushed

2. Create a New Node

3. NewNode-> DATA = DATA

4. NewNode->Next = NULL

5. If(REAR not equal to NULL)

(@) REAR —>next = NewNode;

6. REAR =NewNode;

7. Exit

ALGORITHM FOR POPPING AN ELEMENT FROM A QUEUE

REAR is a pointer in queue where the new elemartaidded. FRONT is a pointer, which is pointingh®
gueue where the elements are popped. DATA is anezlepopped from the queue.
1. If (FRONT is equal to NULL)

(a) Display “The Queue is empty”

2. Else

(a) Display “The popped element is FRONTDATA”

(b) If(FRONT is not equal to REAR)

(i) FRONT = FRONT->Next

(c) Else

(d) FRONT = NULL;

3. Exit

Prepared by Data Structure Team, CSE Dept, Galgotias University

OTHER QUEUES

There are three major variations in a simple qu&bey are
1. Circular queue

2. Double ended queue (de-queue)

3. Priority queue

Priority queue is generally implemented using lishkist.

CIRCULAR QUEUE

In circular queues the elements Q[0],Q[1],Q[2]Q[n— 1] is represented in a circular fashion with Q[1]
following Q[n]. A circular queue is one in whichetlinsertion of a new element is done at the vesy liocation
of the queue if the last location at the queuelis Buppose Q is a queue array of 6 elements. Buglpop
operation can be performed on circular. The follapigures will illustrate the same.

oo

/Z;T1

as] |
I'.

Front

; |arn

A cliroudar guese after inserting 18, 7, 42, 687

]
|

Rear

Q] _— el

Rear

A ciroular quevie afker popping 18, T

After inserting an element at last location Q[bk hext element will be inserted at the very fiosation (.e.,
QI[0]) that is circular queue is one in which thstfielement comes just after the last element.

Prepared by Data Structure Team, CSE Dept, Galgotias University

1 a0

5
ol

- [21\

A circular gquene after pushing 30, 47, 14

aff]

At any time the position of the element to be itesgwill be calculated by the relation Rear = (Red) %
SIZE After deleting an element from circular quélie position of the front end is calculated by itlation
Front= (Front + 1) % SIZE . After locating the pomn of the new element to be inserteelr, compare it with
front. If (rear = front), the queue is full and cannetibserted anymore.

ALGORITHMS
Let Q be the array of some specified size say SEEEONT and REAR are two pointers where the elemams
deleted and inserted at two ends of the circulauguDATA is the element to be inserted.

Inserting an element to circular Queue

1. Initialize FRONT =-1; REAR =1

2. REAR = (REAR + 1) % SIZE

3. If (FRONT is equal to REAR)

(a) Display “Queue is full”

(b) Exit

4. Else

(a) Input the value to be inserted and assign tabégi“DATA”
5. If (FRONT is equal to — 1)

(@ FRONT =0

(b) REAR =0

6. Q[REAR] = DATA

7. Repeat steps 2 to 5 if we want to insert mazenehts
8. Exit

Deleting an element from a circular queue
1. If (FRONT is equal to — 1)

(a) Display “Queue is empty”

(b) Exit

2. Else

(a) DATA = Q[FRONT]

3. If (REAR is equal to FRONT)

(8 FRONT = -1

(b) REAR = -1

4. Else

(a) FRONT = (FRONT +1) % SIZE

5. Repeat the steps 1, 2 and 3 if we want to detete elements
6. Exit

Prepared by Data Structure Team, CSE Dept, Galgotias University

DEQUE AND PRIORITY QUEUES

DEQUE

A deque is a homogeneous list in which elementseamdded or inserted (called push operation) atetet or
removed from both the ends (which is called poprapan). ie; we can add a new element at the refroot
end and also we can remove an element from boti &md rear end. Hence it is called Double Endeeu@u

['rqunit Eear
Adtion Addition
H-\""-\-\.

T
e

Deletion

44

51

14||a

Dralaifen

A deque

There are two types of deque depending upon ttectémn to perform insertion or deletion operatsoat the
two ends. They are

1. Input restricted deque
2. Output restricted deque

An input restricted deque is a deque, which allowsrtion at only 1 end, rear end, but allows deteat both
ends, rear and front end of the lists. An outpstrieted deque is a deque, which allows deleticonst one
end, front end, but allows insertion at both emear and front ends, of the lists.

The possible operation performed on deque is
1. Add an element at the rear end

2. Add an element at the front end

3. Delete an element from the front end

4. Delete an element from the rear end

Only 1st, 3dand 4n operations are performed by input-restricted deaneekt, 2¢and 34 operations are
performed by output-restricted deque.

ALGORITHMS FOR INSERTING AN ELEMENT

Let Q be the array of MAX elementsont (or left) andrear (or right) are two array index (pointers), where the
addition and deletion of elements occurred. Let DAY the element to be inserted. Before insertimg a
element to the queueft andright pointer will point to the — 1.

INSERT AN ELEMENT AT THE RIGHT SIDE OF THE DE-QUEUE
1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX-1) || (left == rght + 1))
(a) Display “Queue Overflow”

(b) Exit

3. If (left == -1)

(a) left=0

(b) right =0

4. Else

(@) if (right == MAX -1)

@i)left=0

(b) else

(i) right = right+1

5. Q[right] = DATA

6. Exit

INSERT AN ELEMENT AT THE LEFT SIDE OF THE DE-QUEUE

Prepared by Data Structure Team, CSE Dept, Galgotias University

1. Input the DATA to be inserted

2. If ((left == 0 && right == MAX-1) || (left == rght+1))
(a) Display “Queue Overflow”

(b) Exit

3. If (left==-1)
(a) Left=0

(b) Right=0

4. Else

(a) if (left == 0)
(i) left= MAX - 1

(b) else

@) left=left—1
5. Q[left] = DATA
6. Exit

ALGORITHMS FOR DELETING AN ELEMENT
Let Q be the array of MAX elemenfsont (or left) andrear (or right) are two array index (pointers), where the
addition and deletion of elements occurred. DATA wontain the element just deleted.

DELETE AN ELEMENT FROM THE RIGHT SIDE OF THE DE-QUEUE

1. If (left==-1)
(a) Display “Queue Underflow”
(b) Exit

2. DATA = Q [right]
3. If (left == right)
(@) left=-1

(b) right =—1

4. Else

(a) if(right == 0)

(i) right = MAX-1

(b) else

(i) right = right-1

5. Exit

DELETE AN ELEMENT FROM THE LEFT SIDE OF THE DE-QUEUE
1.If (left==-1)

(a) Display “Queue Underflow”

(b) Exit

2. DATA = Q [left]

3. If(left == right)

(@ left=-1

(b) right =—1

4. Else

(a) if (left == MAX-1)
@i)left=0

(b) Else

(i) left = left +1

5. Exit

PRIORITY QUEUES
Priority Queue is a queue where each elementigresa priority. In priority queue, the elements deleted
and processed by following rules.

1. An element of higher priority is processed befany element of lower priority.
2. Two elements with the same priority are procgésseording to the order in which they were ingkttethe
queue.

Prepared by Data Structure Team, CSE Dept, Galgotias University

For example, Consider a manager who is in a pragfessecking and approving files in a first comstfiserve
basis. In between, if any urgent file (with a hjgfority) comes, he will process the urgent filxinand
continue with the other low urgent files.

-

¥
Dem el 10 | 14| 12] 60| 13
: i
Pulorlty s B %
|
Bow
Brinrity queiio reprosaniation sy amys

Above Fig. gives a pictorial representation obpty queue using arrays after adding 5 elements
(10,14,12,60,13) with its corresponding priorit{sl0,17,30,46). Here the priorities of the data¢g)in
ascending order. Always we may not be pushing #ta ith an ascending order. From the mixed pridistyit is
difficult to find the highest priority element ifi¢ priority queue is implemented using arrays. Mueg, the
implementation of priority queue using array wiklg n comparisons (in liner search), so the timmpglexity
is O(n), which is much higher than the other qui@eieother queues takes only O(1)) for insertingeement.
So it is always better to implement the priorityega using linked list - where a node can be indexte
anywhere in the list - which is discussed in tlest®n. A node in the priority queue will contairADA,
PRIORITY and NEXT field. DATA field will store thactual information; PRIORITY field will store its
corresponding priority of the DATA and NEXT willee the address of the next node. Fig below shbess t
linked list representation of the node when a DAT.A, 12) and PRIORITYi(e, 17) is inserted in a priority
queue.

T Prindly

Linked list repressntaticn of poarity guaus

When an element is inserted into the priority quéueill check the priority of the element witheltelement(s)
present in the linked list to find the suitableitios to insert. The node will be inserted in sectvay that the
data in the priority field(s) is in ascending ordéfe do not use rear pointer when it is implemenigidg linked
list, because the new nodes are not always insatténa rear end. Following figures will illustratee push and
pop operation of priority queue using linked list.

Prepared by Data Structure Team, CSE Dept, Galgotias University

From:
i

pEhDATA =10, PRIDRITY. = o)
i
¥ . .
[re]e [i az[i7] f» a0
mshiDATA = 6o; PRIGHITY - 30§
Front
v
o | % | e w0] e] |
pshiDATA = 13, PRIGAITY - 46

Front

[onfs [% o] ¥ 2] {* eala] (% ii]s]

prehDATA = 14, PRIJETY = 14%

T
S g B B R

x = popl) iLe., 100

Front
!

¥
EREEES N

x = popl) {Le., 14)

APPLICATIONS OF QUEUE

1. Round robin techniques for processor schedugingplemented using queue.

2. Printer server routines (in drivers) are designsing queues.

3. All types of customer service software (like IRaly/Air ticket reservation) are designed usingupi&o give
proper service to the customers.

QUEUE USING TWO STACKS

A queue can be implemented using two stacks. SeppdACK1 and STACK2 are the two stacks. When an
element is pushed on to the queue, push the sar8&8 ABK1. When an element is popped from the qupop,
all elements of STACK1 and push the same on STAQK2n pop the topmost element of STACK2; which is
the first (front) element to be popped from thewgierhen pop all elements of STACK2 and push theesan
STACKU1 for next operation €., push or pop).

Prepared by Data Structure Team, CSE Dept, Galgotias University

