GRAPHS

Introduction

Graphs are natural models that are used to represertasbrelationships among data
objects. We often need to represent such arbitedayionships among the data objects
while dealing with problems in computer sciencegireering, and many other
disciplines. Therefore, the study of graphs asairtbe basic data structures is important.

Basic Definitions and Terminology

A graph is a structure made of two componentst afseertices V, and a set of edges E.
Therefore, a graph is G = (V,E), where G is a grdpie graph may be directed or
undirected. In airected graph, every edge of the graph is an ordered pair dfoes
connected by the edge, whereas imiadgiirected graph, every edge is an unordered pair
of vertices connected by the edgeyure 22.1shows an undirected and a directed graph.

;

Undirected Graph G, Directed Graph G,
Figure 22.1: Graphs.

Incident edge:(v;,v)) is an edge, then edge) is said to be incident to verticesand
v;. For example, in graph:Ghown inFigure 22.] the edges incident on vertex 1 are
(1,2), (1,4), and (1,3), whereas in, e edges incident on vertex 1 are (1,2).

Degree of vertex:The number of edges incident onto the vertex.example, in graph
G, the degree of vertex 1 is 3, because 3 edgas@dent onto it. For a directed graph,
we need to define indegree and outdegrmgiegree of a vertex vi is the number of edges
incident onto vi, with vi as the heaOutdegree of vertex vi is the number of edges
incident onto vi, with vi as the tail. For graph, @&e indegree of vertex 2 is 1, whereas
the outdegree of vertex 2 is 2.

Directed edge:A directed edge between the vertices vi and &nisrdered pair. It is
denoted by <vi,vj>.

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

Undirected edge:An undirected edge between the verticemnd v is an unordered pair.
It is denoted by (w;).

Path: A path between verticeg &nd \; is a sequence of vertices Vi1, Vi, ..., Vin,Vq

such that there exists a sequence of edgesi{} (Vi1, Vi2), ..., (Mn, Vg). In case of a
directed graph, a path between the vertigemnd \; is a sequence of vertices Vi,

Vi2,..., Vin, Vg Such that there exists a sequence of edggs/itv, < Vi, Vio>, ..., <Vin, Vg>.

If there exists a path from vertexto v in an undirected graph, then there always exists
a path from yto v, also. But, in the case of a directed graph, ifé¢lexists a path from
vertex \, to g, then it does not necessarily imply that therstesxa path fromgto v,

also.

Simple path: A simple path is a path given by a sequence dioesrin which all
vertices are distinct except the first and the Vastices. If the first and the last vertices
are same, the path will be a cycle.

Maximum number of edges:The maximum number of edges in an undirected graph
with n vertices isn(n—1)/2. In a directed graph, it rgn—1).

Subgraph: A subgraph of a graph G = (V,E) is a graph G where V(G) sibhset of
V(G). E(G) consists of edges (v1,v2) in E(G), stitdt both v1 and v2 are in V(G).
[Note: If G = (V,E) is a graph, then V(G) is a sétvertices of G and E(G) is a set of
edges of G.]

If E(G) consists of all edges (v1,v2) in E(G), suleht both v1 and v2 are in V(G), then G

is called an induced subgraph of G. For examp&egthph shown ifigure 22.2s a
subgraph of the graph G2.

Figure 22.2: The subgraph of graph G2.

For the graph shown iRigure 22.3one of the induced subgraphs is showRigure
224

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

'/

4

Figure 22.3: Graph G.

1

Figure 22.4: Induced subgraph of Graph Gigfure 22.3

In the undirected graph G, the two verticesand v are said to be connected if there
exists a path in G fromy\to v, (being an undirected graph, there exists a path 5 to
vi also).

Connected graph:A graph G is said to be connected if for every padistinct vertices
(vi,v), there is a path from to v;. A connected graph is shownkimgure 22.5

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

Figure 22.5: A connected graph.

Completely connected graphA graph G is completely connected if, for everyr p&
distinct vertices (wv;), there exists an edge. A completely connectegigisishown in

Figure 22.6

Figure 22.6: A completely connected graph.

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

REPRESENTATIONS OF A GRAPH

Array Representation

One way of representing a graph with n vertices isse am? matrix (that is, a matrix

with n rows andh columns—that means there is a row as well asuaolkcorresponding
to every vertex of the graph). If there is an efiigm v; to v then the entry in the matrix
with row index as vand column index ag is set to 1 (adjfyvj] = 1, if (v;, v;) is an edge

of graph G). If e is the total number of edgeshim graph, then there will 2e entries which
will be set to 1, as long as G is an undirecteglyr&Vhereas if G were a directed graph,
only e entries would have been set to 1 in thecadiey matrix. The adjacency matrix
representation of an undirected as well as a @idegtaph is show iRigure 22.7

e

G
3 4 1
1
1
i}

1] 0
1
1 al o
1 | 1+] o

=] = ro
o) O == |

B W by ==

B =]

Adfacency malrix of G Adiacency malrix of G,

Figure 22.7: Adjacency matrices.
Example

The adjacency matrix representation of the follnamagraph(directed graph), along
with the indegree and outdegree of each node isrshere:

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

The adjacency matrix representation of the aboagrdph is shown here:

1
0
1
0
0
1
1

o |oD|=jo|o o) w
ol Qo i {ony fonll Eeogy [and B8 -5
= O |=JOo|Oo ||,
o|o|=]=|O|o

el L=0 [=0 Eo [(=]

o N = LM =

The indegree and outdegree of each node is shosen he

Indegree Outdegree
1 3 0
2 2 2
3 1 2
B 1 3
5 2 1
6 2 3

Linked List Representation

Another way of representing a graph G is to maméalist for every vertex containing all
vertices adjacent to that vertex, as showhigure 22.8

A

3

1

1 2 - | = MULL
2 1 o 3 % | MNULL
3 p 1 S 4 —p MLULL
4 p 1 » 2 p 3 e MULL

Figure 22.8: Adjacency list of G

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

COMPUTING INDEGREE AND OUTDEGREE OF A
NODE OF A GRAPH USING ADJACENCY MATRIX
REPRESENTATION

Introduction

To compute the indegree of a node n by using thecadcy matrix representation of a
graph, use the node numlreas a column index in the adjacency matrix and tthen
number of 1's in that column of the adjacency mafrhis count is the indegree of node
n. Similarly, to compute the outdegree of a nadd a graph, use the node numhexs

the row index in the adjacency matrix and countrttber of 1's in that row of the
adjacency matrix. This is the outdegree of the modecomplete C program to compute
the indegree and outdegree of each node of a gisiph the adjacency matrix
representation of a graph follows.

Program: Computing the indegree and outdegree

#include <stdio.h>
#define MAX 10
/* a function to build an adjacency matrix of the g raph*/
void buildadjm(int adj[]J[MAX], int n)
{
inti,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)

printf("Enter 1 if there is an edge from % d to %d, otherwise
enter 0 \n",

1);
scanf("%d",&adj[i][i]);

}
}

/* a function to compute outdegree of a node*/
int outdegree(int adj[][MAX],int x,int n)
{
int i, count =0;
for(i=0;i<n;i++)
if(adj[x][i] ==1) count++;
return(count);
}
/* a function to compute indegree of a node*/
int indegree(int adj[J[MAX],int x,int n)

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

{
int i, count =0;
for(i=0;i<n;i++)
if(adj[i][x] ==1) count++;
return(count);

}

void main()

int adj[MAX][MAX],node,n,i;

printf("Enter the number of nodes in graph m aximum = %d\n",MAX);
scanf("%d",&n);

buildadjm(adj,n);

for(i=0;i<n;i++)

printf("The indegree of the node %d is
%d\n",i,indegree(adj,i,n));
printf("The outdegree of the node %d is %d\ n",
i,outdegree(adj,i,n));

}

Explanation

1. This program uses the adjacency matrix representafia directed graph to
compute the indegree and outdegree of each nathe gfraph.
2. ltfirst builds an adjacency matrix of the graphdajling abuildadjm function,

then goes in a loop to compute the indegree artkgute of each node by calling

theindegree andoutdegree functions, respectively.

3. The indegree function counts the number of 1'sanlamn of an adjacency
matrix using the node number whose indegree i®tocomputed as a column
index.

4. Theoutdegree function counts the number of 1's in a row of djaeency matrix

by using the node number whose outdegree is totmgpated as a row index.
o Input: 1. The number of nodes in a graph
2. Information about edges, in the form of valuede stored in

adjacency matrix 1, if there is an edge from noateriode j; O otherwise.

o Output: The indegree and outdegree of each node.

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

Example

<] >

Graph G,

The adjacency matrix for graph G:

Wi j=|o

o= jo|j0|O

cJ|oci|o|l=|=

= 1O 10 |0 |

oo |=]|=]|w

For this graph as the input, the output is:

The indegree of node O is 1
The outdgree of node O is 2
The indegree of node 1is 1
The outdgree of node 1is 1
The indegree of node 2 is 1
The outdgree of node 2 is 1
The indegree of node 3 is 2
The outdgree of node 3is 1

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

DEPTH-FIRST TRAVERSAL

Introduction

A graph can be traversed either by usingddygh-first traversal or breadth-first

traversal. When a graph is traversed by visiting the noddake forward (deeper)
direction as long as possible, the traversal iedalepth-first traversal. For example, for
the graph shown ikigure 22.9the depth-first traversal starting at the vefessits the
node in the orders:

. 012678534
i. 043586721

S

Figure 22.9: Graph G and its depth first traverstdsting at vertex 0.

A complete C program for depth-first traversal a@fraph follows. It makes use of an
array visited oh elements wherge is the number of vertices of the graph, and the
elements are Boolean. If visited[i] = 1 then it meshat the'f vertex is visited. Initially
we set visited[i] = 0.

Program

#include <stdio.h>
#define max 10

/* a function to build adjacency matrix of a graph */
void buildadjm(int adj[J[max], int n)
{
inti,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++)

printf(“enter 1 if there is an edge from %d to %d, otherwise enter

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

0\n",
)
scanf("%d",&adj[i][i]);

}

/* a function to visit the nodes in a depth-first o
void dfs(int x,int visited[],int adj[][max],int n)
{

int j;

visited[x] = 1;

printf("The node visited id %d\n",x);

for(j=0;j<n;j++)

if(adj[x][]] ==1 && visited[j] ==0)
dfs(j,visited,adj,n);

void main()
{
int adj[max][max],node,n;
int i, visited[max];
printf("enter the number of nodes in graph ma
scanf("%d",&n);
buildadjm(adj,n);
for(i=0; i<n; i++)
visited[i] =0;
for(i=0; i<n; i++)
if(visited[i] ==0)
dfs(i,visited,adj,n);
}

Explanation

1. Initially, all the elements of an array namasited

all the vertices are unvisited.

rder */

ximum = %d\n",max);

are set to 0 to indicate that

2. The traversal starts with the first vertex (thatvesrtex 0), and marks it visited by
settingvisited[0] to 1. It then considers one of the unvisited eegiadjacent to
it and marks itisited , then repeats the process by considering ons of it

unvisited adjacent vertices.

3. Therefore, if the following adjacency matrix thapresents the graph Bigure
22.9is given as input, the order in which the nodeswvasited is given here:

o Input: 1. The number of nodes in a graph

2. Information about edges, in the form of valuebe stored in adjacency
matrix 1 if there is an edge from node i to node ¢therwise
o Output: Depth-first ordering of the nodes of thagir starting from the

initial vertex, which is vertex 0, in our case.

Example

I nput

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

[i] 1 2 3 4 5] Fi b |
o i 1 0 i} 1 0 a 1] 1]
1 1 0 1 1] 0 L] W] {
2 0] 1 0 4] o 0 | o o
3 [i] [\ [i] 1 1 [i] o (1]
L] 1 0 [2) | i 0] W] 0
5 g] { 1 o a Q o 1
5] a 1] [u] o a Li] 4] 1
i 0 i Qg i H] 0 | 0 1
8] { li] (¥ 1 1 W] 1]
Output

0,1,2,6,8,5,3,4,7
Analysis

1. If the graph G to which the depth-first search Yidsapplied is represented using
adjacency lists, then the vertices y adjacentd¢arxbe determined by following
the list of adjacent vertices for each vertex.

2. Therefore, theor loop searching for adjacent vertices has the tmtsil of d + 0,
+...+ d,, where dis the degree of vertex, \because the number of nodes in the
adjacency list of vertexare g

3. If the graph G has n vertices and e edges, thesuimeof the degree of each
vertex (d + & + ...+ d) is 2e. Therefore, there are total of 2e list rsoidethe
adjacency lists of G. If G is a directed graphntheere are a total of e list nodes
only.

4. The algorithm examines each node in the adjacesisydnce, at most. So the
time required to complete the search is O(e), pieidn<= e. Instead of using
adjacency lists, if an adjacency matrix is userefwesent a graph G, then the
time required to determine all adjacent verticea wvértex is Qf), and since at
mostn vertices are visited, the total time required {83

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

BREADTH-FIRST TRAVERSAL

Introduction

When a graph is traversed by visiting all the agljaciodes/vertices of a node/vertex
first, the traversal is called breadth-first trasadr For example, for a graph in which the
breadth-first traversal starts at vertexwisits to the nodes take place in the order shown

in Figure 22.10
()
oqe
(4

() ()
()
OO

Graph G

breadth-first traversal order = v1 v2 v5 v3 v4 v7 v6 v8 vB
Figure 22.10: Breadth-first traversal of graph @étstg at vertex v1.

Program

A complete C program for breadth-first traversahafraph appears next. The program
makes use of an array oiisited elements whereis the number of vertices of the
graph. Ifvisited[i] = 1 , it means that thd'ivertex is visited. The program also makes
use of a queue and the proceduiigueue anddeletequeue for adding a vertex to the
gueue and for deleting the vertex from the quesspectively. Initially, we set

visited[i] = 0

#include <stdio.h>
#include <stdlib.h>
#define MAX 10
struct node
{
int data;
struct node *link;

h
void buildadjm(int adj[][MAX], int n)
{
intij;
printf("enter adjacency matrix \n",i,j);
for(i=0;i<n;i++)
for(j=0j<n;j++)

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

scanf("%d" &adj[i][j]);
}

/* A function to insert a new node in queue*/
struct node *addqueue(struct node *p,int val)
{

struct node *temp;

if(p == NULL)

{

p = (struct node *) malloc(sizeof(struct node
new node first node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);

p->data = val;
p->link=NULL;
}
else
{
temp= p;
while(temp->link !'= NULL)

temp = temp->link;

temp->link = (struct node*)malloc(sizeof(struct
temp = temp->link;
if(temp == NULL)

printf("Cannot allocate\n");
exit(0);
}
temp->data = val;
temp->link = NULL;
}

return(p);

struct node *deleteq(struct node *p,int *val)
{ struct node *temp;

if(p == NULL)

{

printf("queue is empty\n");
return(NULL);

*val = p->data;
temp = p;

p = p->link;
free(temp);
return(p);

}
void bfs(int adj[][[MAX], int x,int visited[], int n
{
inty.jk;

*p = addqueue(*p,x);
do{

)); I* insert the

node));

, Struct node **p)

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

*p = deleteq(*p,&y);
if(visited[y] == 0)
{

printf("\nnode visited = %d\t "Y);
visited[y] = 1;
for(j=0;j<n;j++)
if((adjfyl[j] ==1) && (visited[j] == 0))

*p = addqueue(*p.j);

twhile((*p) '= NULL);
void main()
int adj[MAX][MAX];

int n;
struct node *start=NULL;
int i, visited[MAX];
printf("enter the number of nodes in graph max imum = %d\n",MAX);
scanf("%d",&n);
buildadjm(adj,n);
for(i=0; i<n; i++)

visited[i] =0;
for(i=0; i<n; i++)

if(visited[i] ==0)

bfs(adj,i,visited,n,&start);

}

Example
I nput and Output
Enter the number of nodes in graph maximum =10 9

Enter adjacency matrix

010010000
101100000
010000100
010011000
100100000
000100001
001000011
000000100
000001100
node visited = 0
node visited = 1
node visited = 4
node visited = 2
node visited = 3
node visited = 6
node visited = 5
node visited = 7
node visited = 8

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

DEPTH-FIRST SPANNING TREE AND BREADTH-
FIRST SPANNING TREE

Introduction

If graph G is connected, the edges of G can bdipadd into two disjointed sets. One is
a set of tree edges, which we denote by set Ttlendther is a set of back edges, which
we denote by B. The tree edges are precisely wges that are followed during the
depth-first traversal or during the breadth-firaiversal of graph G. If we consider only
the tree edges, we get a subgraph of G contaitlitigeavertices of G, and this subgraph
is a tree calledpanning tree of the graph G. For example, consider the graplwahn

Figure 22.14

4 3

Figure 22.14: Graph G.
One of the depth-first traversal orders for theetrs 1-2-3-4, so the tree edges are (1,2),

(2,3) and (3,4). Therefore, one of the spanningst@btained by using depth-first
traversal of the graph éfigure 22.14s shown inFigure 22.15

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

4 (3

Figure 22.15: Depth first spanning tree of the grapFigure 22.14

Similarly, one of the breadth-first traversal osléor this tree is 1-2-4-3, so the tree
edges are (1,2), (1,4) and (4,3). Therefore, oriee§panning trees obtained using
breadth-first traversal of the graphFfure 22.14s shown inFigure 22.16

1) 2
4\ 3

Figure 22.16: Breadth-first spanning tree of thegprofFigure 22.14

The algorithm for obtaining the depth-first spamniree (dfst) appears next.

T = f; {initially set of tree nodes is empty}
dfst(v : node);

if (visited[v] = false)

visited[v] = true;
for every adjacent i of v do

T=TE{V,)}
dfst(i);
}
}
}

If a graph G is not connected, the tree edges,wdie precisely those edges followed
during the depth-first, traversal of the graph @stitute the depth-firspanning forest.
The depth-first spanning forest will be made oéseeach of which is one of the
connected components of graph G.

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

When a graph G is directed, the tree edges, whiepr@cisely those edges followed
during the depth-first traversal of the graph Gnf@ depth-first spanning forest for G. In
addition to this, there are three other types gesd These are call&dck edges, forward
edges, andcross edges. An edge A—B is called a back edge, if B is an ancestor of A i
the spanning forest. A non-tree edge that goes &mertex to a proper descendant is
called a forward edge. An edge which goes fromreexeo another vertex that is neither
an ancestor nor a descendant is called a cross Adgelge from a vertex to itself is a
back edge. For example, consider the directed géaphown inFigure 22.17

Figure 22.17: A directed graph G.

The depth-first spanning forest for graph G=afure 22.17%s shown inFigure 22.18

Figure 22.18: Depth-first spanning forest for thep G ofFigure 22.17

In graph G ofFigure 22.17the edges such as-€ A and D— A are the back edges, the
edges such as B C and G— D are cross edges.

Example

Consider the graph shownkingure 22.19

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

Figure 22.19: A graph G.

If we apply the procedure dfst to this graph, ohthe depth-first spanning trees that we
get by starting with vertex 1 is shownkigure 22.20

Figure 22.20: Depth-first spanning tree of the r&pofFigure 22.19

MINIMUM -COST SPANNING TREE

Introduction

When the edges of the graph have weights represgthie cost in some suitable terms,
we can obtain that spanning tree of a graph whoseig€ minimum in terms of the
weights of the edges. For this, we start with tthgeewith the minimum-cost/weight, add
it to set T, and mark it as visited. We next coasithe edge with minimum-cost that is
not yet visited, add it to T, and mark it as viditéVhile adding an edge to the set T, we
first check whether both the vertices of the edgevasited; if they are, we do not add to
the set T, because it will form a cycle. For exampbnsider the graph shownkigure
22.21

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

18
Figure 22.21: A graph G.

Theminimum-cost spanning tree of the graph oFigure 22.21is shown inFigure 22.22

© 16 =

-
18 @

Figure 22.22: The minimum-cost spanning tree oplr@ ofFigure 22.21
MST Property

Let G = (V,E) be a connected graph with a costfioncdefined on the edges. Let U be
some proper subset of the set of vertices V. 1f)(is,an edge of lowest cost such that u is
in U, and v is in V-U, there is a minimum-cost spiaig tree that includes edge (u,v).
Many of the methods of constructing a minimum-@&pinning tree use the following
properties.

Prim's Algorithm
Let G = (V,E) be a weighted graph, and suppose{V,2...,n}. The Prim's algorithm
begins with a set U initialized to {1}, and at easthge finds the shortest edge (u,v) that

connects u in U and v in V-U, and then adds v tdt tepeats this step until U = V.

mcost(G is a graph; T is a set of edges)
U is a set of vertices

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

u,v are vertices;

{
T=6
U = {1}
while U™ V
{

Find the lowest-cost edge (u,v) such that u is &nd v is in V-U

add (u,v)to T
addvto U

}
}

Program
The following program can be used to find the munmmspanning tree of a graph.

#include <stdio.h>

#define MAXVERTICES 10

#define MAXEDGES 20

typedef enum {FALSE, TRUE} bool;

int getNVert(int edges[][3], int nedges) {

/*

* returns no of vertices = maxvertex + 1;
*/

int nvert = -1;

int j;

for(j=0; j<nedges; ++j) {
if(edges[j][0] > nvert)
nvert = edges[j][O];

if(edges[j][1] > nvert)
nvert = edges[jJ[1];

}
return ++nvert; /I no of vertices = maxv ertex + 1;
}
bool isPresent(int edges|[][3], int nedges, int v) {
/*
* checks whether v has been included in the spa nning tree.
* thus we see whether there is an edge incident on v which has
* a negative cost. negative cost signifies that the edge has been
* included in the spanning tree.
*/
int j;
for(j=0; j<nedges; ++j)

if(edges|j][2] < 0 && (edges|j][0] == v || ed ges[j][1] == Vv))
return TRUE;

return FALSE;

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

}

void spanning(int edges][][3], int nedges) {
/*
* finds a spanning tree of the graph having edg es.
* uses kruskal's method.
* assumes all costs to be positive.
*
inti, j;
int tvl, tv2, tcost;
int nspanedges = 0;
int nvert = getNVert(edges, nedges);

/I sort edges on cost.
for(i=0; i<nedges—1; ++i)
for(j=i; j<nedges; ++j)
if(edgesli][2] > edges][j][2]) {

tvl = edges[i][0]; tv2 = edges] i][1]; tcost =
edges]i][2];

edgesJi][0] = edges][j][0]; edge s[il[1] =
edgesl[j][1]; edges[i][2] = edges[j][2];

edges|j][0] = tv1; edges[j][1] = tv2; edges[j][2] =
tcost;

}
for(j=0; j<nedges-1; ++j) {
/I consider edge j connecting vertices vl a nd v2.
int vl = edges[j][0];
int v2 = edges[j][1];

/I check whether it forms a cycle in the u p until now formed
spanning tree.
/I checking can be done easily by checking whether both v1 and
v2 are in
/I the current spanning tree!
if(isPresent(edges, nedges, v1) && isPresen t(edges, nedges,
v2)) Il cycle.
printf("rejecting: %d %d %d...\n", edges|j][0],
edgesf[j][1], edges[j][2]);
else {
edgesl[j][2] = -edges[j][2];
printf("%d %d %d.\n", edges[j][0], edges [l1l, -
edgesf[j][2]);
if(++nspanedges == nvert-1)
return;
}
}
printf("No spanning tree exists for the graph.\n ");
}
main() {
int edges[][3] = {
{0,1,16},
{0,4,19},
{0,5,21},
{1,2,5},
{1,3,6},
{1,5,11},

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

{2,3,10},
{3,4,18},
{3,5,14},
{4,5,33}

int nedges = sizeéf(edges)/3/sizeof(int);
spanning(edges, nedges);

return O;

}

Explanation

1.

A tree consisting solely of edges in a graph G,ianlliding all vertices in G, is
called a spanning tree. A minimum spanning trea wkighted graph is the
spanning tree with minimum total cost of its edges.

1 16
O OO 0N
JogBolRolRo
oo NN oMo

18

18
An example graph and its minimum spanning tree.

The graph is represented as an array of edges.df@chin the array is a triplet
representing an edge consisting of source vertstjrehtion vertex, and the cost
associated with the edge. The method used in fgn@iminimum spanning tree is
that given by Kruskal. In this approach, a minimsganning tree T is built edge
by edge. Edges are considered for inclusion in fom- decreasing order of their
costs. An edge is included if it does not form elewvith the edges that are
already in T. Since graph G is connected anchira® vertices, exactlg — 1
edges will be selected for inclusion in T.

Kruskal's algorithm is as follows:
T={}; /I empty set.
while T contains less than n-1 edges and E not empt y do
choose an edge (v, w) from E of lowest cost.
delete (v, w) from E.
if (v, w) does NOT create acyclein T
add (v, w) to T.
else
discard (v, w).
endwhile.
if T contains less than n-1 edges
print("no spanning tree exists for this graph.") ;

15.1n order for the choice of the lowest-cost edgenfit® to become efficient, we sort

the edge array over the cost of edge. To checkhehein edge (v, w) forms a
cycle, we simply need to check whether both v arappear in any of the

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

previously added edges in T. We assume that atidkts are positive and we
make them negative to signify that the edge has bexduded in T.
16. Example:

For the example graph in item 1, the run of theallgm goes as follows:

STEP EDGE COST ACTION SPANNING-TREE

— = = {

1,2 5 accept {(1, 2)}.

1,3) 6 accept {(1, 2), (1, 3)}.

(2,3) |10 reject {1, 2), (1, 3)}.

1,5 |11 accept | {(1, 2), (1, 3), (1, 5)}.

(3,5 14 reject {1, 2), (1, 3), (1, 5)}.

(0,1) 16 accept {(1, 2), (1, 3), (1, 5), (0,1)}
(3,4) 18 accept {(1, 2), (1, 3), (1, 5), (0,8, 4)}.

N o o bW DN RO

Points to Remember

1. A minimum spanning tree of a weighted graph Gt®a that consists of edges
solely from the edges of G, which covers all thdiges in G, and which has the
minimum combined cost of its edges.

2. The complexity of Kruskal's method used for findthg minimum spanning tree
of a graph G is O(eloge) where e is the numbedgés in G.

3. Note that the union and find algorithms for setrespntation can be used for
checking for cycle and inclusion of an edge inta se

4. There can be multiple minimum spanning trees inaply

Application of Minimum-Cost Spanning Tree

A property of a spanning tree of a graph G is ¢hgpanning tree is a minimal connected
subgraph of G (by minimal, we mean the one withfélveest number of edges).
Therefore, if nodes of G represent cities and tlgese represent possible communication
links connecting two cities, then the spanningdrekegraph G represent all feasible
choices of the communication network. If each euig®e weight representing cost
measured in some suitable terms (such as coshstragtion or distance etc.), then the
minimum-cost spanning tree of G is the selectiothefrequired communication

network.

Prepared by Data Structure Team, CSE Dept, Gagjblmaversity

