MODULE 3:
TREES BASIC TERMINOLOGY

Trees are very flexible, versatile and powerful #iaer data structure that can be used to reprefaatitems
possessing hierarchical relationship between thedyfather and his children and grand childreroasns

. _._-ﬂ"" Levnl
-:_.|'||.__;-\.._ e
T Ll |
P
i et
/'/ L] \
-, ke e,
¢ Y i o Lan I
. 1 2 : |__J‘\ | _h_‘_.
bl
A
/ i _,-" At
L T e S e e | oo 1
['-.E.z' '._2_;' '._E_;' ".3'_./' :

A tree is an ideal data structure for represerttiegarchical data. A tree can be theoreticallyrisdias a finite
set of one or more data items (or nodes) such that

1. There is a special node called the root of tbe. t

2. Removing nodes (or data item) are partitionéa irumber of mutually exclusivé.€., disjoined) subsets each
of which is itself a tree, are called sub tree.

BASIC TERMINOLOGIES

Root is a specially designed node (or data items) nee it is the first node in the hierarchical agament of
the data items. ‘A’ is a root node in the Fig. aboEach data item in a tree is callembde. It specifies the data
information and links (branches) to other data gem

Trees can be divided in different classes as follows :

Trees

2-way binary tree m-way binary tree

f | 1 | 1
Binary Search Tree Balanced Binary Tree Expression Tree Height Balanced Weight Balanced

[]
Height Balanced Weight Balanced

Binary trees:

Prepared by Data Structure Team, CSE Dept, Galgotias University

A binary tree is a tree in which no node can have more than two children. Typically
these children are described as “left child” and “right child” of the parent node.

A binary tree T is defined as a finite set of elements, called nodes, such that :
1. T is empty (i.e., if T has no nodes called the null tree or empty tree).

2. T contains a special node R, called root node of T, and the remaining nodes of T
form an ordered pair of disjoined binary trees T1 and T2, and they are called left and right
sub tree of R. If T1 is non empty then its root is called the left successor of R, similarly if
T2 is non empty then its root is called the right successor of R.

BINARY TREE REPRESENTATION

This section discusses two ways of representingriitiee T in memory :
1. Sequential representation using arrays
2. Linked list representation

ARRAY REPRESENTATION

An array can be used to store the nodes of a bineey The nodes stored in an array of memory ean b
accessed sequentially. Suppose a binary tree @pthd. Then at mosté2 1nodes can be there in i€,

SIZE = 2-1) So the array of size “SIZE" to represent theaby tree. Consider a binary tree of depth 3. Then
SIZE =2—-1=7. Then the array A[7] is declared to holel tiodes.

3 4 B{;’\ &
@ C -~

« CECEL 1
@ [ROBEOE P M

The array representation of the binary tree is shaw perform any operation often we have to idgittie
father, the left child and right child of an arbity node.

1. The father of a node having index n can be obthby (0 — 1)/2. For example to find the father of D, where
array indexn = 3. Then the father nodes index can be obtained

= (n—1)/2
=3-1/2
=212

=1

i.e., A[1] is the father D, which is B.

2. The left child of a node having indaxan be obtained by (2n+1). For example to findiefiechild of C,
where array inder = 2. Then it can be obtained by

= (2n +1)

=2*2+1

=4+1

=5

i.e.,, A[5] is the left child of C, which is NULL. So neitt child for C.

3. The right child of a node having array indesan be obtained by the formulan(2 2). For example to find
the right child of B, where the array index 1. Then

=(2n+2)

=2*1+2

=4

Prepared by Data Structure Team, CSE Dept, Galgotias University

i.e., A[4] is the right child of B, which is E.

4. If the left child is at array indax then its right brother is an ¢ 1). Similarly, if the right child is at index
then its left brother is ah(1). The array representation is more ideal ferdbmplete binary tree. The tree in
Fig. above is not a complete binary tree. Sineeetlis no left child for node Cge., A[5] is vacant. Even though
memory is allocated for A[5] it is not used, so tealsunnecessarily.

LINKED LIST REPRESENTATION

The most popular and practical way of represerdibinary tree is using linked list (or pointers).lihked list,
every element is represented as nodes. A nodestsidithree fields such as :

(a) Left Child (LChild)

(b) Information of the Node (Info)

(c) Right Child (RChild)

If a node does not have left/right child, corregfing left/right child is assigned to NULL.

COMPLETE BINARY TREES

A complete binary tree of depth ‘d’ is strictly thanary tree where all the leaf nodes are at Idvel

s

Fig: Complete binary tree

A binary tree wittm nodesn > 0, has exactiyn — 1 edges. A binary tree of demthd > 0, has at leastand at
mast 2— 1 nodes in it. If a binary tree contaimaodes at level |, then it contains at mash®des at levdl+ 1.
A complete binary tree of depthis the binary tree of depthcontains exactly 2nodes at each levebetween
0 andd.

ALGEBARIC EXPRESSIONS

The main application of a 2-tree is to represedt@mpute any algebraic expression using binaryatioa.
For example, consider an algebraic expression E.
E=@+hb)/((c-d)*e

Prepared by Data Structure Team, CSE Dept, Galgotias University

E can be represented by means of the extended/linear T as shown in Fig. below. Each variablearstant
in E appears as an internal node in T whose leftrigint sub tree corresponds to the operands ofpleeation.

Fig: Expression tree
EXTENDED BINARY TREES

Consider a binary tree T in Fig. below. Here ‘Atli® root node of the binary tree T. Then ‘B’ is tkft child
of ‘A’ and ‘C’ is the right child of ‘A’i.e,, ‘A’ is a father of ‘B’ and ‘C’. The node ‘B’ and ‘Care called
brothers, since they are left and right child & #ame father. If a node has no child then itlisda leaf node.

Nodes P,H,|,F,J are leaf nodes. The tree is saié $trictly binary tree, if every non-leaf made in a binary tree
has non-empty left and right sub trees. A stribthary tree witm leaves always containg2 1 nodes. The tree
in Fig. below is strictly binary tree, where as ttee in Fig. above is not. That is every nodéhmgtrictly
binary tree can have either no children or twodrkih. They are also calledtize or extended binary tree.

Finally, let us discuss in briefly the main difface between a binary tree and ordinary tree is:

1. A binary tree can be empty where as a tree ¢anno

2. Each element in binary tree has exactly twotsess (one or both of these sub trees may be entrgh
element in a tree can have any number of sub trees.

3. The sub tree of each element in a binary treeatered, left and right sub trees. The sub ireadree are
unordered. If a binary tree has only left sub tréfesn it is called left skewed binary tree. Ifinary tree has
only right sub trees, then it is called right skeMznary tree.

Fig. below shows left skewed and right skewed tyities respectively.

Prepared by Data Structure Team, CSE Dept, Galgotias University

D fD}ﬁ\

&
(a) Left skewed (b) Right skewed

The basic operations performed on binary tree$isiesl as follows:

1.Create an Empty Binary tree

. Traversing a binary tree

. Insert a new mode

. Deleting a Node

. Searching for a Node

. Copying the mirror image of a tree

. Determine the total no: of Nodes

. Determine the total no: leaf Nodes

. Determine the total no: non-leaf Nodes

10. Find the smallest element in a Node

11. Finding the largest element

12. Find the Height of the tree

13. Finding the Father/Left Child/Right Child/Brethof an arbitrary node
Some primitive operations are discussed in the feaxtsections.

OCoO~NOOUITA~WN

TREE TRAVERSAL ALGORITHMS

Tree traversal is one of the most common operagenformed on tree data structures. It is a wayhich each
node in the tree is visited exactly once in a systéc manner. There are three standard ways dérsang a
binary tree. They are:

1. Pre Order Traversal (Node-left-right)
2. In order Traversal (Left-node-right)
3. Post Order Traversal (Left-right-node)

PRE ORDER TRAVERSAL

To traverse a non-empty binary tree in pre orddoviong steps one to be processed
1. Visit the root node

2. Traverse the left sub tree in preorder

3. Traverse the right sub tree in preorder

Prepared by Data Structure Team, CSE Dept, Galgotias University

Fig 1

That is, in preorder traversal, the root node $itedl (or processed) first, before traveling thitolejft and right
sub trees recursively.

The preorder traversal non-recursively algorithmesua variable PN (Present Node), which will conté
location of the node currently being scanned. Bftienotes the left child of the node R and Right{&oted
the right child of R. A stack is used to hold tlieleesses of the nodes to be processed. Info(R)eketie
information of the node R.

Preorder traversal starts with root node of theitee, PN = ROOT. Then repeat the following steps upll =
NULL.

Sep 1: Process the node PN. If any right child is tHeréPN, push the Right (PN) into the top of thecktand
proceed down to left by PN = Left (PN), if any leftild is therei(e., Left (PN) not equal to NULL). Repeat the
step 2 until there is no left childé, Left (PN) = NULL).

Sep 2: Now we have to go back to the right node(s) agkiracking the tree. This can be achieved by pappi
the top most element of the stack. Pop the topehéfinom the stack and assigns to PN.

Sep 3: If (PN is not equal to NULL) go to the Step 1

Sep 4: Exit

The preorder traversal of a binary tree in Figs AiB, D, E, H, |, C, F, G, J.

IN ORDER TRAVERSAL

The in order traversal of a non-empty binary teeddfined as follows :
1. Traverse the left sub tree in order

2. Visit the root node

3. Traverse the right sub tree in order

In order traversal, the left sub tree is travenssdirsively, before visiting the root. After visig the root the
right sub tree is traversed recursively, in ordashifon. The procedure for an in order traversgivisn below :

The in-order traversal algorithm uses a variable WiNch will contain the location of the node cuntlg being
scanned. Info (R) denotes the information of théenB, Left (R) denotes the left child of the nodari®l Right
(R) denotes the right child of the node R. In-orlaversal starts from the ROOT node of the treg PN =
ROOT). Then repeat the following steps until PN BL\L.

Sep 1: Proceed down to left most node of the tree shjmg the root node onto the stack.
Sep 2: Repeat the step 1 until there is no left childef node.

Sep 3: Pop the top element of the stack and processdtie. PN = STACK[TOP]

Sep 4: If the stack is empty then go to step 6.

Sep 5: If the popped element has right child then PRight(PN). Then repeat the step from 1.
Sep 6: Exit.

The in order traversal of a binary tree in FigDi B, H, E, I, A|F, C, J, G.

POST ORDER TRAVERSAL

The post order traversal of a non-empty binary t@ebe defined as :

1. Traverse the left sub tree in post order

2. Traverse the right sub tree in post order

3. Visit the root node

In Post Order traversal, the left and right suk(@®are recursively processed before visiting tiog.

The post-order traversal algorithm uses a variBblewhich will contain the location of the node reuntly
being scanned. Left (R) denotes the left chilchefhode R and Right (R) denotes the right chilthefnode R.
Info (R) denotes the information of the node R. pbst-order traversal algorithm is more complicdtesh the
proceeding two algorithms, because here we hapasb the information of the node PN to stack in two

Prepared by Data Structure Team, CSE Dept, Galgotias University

different situations. These two situations areiniigtished between by pushing Left(PN) and - RigR})(Bn to
stack. That is whenever a negative node sees istdlo&; it means that it was a right child of aedéost-order
traversal starts from the ROOT node of the tres PN = ROOT).

Sep 1: Proceed down to left most node of the tree tshjmg the root node and - Right(PN) on the stack.
Sep 2: Repeat the Step 1 until there is no left childthe node.

Sep 3: Pop and display the positive nodes on the stack.

Sep 4: If the stack is empty, go to Step 6

Sep 5: If a negative node is popped, then PN = — P& fo remove the negative sign in the node) and go to
Step 1.

Sep 6: Exit

The post order traversal of a binary tree in FigD, H, |, E, B, F, J, G, C, A

THREADED BINARY TREE

Traversing a binary tree is a common operationiewduld be helpful to find more efficient methook f
implementing the traversal. Moreover, half of tiéries in the Lchild and Rchild field will contaMULL
pointer. These fields may be used more efficiebylyeplacing the NULL entries by special pointetsai
points to nodes higher in the tree. Such typepecial pointers are called threads and binarywigesuch
pointers are called threaded binary tree. Fig.vbeloows the threaded binary tree with threads capaNULL
pointer of a binary tree . The threads are dravth dotted lines to differentiate then from treerpers.

e

C { k—g
®® O

Fig: Binary tree

Fig: Threaded binary tree

There are many ways to thread a binary tree. Rigigt nodes in the threaded binary tree have a Nttt
pointer (.e., in-order successor). Such trees are called rigtitreaded binary trees. A left in threaded binary
tree may be defined similarly as one in which edth L left pointer is altered to contain a threag.(in-order
predecessor). An in-threaded binary tree may beelfs a binary tree that is both left-in-threaded
right-in-threaded. We can implement a right in &uted binary tree using arrays by distinguishingdbs from
ordinary pointers. Threads are denoted by negatimebers, when ordinary pointers are denoted bytipesi
integers. The array representation of the righihiead binary tree in Fig above is shown in Talgi®.

Prepared by Data Structure Team, CSE Dept, Galgotias University

Irai Lchiid Echiid
AJ A 1 2
Afl] B 1 4
Al C
AT I B
AM] E £ 10
AJ5] F 12
AJE]
AlT]
AJR] G
A H 4
AJ107 I o
AJl1]
A1) I 2
A1)
Af14]

To implement a right-in-threaded binary tree usdiggamic memory allocation, an extra 1 bit logidald,
rthread, is used to distinguish threads from ongimeinters. If a right pointer of a node is threddthen the
rthread = TRUE otherwise FALSE.

TRAVERSING THREADED BINARY TREES

Non Recursive Inorder Traversal for a Threaded Binary Tree:

As this is a non-recursive method for traversal, it has to be an iterative procedure; meaning, all the
steps for the traversal of a node have to be under a loop so that the same can be applied to all the
nodes in the tree. I'll consider the INORDER traversal again. Here, for every node, we'll visit the left
sub-tree (if it exists) first (if and only if we haven't visited it earlier); then we visit (i.e. print its value, in
our case) the node itself and then the right sub-tree (if it exists). If the right sub-tree is not there, we
check for the threaded link and make the threaded node the current node in consideration. Please,
follow the example given below.

Prepared by Data Structure Team, CSE Dept, Galgotias University

Algorithm

Step-1: For the current node check whether it has a left child which is not there in the visited list. If it
has then go to step-2 or else step-3.

Step-2: Put that left child in the list of visited nodes and make it your current node in consideration. Go
to step-6.

Step-3: For the current node check whether it has a right child. If it has then go to step-4 else go to
step-5

Step-4: Make that right child as your current node in consideration. Go to step-6.
Step-5: Check for the threaded node and if its there make it your current node.

Step-6: Go to step-1 if all the nodes are not over otherwise quit

Working of the algorithm for the figure given above:

step- |'A' has a left child i.e. B, which has not been visited.So, we put B in our "list of
1 visited nodes" and B becomes our current node in consideration.

step- |'B' also has a left child, 'D', which is not there in our list of visited nodes. So,

BD
2 we put 'D' in that list and make it our current node in consideration.
Ztep- 'D' has no left child, so we print 'D'. Then we check for its right child. 'D' has no|B D D

right child and thus we check for its thread-link. It has a thread going till node

Prepared by Data Structure Team, CSE Dept, Galgotias University

'B'. So, we make 'B' as our current node in consideration.

'B' certainly has a left child but its already in our list of visited nodes. So, we
print '‘B'. Then we check for its right child but it doesn't exist. So, we make its
threaded node (i.e. 'A") as our current node in consideration.

step-

‘A’ has a left child, 'B', but its already there in the list of visited nodes. So, we
step- |print 'A'. Then we check for its right child. 'A" has a right child, 'C' and it's not
5 there in our list of visited nodes. So, we add it to that list and we make it our

current node in consideration.

step- |'C' has 'E' as the left child and it's not there in our list of visited nodes even.
6 So, we add it to that list and make it our current node in consideration.

step-

Prepared by Data Structure Team, CSE Dept, Galgotias University

BD

BDC

BDC

and
finally

E

DB

DB
AE

