THE CONCEPT OF THE LINKED LIST

Introduction

When dealing with many problems we need a dynamic list, dynamic in the sense that the size
requirement need not be known at compile time. Thus, the list may grow or shrink during
runtime. A finked list 1s a data structure that 1s used to model such a dynamic list of data 1tems,
so the study of the linked lists as one of the data structures 1s important.

Concept

An array 1s represented m memory using sequential mapping, which has the property that
elements are fixed distance apart. But this has the following disadvantage: It makes mnsertion or
deletion at any arbitrary position in an array a costly operation, because this involves the
movement of some of the existing elements.

When we want to represent several lists by using arrays of varying size, either we have to
represent each list using a separate array of maximum size or we have to represent each of the
lists using one single array. The first one will lead to wastage of storage. and the second will
mnvolve a lot of data movement.

So we have to use an alternative representation to overcome these disadvantages. One alternative
1s a linked representation. In a linked representation, 1t 1s not necessary that the elements be at a
fixed distance apart. Instead, we can place elements anywhere in memory, but to make 1t a part
of the same list, an element is required to be linked with a previous element of the list. This can
be done by storing the address of the next element in the previous element itself. This requires
that every element be capable of holding the data as well as the address of the next element. Thus
every element must be a structure with a minumum of two fields, one for holding the data value,
which we call a data field, and the other for holding the address of the next element, which we
call link field.

Therefore, a linked list is a list of elements in which the elements of the list can be placed
anywhere in memory, and these elements are linked with each other using an explicit link field,
that is, by storing the address of the next element in the link field of the previous element.

Program

Here 1s a program for building and printing the elements of the linked list:

t include <stdic.h>
¥ include <stdlib.h>
struct node

{

int data;

struct node *link;
i

struct node *insert (struct node *p, int n)

Prepared by Data Structure Team, CSE Dept, Galgotias University

{

struct node *temp;

/% 1f the existing list is empty then insert a new nods as the
starting nods */

if (p==NULL)

{

p=lstruct node *)malloc(sizecf (struct nods)); /* creates new nods
data wvalues passes
as paramster */

if (p==NULL)
{
printf ("Errori\n");
exit (0);

}

p—> data = n;

p—> link = p; /* makss the pointer pointing to 1tsslf because it
is a circular list*/

}

else
{
temp = p;
/* trawverses the existing list to gst the pointer to the last nods of
1t _I.-"
while (temp-> link != p)
temp = temp—> link;

temp—> link = (struct node *)malloc(sizecf(struct node)); /*
creates new nods using
data walus passss as
parameter and puts 1ts
address in the link fi=ld
of last node of the
existing liat*/
if(temp -> link == NULL)

printf ("Error\n");
exit (0);

temp = temp-> link;
temp—> data = n;
temp-> link = p;
}
return (pl;
}
void printlist { struct nods *p)
{
struct nodes *temp;
temp = P
printf ("The data waluss in the list are'n");
if (p!= NULL)
{

{

printf ("EA\L", temp->data) ;
temp=temp->link;

} whils (temp!= p);

Prepared by Data Structure Team, CSE Dept, Galgotias University

else
printf ("The list is emptyin");
}

woid main()
{
int n;
int =
struct node *start = NULL ;
printf ("Entsr the nodes to be created \n");
gcant ("%d4d", &n) ;
while ((n -—— > 0)
{
printf{ "Enter the data wvaluss to bes placed in a node'n");
scant ("%4", &x) ;
start = insert (start, x);
}
printf ("The created list 1s'n");
printlist | start);
}

Explanation

1. This program uses a strategy of inserting a node in an existing list to get the list created.

An inserc function 1s used for this.

The ins=rt function takes a pownter to an existing list as the first parameter, and a data

value with which the new node 1s to be created as a second parameter, creates a new node

by using the data value, appends 1f to the end of the list, and returns a pointer to the first

node of the list.

3. Imitially the list 15 empty, so the pointer to the starting node i1s nurz. Therefore, when
insert 15 called first time, the new node created by the ins=rt becomes the start node.

4. Subsequently, the insert traverses the list to get the pointer to the last node of the existing
list, and puts the address of the newly created node in the link field of the last node,
thereby appending the new node to the existing list.

5. The main function reads the value of the number of nodes in the list. Calls iterate that
many times by going in a while loop to create the links with the specified number of
nodes.

[

INSERTING A NODE BY USING RECURSIVE
PROGRAMS

Introduction
A linked list 15 a recursive data structure. A recursive data structure 1s a data structure that has

the same form regardless of the size of the data. You can easily write recursive programs for
such data structures.

Prepared by Data Structure Team, CSE Dept, Galgotias University

Program
include <stdic.h>
t includs <stdlibk.h>
struct node

{
int data;
struct node *link;
i
struct node *insert (struct nodes *p,
{
struct node *temp;
if (p==NULL)
{

int n)

p=(struct node *)malloc(sizecf (struct node));

1f (p==NULL)
{
printf ("Errorin");
exit (0);

}
p-> data = n;
p-# link = NULL;
]
=ls=
p—>link = insert (p—->link,n);/*

recursive call */
return (p);
]
volid printlist |

{

struct node *p)

printf ("The data wvalues in the
while (p!= NULL)
{
printf ("%d\t",p-> data);
o = p-» link;
}
1
woid main ()
{ .
int n;
int =;
struct node *start = NULL ;

the while loop resplaced by

list ars'n");

printf("Enter the nodes to be created “n");

scani ("=4d", &n) ;

while { n— > 0)
{
printf | "Enter the datz wvalues to
scant ("sd", &x);
start = insert (| start, =);

}

be placed in & nodein™);

printf("The created list is\n");

printlist (start);

Prepared by Data Structure Team, CSE Dept, Galgotias University

SORTING AND REVERSING A LINKED LIST

Introduction

To sort a linked list, first we fraverse the list searching for the node with a minimum data value.
Then we remove that node and append it to another list which is initially empty. We repeat this
process with the remaining list until the list becomes empty. and at the end, we return a pointer fo
the begmning of the list to which all the nodes are moved, as shown 1 Figure 20.1.

/ﬂlg] J___.l«.n.l _l_,|3[_I_.I?I—I—QNULL

start
List 1o by Soraed

SN ey o R

atart
Aler ihe lwst pass

Figure 20.1: Sorting of a linked list.

To reverse a list, we maintain a pointer each to the previous and the next node, then we malke the
lmk field of the current node point to the previous, make the previous equal to the current, and
the current equal to the next. as shown in Figure 20.2.

e = Y

prey =117 el

Figure 20.2; A linked list showing the previous, current, and next nodes at some point during reversal

process.

Therefore. the code needed to reverse the list is

Prev = NULL;

Whils (curr != NULL)

{
MNext = curr—>link;
Curr -> link = prev;
Prev — curr;
Curr = next;

Prepared by Data Structure Team, CSE Dept, Galgotias University

Program

2 include <stdic.h>
2 include <stdlib.h>
struct nods

int data;
struct node *link;
bi
struct node *insert(struct node *p, int n)

struct node *temp;
if[p==NULI}
{

p=lstruct nodes *)malloc(sizecf(struct nods));

if (p==NULL)

{

printf ("Errorin");
exit(0);

}
p—> data = n;
p—> link = NULL;
}
=l==
{
temp = By
while (temp-> link!= NULL)
temp = temp-> link;
temp—> link = (struct node *)malloc(sizecf(struct nodes));
if(temp -> link == NULL)
{
printf ("Errorin");
exit (0);

}
temp = temp-> link;
temp—> data = n;
temp—> link = null;
}

return (p) ;

vold printlist | struct node *p)

printf ("The data wvaluss in thes list are'n");
while (p!= NULL)
{

printf ("Edh\t",p—> data);

p = p-> link;

/* a functicn to sort reversse list */
struct node *reverse(struct nodes *p)

struct node *prewv, *curr;

prev = NULL;
curr = p;

Prepared by Data Structure Team, CSE Dept, Galgotias University

while (curr != NULL)

{
P = p-> link;
curr—-> link = prev;
prev = curr;
curr = p;

1

return (prev) ;

/* a function to sort a list */
struct nods *sortlist (struct nods *p)

struct nodes *templ, *temp?Z, *min, ‘prev, *g;
= NULL;

whils(p != NULL)

{

W

prev = NULL;
min = templ = p;
tempZ = p —-> link;
whiles | tempZ != NULL)
{

if{min -> data > tempZ -> data)

min = tempZ;

prev = templ;

= temp2-> link;

if (prev == NULL)
P = min -> link;

prev —-» link = min -> link;
min - link = NULL;
if{ g == NULL)

= min; /% moves the node with lowsst d

i
3}
u

fie]

pointed to by p teo the list
pointed to by @ as a first nods*/
elses

{
templ = g;

/* traverses the list pointed to by g to gst pointer to

last nodes */
while(templ -> link != NULL)
templ = templ -> link;
templ -» link = min; /% mowves thes nods

in the list pointed to
by p to ths list pointsd to by g at the end of
g~/

vold main ()

int n;

Prepared by Data Structure Team, CSE Dept, Galgotias University

with lowest data

li=st peointed by

va

[

1

=

int x;

struct node *start = NULL ;

printf ("Enter the nodes to be created n™);
gcanft ("%4", &n) ;

while (n= > O

I

printf{ "Enter the data waluss to be placed in =

nods\n") ;
scanf ("%4", &x) ;
start = insert (start,x):
}
printf ("The created list is\n");

printlist { start };

start = sortlist(start);:

printf {"The sorted list iskn"};
printlist { start)

start = rewverse(ztart);

printf ("The reversed list ishin");

printlist (start };

Explanation

The worlang of the sorting function on an example list is shown in Figure 20,3

1| T™ s | T ™4 T™ 3| T ni
p
Original List

Prepared by Data Structure Team, CSE Dept, Galgotias University

p
nii
s

After the lirst pass

i

P

[1
Afer the second pass

nH'
DOy i
iy Dy

After the last pass
Figure 20.3: Sorting of a linked list.

The working of a reverse function 1s shown i Figure 20.4.

Prepared by Data Structure Team, CSE Dept, Galgotias University

s T . A e s 5 s s ! o

Oiriginal Nt

;
”‘j. R oy T e s O o O s

r il
Alar the first oration
q

mil r

Aftar tha second itaration
q

T T —F T
i A

I rl
Afar the hird leralion

Il*—F]P—IP—/tJ_I

il I=p

Alver the lnst Remban

Figure 20.4: Reversal of a list.

DELETING THE SPECIFIED NODE IN A SINGLY
LINKED LIST

Introduction

To delete a node. first we determuine the node number to be deleted (this 1s basad on the
assumption that the nodes of the list are numbered serially from 1 to n). The list 15 then traversed
to get a pointer to the node whose number is given, as well as a pointer to a node that appears
before the node to be deleted. Then the link field of the node that appears before the node to be
deleted 15 made to point to the node that appears after the node to be deleted, and the node to be
deleted is freed. Figures 20.5 and 20.6 show the list before and after deletion. respectively.

Program

£ include <stdioc.h>

£ include <stdlib.h>

struct node *delet (struct node *, int);
int length (struct node * };

struct node

int data;
struct node *1link;
i

struct node *insert (struct node *p, int n)

Prepared by Data Structure Team, CSE Dept, Galgotias University

Prepared by Data Structure Team, CSE Dept, Galgotias University

struct node *temp;

if (p==NULL)

{
r=(struct node *)malloc(sizecf (struct node));
if (p==NULL)
{

printf ("Errorin") ;

exit (0);

}

p—= data = nj;

p—> link = NULL;
}
else
{

temp = p;

while (temp-> link != NULL)
temp = temp-> link;
temp-> link = (struct node *)Jmalloc(sizeof(struct node));
if (temp -»> link == NULL)
{
printf ("Errorin") ;
exit (1) ;
}
temp = temp-> link;
temp-> data = n;
temp—> link = NULL;
}

return (p);

vold printlist (| struct node *p)

printf ("The datz values in the list are\n");
while (p!= NULL)
{
printf ("&d\t", p-> data);
p = p->» link;

vold main()

int mn;
int =
atruct node *start = NULL;
printf ("Enter the nodes toc be created ‘\n");
acanft ("%d4d", &n) ;
whils (n—- = 0
{
printf("Enter the data wvaluss to be placed in a nodehn");
acanft ("&4d", &x) ;
start = inssrt (| start, =);
}
printf (" The list before deletion idi\n");
printlist { start);
printf ("% “n Enter the nods no \n");
gcant (" %4",&n);

Prepared by Data Structure Team, CSE Dept, Galgotias University

ztart = delst (=tart , n);
printf (" The list after deletion isin");
printlist (start);

/* a function to delets the specified node*/

struct node *dslet (struct neds *p, int ncde no)

struct node *prew, *curr
int i;

v

if (p == NULL }
{

printf ("Thers is no node to bs deleted \n™);

—

l==

il

if { nods no > length (p))
{

printf ("Errorin");

}
sl=s
{
prev = NULL;
curr = p;
i=1;
while (i < node _no)
{
prev = curr;
curr = curr-> link;
i = 1i+1;
1
if | prev == NULL)
{
p = curr —> link;

frees (curr);
}
=las
{
prev —» link = curr —-» link ;
fres (curr);
} }
}

return (p) ;

f* a funection to compute the length of 2 linksd

int length (struct node *p)
int count = 0 ;
whilse (p != NULL)

{

count++;

P = p-*link;
}

return (count | ;

Prepared by Data Structure Team, CSE Dept, Galgotias University

lisz

*f

Explanation
pointer x

II.‘FIIM_‘.'iI—!—P{II
o

node to be deleted
Figure 20.5: Before deletion.

pointer x

II-I—PII\._lllll—HlI

Figure 20.6: After deletion.

INSERTING A NODE AFTER THE SPECIFIED NODE IN
A SINGLY LINKED LIST

Introduction

To insert a new node after the specified node, first we get the number of the node in an existing
list after which the new node is to be inserted. This is based on the assumption that the nodes of
the list are numbered serially from 1 to n. The hst is then traversed to get a pointer to the node,
whose number 1s given. If this pointer is x, then the link field of the new node is made to point to
the node pointed to by x. and the link field of the node pomted to by x is made to point to the
new node. Figures 20.7 and 20.8 show the list before and after the msertion of the node.
respectively.

Program
3

int length (struct node *);
struct mnode
{
int data;
struct node *link;
e
/* a function which appends a new node to an existing list used for
building a list */
struct node *insert (struct node *p, int n)
{
struct node *temp;
e 5 (p==NULL)
{
p={(struct node *)malloc(sizecf{struct node)};
1f (p==NULL)
{

printf({"Errori\n”);

Prepared by Data Structure Team, CSE Dept, Galgotias University

while p—> link != NULL)
= temp—> link;

temp—> link = {struct node *)malloc(sizecf{struct node));
if (temp —-> link == NULL)
{
printf ("Errorin");
exit (0);

temp = temp—> link;

> data = n;
emp—> link= NULL;
return (p);
}
/* a functicn which inserts a newly created node after the spescified
node */
struct node * newinsert { struct node *p, int node no, int valus)

{
struct nocds *temp, * templ;
int 1i;
if | node no <= 0 || nede_no > length (p))
{
printf ("Error! the spscified node does not existin");
exit (0);
}
if (nods no == 0)
{
temp = | struct node * Jmalloc | sizeof [struct node));
if { temp == NULL)
{
printf{ " Cannot allocate ‘n");
exit (0);
}
temp —» data = walus;
= Ry
}
=lse
{
temp = g
1= 1;
while {(1 < nods no)
{ . '
1= 1+1;
temp = temp-> link ;
}
templ = | struct node * Jmalloc (sizeofistruct nods));

if { temp == NULL)
{

Prepared by Data Structure Team, CSE Dept, Galgotias University

printf ("Cannot zallocate “n");
=xit (0)

}

templ -> data = walus ;

templ -> link = temp -> link;

temp -> link = templ;

}
return (p);
}
void printlist (struct node *p)
{
printf ("The datz walues in the list are'n");
while (p!= NULL)
{
printf ("%d\t",p-> data);
2 = p—> link;
}
}
vold main ()
{
int n;
int x;
struct node *start = NULL;
printf ("Entsr the nodes to be created “n");
scanf ("%d", &n) ;
while (n— = 0)
{
printf({ "Entser ths data walues to be placed in a2 nods\n");
scanf ("&d", &x) ;
start = insert (start, x);
}
printf (" The list before dsletion is'n");
printlist { start };
printf (" “n Enter the nodes no after which the insertion is to be
dans'n") ;
scanf | " %d4", &n);
printf ("Enter the walus of the node'n");
scanf ("%d4d", &x) ;
start = newinsert(start,n,=x);
printf ("The list after inssrtion is “n");
printlist(start);
}
Explanation

poinler x

= ?l_i o e
I:D node to be inserted

Figure 20.7: Before insertion.

Prepared by Data Structure Team, CSE Dept, Galgotias University

pointer X

IH?‘_\II ||

Figure 20.8: After insertion.

INSERTING A NEW NODE IN A SORTED LIST

Introduction

To wsert a new node nfo an already sorted list. we compare the data value of the node to be
mserted with the data values of the nodes in the list starting from the first node. This 1s continued
until we get a pointer to the node that appears immediately before the node 1 the list whose data
value is greater than the data value of the node to be mserted.

Program

Here 1s a complete program to mnsert an element in a sorted list of elements using the linked list
representation so that after insertion, it will remain a sorted list.

includs <stdio.h>

o e

include <stdlib.h>

struct node

[vN

t data;
ruct node *link;

in
st
b;

struct node *insert(struct node *, aint);

struct node *sinsert({struct node*, int);
void printlist: (struct node *);
struct nodes *sortlist(struct node *);

t node *insert{struct node *p, int n)

struc
4

struct nede *Ttemp;

if (p==NULL)

{
p=lstruct node *)malloc(sizeof(struct nods));
if (p==NULL)
{

printf("Errorin™);

exit (0);
}
p—= data = n;
p—* link = NULL;
}
else
I
1
temp = p;

Prepared by Data Structure Team, CSE Dept, Galgotias University

while (temp-> link!= NULL)
temp = temp-> link;
temp-> link = (struct node *)malloc(sizeof(struct naode));
if(temp -> link == NULL)
{
printf ("Errorin");
sxit (0);

temp = temp—> link;
temp-> data = n;
temp-> link = NULL;

return (p);

wvold printlist { struct node *p)

printf ("The data wvalues in the list ars'n");
while (p!= NULL)
{
printI("wd\t",p-> data);
P = p—> link;
}
}

/* a function to sort a list */
struct node *sortlist(struct nodes *p)

struct node *templ, *templ, *min, *prev, *o;
g = NULL;
while (p != NULL)
{
prewv = NULL;
min = templ = p;
tempZ = p —-> link;
while (tempZ != NULL)
{

ifimin -> data > tempZ -> data)

min = templ;
prev = templ;

1
templ =

tempZ link;

}
if (prev == NULL)
P = min —-> link;
=lss
prev —> link = min -> link;
min —-* link = NULL;
if({ g == NULL)
g = min; /* moves the node with lowsst data valus in thes list
pointed to by p to ths list
pointed to by g as a first nods*/
=lse
{
templ = g;

Prepared by Data Structure Team, CSE Dept, Galgotias University

/* traversss the list pointed to by g to gst pointer to its
last node */
while{ templ -> link != NULL)
templ = templ -> link;
templ -> link = min; /* moves the nods with lowest data walue
in the list pointed to
by p to the list pointed to by g at the end of list pointed by
aq*/
}
}
return (q);

}

/* a function to insert a nods with data value n in a sorted list
pointed to by p*/f
struct node *sinsert(struct node *p, int n)
{
struct node *curr, *prev;
curr =p;
prev = NULL;
while({curr —->data < n)

prev = curr;
curr = curr->link;

if { prev == NULL) /* the slemsnt is to be inssrted at ths start of
the list bhecauss
it 1= less than the data valus of the first node*/

curr = (struct node *) malloc (sizeof (struct nods));
if{ curr == NULL)

printf("error canncot allocate’n");
exit (0);

curr—>=data = nj;

curr->link = p;
P = curr;
elses
{
curr—>data = n;
curr—>link = prev-rlink;

prev->link = curx;

return(p) ;

}

volid main ()
{
int n;
int =;
struct node *start = NULL ;
printf ("Enter the nodes to be created n");
scanf ("%d", &n) ;
while (n-—— > 0)
{

Prepared by Data Structure Team, CSE Dept, Galgotias University

printf({ "Entsr the datz values to be placed in a nade\n");
scant ("%d", &x) ;
start = insert { start,x);:
}

printf ("The created list ishn");

printliast { start);

atart = sartlist(start);

printf ("The sorted Iist is\n");

printliat (start);

printf("Enter the walue to be inssrted\n");
gcanf ("%4d", &n) ;

start = sinsert(start,n):

printf ("The list after inserticon ishn™);
printlist (start)i

}

Explanation

If this pointer 15 prev. then prev 1s checked for a nozz value.

If prev is wULL, then the new node is created and mserted as the first node m the list.
When prev is not nurL, then a new node 15 created and inserted after the node pointed by
prev, as shown in Figure 20 9.

L1o] —F»{20]—P{30] P 40| |

Sorted linked list

Wb [

node to be inserted
Before insertion
pointer prev

10 20 0| —"lac] |

sl |

node inserted

After insertion
Figure 20.9: Insertion in a sorted list.

Prepared by Data Structure Team, CSE Dept, Galgotias University

COUNTING THE NUMBER OF NODES OF A LINKED
LIST

Introduction

Counting the number of nodes of a singly linked list requires maintaining a counter that is
mitialized to 0 and meremented by 1 each time a node 15 encountered in the process of traversing
a list from the start.

Here 1s a complete program that counts the number of nodes in a singly linked chain p, where p
1s a powter to the first node in the list.

Program
include <stdic.h>
include <stdlik.h>

struct node

int data;

struct node *link;

PP

struct node *insert(struct node *, int):
int nodecount (struct node*);

vold printlist (struct node * };

struct node *insert(struct node *p, int n)

struct nods *temp;

1f (p==NULL)

{
p=(struct nods *)malloc(sizecf (struct nods));
if (p==NULL)
.{

rintf ("Error'n") ;

exit (0);

2ta = n;
NULL;

L

ink

temp = pr

while (temp-> link!= NULL)

temp = temp—> link;
temp-> link = {(struct nods *)malloc(sizecf(struct nods));

-»> link == NULL)

printf ("Errorin");
exit (0);
temp = temp—> link;
temp—> data = n;
temp-> link = NULL;

Prepared by Data Structure Team, CSE Dept, Galgotias University

}

return (p);

wvold printlist (struct node *p)

printf ("The data values in the list arein");
while (p!= NULL)
{
printf("%sd\t",p-> data);
o = p=> link;
}

/* L function to count the number of nodes in a singly linksd list */

int nodecount (struct node *p)

int count=0;
while (p != NULL)
{

count ++;

= p->link;

return (count) ;

vold main()

int n;

int =;

struct node *start = NULL ;

printf ("Enter the nodes to be created \n");

acanf ("%d", an) ;

while (n-— > 0)

{

printf{ "Enter the data wvaluss to be placed in a nods'n");

acanf ("%d4d", &x) ;
start = insert [start,x);

}

printf ("The created list i1s'n");

printlist | stazt);

n = nodecount (start);

printf ("The number of nodss in a list are: %d'\n",n);

Prepared by Data Structure Team, CSE Dept, Galgotias University

MERGING OF TWO SORTED LISTS

Introduction

Merging of two sorted lists involves traversing the given lists and comparing the data values
stored in the nodes m the process of traversing.

If p and q are the pointers to the sorted lists to be merged, then we compare the data value stored
in the first node of the list pointed to by p with the data value stored in the first node of the list
pointed to by q. And, if the data value in the first node of the list pointed to by p is less than the
data value in the first node of the list pointed to by q, make the first node of the resultant/merged
list to be the first node of the list pointed to by p, and advance the pointer p to make it point to
the next node in the same list.

If the data value in the first node of the list pointed to by p 1s greater than the data value in the
first node of the list pointed to by q, make the first node of the resultant/merged list to be the first
node of the list pomted to by q, and advance the pointer q to make it point to the next node in the
same list.

Repeat this procedure until either p or q becomes wuzn. When one of the two lists becomes
empty, append the remaining nodes in the non-empty list to the resultant list.

Program

2 includs <stdioc.h>
£ include <stdlibk.h>
struct nods

int data;
struct node *link;

struct node *merge (struct node %, struct node *);
struct node *insert (struct nedes *p, int n)

struct node *temp;
1f (p==NULL)

{
p=lstruct nods *)malloc(sizecf (struct nods));
if (p==NULL)
{
printf ("Errorin");
exit (0);
}
P> data = n;
p—> link = NULL;
1
sl==s
{
temp = p;

while (temp-> link!= NULL)

Prepared by Data Structure Team, CSE Dept, Galgotias University

temp = temp-> link;
temp-> link = (struct node *)malloc(sizecf (struct node));
if (temp —-> link == NULL)
{
printf ("Errcrin") ;
sxit (D) ;
1
temp = temp-> link;
temp-> data = n;
temp-> link = NULL;
}
return (p);

}

vold printlist (struct neds *p)
{
printf ("The data walues in the list are'n");
while (p!= NULL)
{
printf ("%d\t",p-> data);
F = p—> link;
1
}
/* a function to sort a list */
struct node *sortlist(struct node *p)

struct nodes *templ, *templ, *min, *prev, *q;
= NULL;
whils (p != NULL)

fis]

=

rew = NULL;
min = templ = p;
tempZ = p —-> link;
while (| tempZ != NULL)
{
if(min -> data > templ -> data)

{

min = tempZ;

Lra

prev =
1
templ
temp2
}
if (prev == NULL)

P = min —> link;

els=

prev —> link = min -» link;
min -» link = NULL;

1f({ g == NULL)

g = min; /* moves the node with lowest data walus in the list

polnted to by p to the list
pointed to by g as a first node*/
elss
{
templ = g;
/* traverses the list pointed to by g to gst pointer to its
last nods */

Prepared by Data Structure Team, CSE Dept, Galgotias University

while{ templ -> link != NULL)
templ = templ -> link;
templ -> link = min; /* moves the nods with lowsst data value
in the list pointed to
by p to the list pointsd to by g at the end of list pointed by

return (q);

}

woid main ()

{

int n;

int x;

struct node *startl = NULL ;
struct node *startZ = NULL;
struct node *start3 = NULL;

/* The folleowing code creates and sorts the first list */
printf ("Enter the number of nodes in the first list “a");
gcanf ("&4", &n) ;
while (n-—— > 0
{
printf{ "Enter the datz walus to be placed in = nods'n");
scant ("w4", &x)
startl = inssrt (startl,=);
}
printf ("The first list isin");
printlist { startl);
startl = sortlist{atartl);
printf ("The sorted listl ishin");
printlist { startl);
/* the folleowing creates and sorts the sscond list*/
printf ("Enter the numbsr of nodes in the second list \n");
gcanf ("=4d", &n) ;

while (n-—— > 0
{
printf("Entsr the data wvalus to be placsed in a node'n");
scant ("%d4d", &x) ;
startl = inssrt (startl,=);
}
printf ("The sscond list is'n");
printlist (startl);
start?Z = sortlist{startl);
printf ("The sorted listZ is'n");
printlist (startl);
start3 = merge(startl,start);

printf ("The merged list is'n");
printlist { startl);
}

/* L function to merge two sorted lists */f
struct node *merge (struct node *p, struct nods *g)
{
struct node *r=NULL, *temp;
if {p == NULL)
= q;

Prepared by Data Structure Team, CSE Dept, Galgotias University

temp

P = p-*link;

temp->1link = NULL;
elss

r = q;

temp =d;

g =g-=>link;

temp->1link = NULL;

while ((p!= NULL) && (g != NULL))
if (p->data < g->data)
cemp->link =p;
= p-=>link;

=temp->link;
>1link =NULL;

o —_q—}link;
temp =temp->link;
temp—>link =NULL;

t

if (p!= NULL)
temp->link

if (g != NULL)
temp->link =

Il
il

|
o

Prepared by Data Structure Team, CSE Dept, Galgotias University

Prepared by Data Structure Team, CSE Dept, Galgotias University

Explanation

If the following lists are given as wput, then what would be the output of the program after each
pass? This 1s shown here:

p

I) o 0 B 00 e T

S e [e I B I i

Two sorted lists before merging

r temp

I s e L B o

q

\‘hsl F-o{zs [F»{z7] F—»{2s] T* no

After the first pass

\T"nq\ﬁ'ﬂ'?—ﬂ I o

q:|:15I¢,\'ﬂzs;l—i—hlz'rl] 2] — 1" nun

NULL
Aftar the second pass

T mp P
% % X
S pED] G

NULL

[25] ——»{27] —» za [—nuLL

After the third pass

Prepared by Data Structure Team, CSE Dept, Galgotias University

r P

\T_l_l \‘l_|_-l—'l_|=l"hwu-

temg

q
| Iil'l Pl T ¥ N

NULL

After tha fourth pasa

Altar Tha ilth pass
I

Aftor tho sidh pass

N
b
15 [2s] L—'ﬂﬂ?l %1

Final merged list

Prepared by Data Structure Team, CSE Dept, Galgotias University

CIRCULAR LINKED LISTS

Introduction

A circular list 1s a list m which the link field of the last node 1s made to point to the start/first
node of the List. as shown 1 Figure 20.14

ool T sl T 10| T™ &

start
Figure 20.14: A circular list.

In the case of circular lists. the empty hist also should be circular. So to represent a circular list
that 1s empty. 1t 15 required to use a header node or a head-node whose data field contents are
irrelevant, as shown in Figure 20.15.

A

T 2| T ™| T™ 7

Header Node

start

Header Node
Figure 20.15: (A) A circular list with head node, (B) an empty circular list.

Program
Here 15 a program for building and printing the elements of the circular linked list.
include <stdic.h>

include <=stdiib.h>
truct node

= U A el

int data;
struct node *link;

Prepared by Data Structure Team, CSE Dept, Galgotias University

=

struct node *insert(struct node *p, int n)

struct node *temp;
/* 1f the existing list 1s empty then insert a new node as the
starting node */
if (p==NULL)

p=(struct node *)malloc(sizecf (struct node)); /* creates new
nods data valus passes
as paramster */
if (p==NULL)
{
printf ("Errcrin");
exit (D) ;
}
p->* data = n;
p—> link = p; /* makes the pointer pointing to itself becauss it
is a circular list*/

}

=lse
{

temp = p;

/* trawverses the existing list to gst ths pointsr to the last node of
it */f
link != pi
= temp—>* link;
temp—> link = (struct node *)malloc(sizeof(struct node}); /*

creates new nods using
data valu=s passes as
paramster and puts i1ts
address in the link fi=ld
of last node of the
existing list*/
if (temp -> link == NULL)
{

printf ("Errorin"™);

exit (0);
temp = temp-> link;
= data = n;
link = p;
}
return (p);
}
void printlist | struct node *p)
{

struct node *temp;
temp = p;
printf ("The data walues in the list are'n™);
if(p!= NULL)
{
{
printf (%d4\t", temp->data) ;
temp=temp->link;
} while (temp!= p)

Prepared by Data Structure Team, CSE Dept, Galgotias University

else
printf("The list is empty'n");

}

void main()

{

int n;

int x;

struct node *start = NULL ;

printf ("Enter the nodes to be created ‘n");

scanf ("%d", &n) ;
while (n— = 0)
{
printf{ "Enter the data wvaluss to be placed in =
nodsin") ;

scant ("%d4d", &x) ;

start = insert | start, x };
}
printf ("The created list 1is'n");
printlist { start);

DOUBLY LINKED LISTS

Introduction
The following are problems with singly linked lists:

1. A singly linked list allows traversal of the list in only one direction.

2. Deleting a node from a list requires keeping track of the previous node, that is, the node
whose link points to the node to be deleted.

3. Ifthe link in any node gets corrupted, the remaining nodes of the list become unusable.

These problems of singly linked lists can be overcome by adding one more link to each node,
which points to the previous node. When such a link is added to every node of a list, the
corresponding linked list 1s called a doubly linked list. Therefore, a doubly linked list 1s a linked
list in which every node contains two links. called left link and right link. respectively. The lett
link of the node points to the previous node, whereas the right points to the next node. Like a
singly linked list, a doubly linked list can also be a chain or it may be circular with or without a
header node. If it 15 a chain, the left link of the first node and the right link of the last node will
be wuL, as shown in Figure 20 18

lart =T NULL
sla —>

NULL
Figure 20.18: A doubly linked list maintained as chain.

If 1t 15 a circular list without a header node, the right link of the last node points to the first node.
The left link of the first node points to the last node, as shown in Figure 20.19.

Prepared by Data Structure Team, CSE Dept, Galgotias University

start F + — — _J

Figure 20.19: A doubly linked list maintained as a circular list.

If 1t 15 a cireular list with a header node, the left link of the first node and the right link of the last
node pomt to the header node. The right link of the header node poiwnts to the first node and the
left link of the header node points to the last node of the list, as shown in Figure 2020

Header Node

. Pa—— — |

Figure 20.20: A doubly linked list maintained as a circular list with a header node.

Therefore, the following representation is required to be used for the nodes of a doubly linked
list.

struct dnode
int data;
struct dnode *lsft, *right;

Y5

Program

A program for building and printing the elements of a doubly linked list follows:

include <stdic.h>
include <stdlib.h>
struct dnode
{
int data;
struct dnode *left, *right;
t
struct dnods *insert{struct dnode *p, struct dnode **g, int n)
{
struct dnode *temp;
/* 1f the existing list is empty then insert a new node as the
starting nodes */
if (p==NULL)
{
p=(struct dnede *)malloc{sizecf(struct dnode)); /* creates new
nods data wvalus
passed as parameter */

Prepared by Data Structure Team, CSE Dept, Galgotias University

if (p==NULL)
{
printf ("Errorin");
exit (0);
}
p->data = n;
p—> left = p-rright =NULL;
tq TRy
}

s=l=es
{

temp = (struct dnode *)malloc(sizeof (struct dnods)); /* creates
new nods using
data valus passed as
parameter and puts its
address in the temp

if (temp == NULL)

printf ("Erroxrin");
exit{0);

temp->data = n;
temp->lefit = (*q);
temp-rright = NULL;
(*g)-rright = temp;

(*g) = temp;

return (p);

}
vold printfor({ struct dnode *p)
{
printf ("The data wvalues in the list in the forward order are:'n");
while (p!= NULL)
{
printf ("%d\t",p-> data);
D = p->right;
}
}
vold printrev{ struct dnods *p)
{

printf ("The data walues in ths list in the reverse order are:'\n");
while (pl!= NULL)
{
printf ("%d\t",p->data) ;
p = p—>left;
}

}
volid main()
{
int n;
int =x;
struct dnode *start = NULL ;
struct dnode *end = NULL;

printf("Enter ths nodes to be created ‘n");
scant ("%4A", &n) ;
while (n-—— > 0)

Prepared by Data Structure Team, CSE Dept, Galgotias University

{

printf("Enter the datz wvalues to be placed in 2 nods\n");
scan ("wd", &x) ;
start = insert (start, &end,x);
1
printf ("The created list i1s'n");

ofor ([start);
printrev(end);

INSERTION OF A NODE IN A DOUBLY LINKED LIST

Introduction

The following program inserts the data in a doubly linked list.

Program
1
i
struct dnode
{

int data;

struct node *left, *right;

e

struct dnods *insert(struct dnods *p, struct dno

{
struct dnods “*temp;
/* 1f the existing list i1s empty then insert a n
starting nods */
if (p==NULL)
{
p=(struct dnode *)mallosc(sizecf (struct dno
node data wvalus
passed as paramstexr */

1f (p==NULL)
{
printf ("Errorin");
exit(0);

data = n;
l=ft = p->right =NULL;
s=lses
{
temp — (struct dnode *)malloc (sizeaf (struc

new nods using
data wvalus passed as
paramster and puts i1ts
address in ths temp
if ({temp == NULL)

Prepared by Data Structure Team, CSE Dept, Galgotias University

de **g, int n)

sw node as ths

de)); /* creates new

t dnode)); /¥ creates

printf ("Errorin");
exit (0);
}
temp-> data = n;
temp->left = (*qg);
temp->right = NULL;
(*c) = temp;

return (p);
}
volid printfor{ struct dnods *p)
{
printf ("The dataz wvaluess in the list in ths forward order are:\n");
while (pl!= NULL)
{
printf ("&d\t",p-> data);
¥ = p—> right;
}
}
/* B function to count ths number of nodss in 2 doukly linksd list */
int nodecount (struct dnode *p)
{ .
int count=0;
whiles (p != NHULL)
{
count ++;
p = p-rright;

return (count) ;

1

/* a function which inserts a newly created node after the specified

node in a doubly

linksd list */

struct node * newlinsert (struct dnode *p, int nodes_no, int wvalus)

{

struct dnods *temp, * templ;

int 1i;

if (nodes_no <= 0 || nods_no > nodscount (p))

{

printf ("Errcr! the specifisd node doss not sxistin");
=xit (D) ;

}

if (nods_no == 0)

{

temp = { struct dnode * Jmalloc (sizecf (struct dnods));
if { temp == NULL)

{

printf(" Cannct allocate ‘n");

sxit (0);

}

temp —> data = waluse;
temp -> right = pg;
temp->left = NULL

P = temp ;

}

sel=es

Prepared by Data Structure Team, CSE Dept, Galgotias University

{
temp = p ;

i =1;

while { i < nods no)
{

i = 1i+1;

temp = temp-> right ;
}
templ = { struct dnode * Jmalloc (sizeof(struct dnode));
if { temp == NULL)
{
printf ({"Cannct allocates n");
sxit (0);
}
templ -> data = wvalus ;
templ -> right = temp -> right;
templ -> left = temp;
templ->right->1lsft = templ;
templ->left->right = templ
}
return (p):;
}
void main()
{
int n;
int x=;
struct dnode *start = NULL ;
struct dnode *end = NULL;
printf ("Enter ths nodes to be created \n");
scanf ("%d4d", &n) ;
while (n—- = 0)
{

printf{ "Entsr the data wvaluss to be placed in 2 nodein");
scant ("Ed", &x) ;
start = insert (start, &end,x);

1
printf ("The created list ish'n");

printfor (start);

printf("enter the node number after which the new node 1s to be
insertedin™) ;

scant ("%4", &n);

printf("enter the data value to be placed in the new nods'n");

scant ("s4", &x);

start=newinssrt (start,n,x);

printfor (start);

Prepared by Data Structure Team, CSE Dept, Galgotias University

DELETING A NODE FROM A DOUBLY LINKED LIST

Introduction

The following program deletes a specific node from the linked list.

Program
include <stdic.h>
incl <stdlik.h>
struct dnods
{

int data;

struct dnodes *lesft, *right;
bi
struct dnode *insert({struct dnode *p, struct dnode **g, int n)
{
struct dnode *temp;
/* 1f the existing list i1s empty then inssert a new nodes as ths
starting nodes */
1f (p==NULL)
{
p=(struct dnode *)mzalloc(sizecf(struct dnode)); /* creates new node
data wvalue
passed as paramster ¥/

if (p==NULL)
{
rintf ("Errorin") ;
exit (0);

lata = n;
-» left = p->right =NULL;

-

o = (struct dnods *)malloc(sizsof (struct dnode)); [+ crsates
new nods using

data walus passed as
parametsr and puts its
address in ths temp

if (temp == NULL)

printf ("Errorin");
exit (0);
temp-> data = n;
p-=left = (*q);
temp-*right = NULL;
(*q) ~>right = temp;

Prepared by Data Structure Team, CSE Dept, Galgotias University

(*q) = temp;

return (p);
}
void printfor(struct dnods *p)
{
printf ("The data waluss in the list in the forward order are:'n");
while (p!= NULL)
{
printf ("d\c",p-> data);
7 = p-* right;
}
}
/* B function to count the number of nodes in a doukly linked list */
int nodecount (struct dnode *p)
{ .
int count=0;
while (p != NULL)
{
count ++;
P = p—>right;

return (count) ;

}

/* a function which inssrts a newly created nodes after the specified

nods in a deoubly

linksd list */

struct dnods * delste(struct dnode *p, int nods no, int *wval)
{

struct dnode *temp , *prev=NULL;

int i;

if node _no <= 0 | node no * nodecount (p))

{
printf ({"Error! the specifisd nods doss not sxisthn");
exit (0);

}

if (node _no == 0)

{

temp = p;

P = temp->right;

p—rleft = NULL;

#val = temp->data;

return (p);

et

else
{
temp = p
1= 1;
while { i < nods no)
{
i = i+1;
prev = temp;

temp = temp->» right ;

}

prev—->right = temp-*right;
if({temp->right != NULL)

Prepared by Data Structure Team, CSE Dept, Galgotias University

temp-rright->left = prev;
*val = temp->data;
free (temp) ;
}

return (p);

1

void main()

{

int n;

int x;

struct dnode *start = NULL ;

struct dnode *end = NULL;

printf ("Enter the nodes to be created \n");

scant ("%d4d", &n) ;

while (n-—— > 0)

{

printf| "Enter the data wvalues to be placed in a node'n™);

scans ("HA", &x) ;
start = ins=srt | start, &end,x);

1

printf ("The created list is'\n");

printfor (start);

printf ("snter the number of the node which is to ke deletsdin");

scant ("%4d", &n) ;

start=delste(start, n, &x) ;

printf ("The data walue of the nods deletsd from list is
£ANn", x) ;

printf ("The list after delstion of the specified node is :'\n");

printfor(start);

Prepared by Data Structure Team, CSE Dept, Galgotias University

Prepared by Data Structure Team, CSE Dept, Galgotias University

