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GRAPHS 

Introduction 

Graphs are natural models that are used to represent arbitrary relationships among data 
objects. We often need to represent such arbitrary relationships among the data objects 
while dealing with problems in computer science, engineering, and many other 
disciplines. Therefore, the study of graphs as one of the basic data structures is important. 

Basic Definitions and Terminology 

A graph is a structure made of two components: a set of vertices V, and a set of edges E. 
Therefore, a graph is G = (V,E), where G is a graph. The graph may be directed or 
undirected. In a directed graph, every edge of the graph is an ordered pair of vertices 
connected by the edge, whereas in an undirected graph, every edge is an unordered pair 
of vertices connected by the edge. Figure 22.1 shows an undirected and a directed graph. 

 
Figure 22.1: Graphs.  

Incident edge: (vi,vj) is an edge, then edge(vi,vj) is said to be incident to vertices vi and 
vj. For example, in graph G1 shown in Figure 22.1, the edges incident on vertex 1 are 
(1,2), (1,4), and (1,3), whereas in G2, the edges incident on vertex 1 are (1,2). 

Degree of vertex: The number of edges incident onto the vertex. For example, in graph 
G1, the degree of vertex 1 is 3, because 3 edges are incident onto it. For a directed graph, 
we need to define indegree and outdegree. Indegree of a vertex vi is the number of edges 
incident onto vi, with vi as the head. Outdegree of vertex vi is the number of edges 
incident onto vi, with vi as the tail. For graph G2, the indegree of vertex 2 is 1, whereas 
the outdegree of vertex 2 is 2. 

Directed edge: A directed edge between the vertices vi and vj is an ordered pair. It is 
denoted by <vi,vj>. 
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Undirected edge: An undirected edge between the vertices vi and vj is an unordered pair. 
It is denoted by (vi,vj). 

Path: A path between vertices vp and vq is a sequence of vertices vp, vi1, vi2,…, vin,vq 
such that there exists a sequence of edges (vp, vi1), (vi1, vi2), …, ( vin, vq). In case of a 
directed graph, a path between the vertices vp and vq is a sequence of vertices vp, vi1, 
vi2,…, vin, vq such that there exists a sequence of edges <vp, vi1>, < vi1, vi2>, …, <vin, vq>. 
If there exists a path from vertex vp to vq in an undirected graph, then there always exists 
a path from vq to vp also. But, in the case of a directed graph, if there exists a path from 
vertex vp to vq, then it does not necessarily imply that there exists a path from vq to vp 
also. 

Simple path: A simple path is a path given by a sequence of vertices in which all 
vertices are distinct except the first and the last vertices. If the first and the last vertices 
are same, the path will be a cycle. 

Maximum number of edges: The maximum number of edges in an undirected graph 
with n vertices is n(n−1)/2. In a directed graph, it is n(n−1). 

Subgraph: A subgraph of a graph G = (V,E) is a graph G where V(G) is a subset of 
V(G). E(G) consists of edges (v1,v2) in E(G), such that both v1 and v2 are in V(G). 
[Note: If G = (V,E) is a graph, then V(G) is a set of vertices of G and E(G) is a set of 
edges of G.] 

If E(G) consists of all edges (v1,v2) in E(G), such that both v1 and v2 are in V(G), then G 
is called an induced subgraph of G. For example, the graph shown in Figure 22.2 is a 
subgraph of the graph G2. 

 
Figure 22.2: The subgraph of graph G2.  

For the graph shown in Figure 22.3, one of the induced subgraphs is shown in Figure 
22.4. 
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Figure 22.3: Graph G.  

 
Figure 22.4: Induced subgraph of Graph G of Figure 22.3.  

In the undirected graph G, the two vertices v1 and v2 are said to be connected if there 
exists a path in G from v1 to v2 (being an undirected graph, there exists a path from v2 to 
v1 also). 

Connected graph: A graph G is said to be connected if for every pair of distinct vertices 
(vi,vj), there is a path from vi to vj. A connected graph is shown in Figure 22.5. 
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Figure 22.5: A connected graph.  

Completely connected graph: A graph G is completely connected if, for every pair of 
distinct vertices (vi,vj), there exists an edge. A completely connected graph is shown in 
Figure 22.6. 

 
Figure 22.6: A completely connected graph.  
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REPRESENTATIONS OF A GRAPH 

Array Representation 

One way of representing a graph with n vertices is to use an n2 matrix (that is, a matrix 
with n rows and n columns—that means there is a row as well as a column corresponding 
to every vertex of the graph). If there is an edge from vi to vj then the entry in the matrix 
with row index as vi and column index as vj is set to 1 (adj[vi, vj] = 1, if (vi, vj) is an edge 
of graph G). If e is the total number of edges in the graph, then there will 2e entries which 
will be set to 1, as long as G is an undirected graph. Whereas if G were a directed graph, 
only e entries would have been set to 1 in the adjacency matrix. The adjacency matrix 
representation of an undirected as well as a directed graph is show in Figure 22.7. 

 
Figure 22.7: Adjacency matrices.  

Example 

The adjacency matrix representation of the following diagraph(directed graph), along 
with the indegree and outdegree of each node is shown here: 
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The adjacency matrix representation of the above diagraph is shown here: 

 

The indegree and outdegree of each node is shown here: 

 

Linked List Representation 

Another way of representing a graph G is to maintain a list for every vertex containing all 
vertices adjacent to that vertex, as shown in Figure 22.8. 

 
Figure 22.8: Adjacency list of G1.  
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COMPUTING INDEGREE AND OUTDEGREE OF A 
NODE OF A GRAPH USING ADJACENCY MATRIX 
REPRESENTATION 

Introduction 

To compute the indegree of a node n by using the adjacency matrix representation of a 
graph, use the node number n as a column index in the adjacency matrix and count the 
number of 1's in that column of the adjacency matrix. This count is the indegree of node 
n. Similarly, to compute the outdegree of a node n of a graph, use the node number n as 
the row index in the adjacency matrix and count the number of 1's in that row of the 
adjacency matrix. This is the outdegree of the node n. A complete C program to compute 
the indegree and outdegree of each node of a graph using the adjacency matrix 
representation of a graph follows. 

Program: Computing the indegree and outdegree 
#include <stdio.h> 
#define MAX 10 
/* a function to build an adjacency matrix of the g raph*/ 
void buildadjm(int adj[][MAX], int n) 
   { 
     int i,j; 
     for(i=0;i<n;i++) 
         for(j=0;j<n;j++) 
         { 
         printf("Enter 1 if there is an edge from % d to %d, otherwise 
enter 0 \n", 
i,j); 
 
         scanf("%d",&adj[i][j]); 
         } 
   } 
 
/* a function to compute outdegree of a node*/ 
int outdegree(int adj[][MAX],int x,int n) 
    { 
       int i, count =0; 
       for(i=0;i<n;i++) 
           if( adj[x][i] ==1) count++; 
      return(count); 
    } 
   /* a function to compute indegree of a node*/ 
   int indegree(int adj[][MAX],int x,int n) 
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       { 
          int i, count =0; 
          for(i=0;i<n;i++) 
              if( adj[i][x] ==1) count++; 
         return(count); 
       } 
  void main() 
     { 
       int adj[MAX][MAX],node,n,i; 
       printf("Enter the number of nodes in graph m aximum = %d\n",MAX); 
        scanf("%d",&n); 
       buildadjm(adj,n); 
       for(i=0;i<n;i++) 
       { 
          printf("The indegree of the node %d is 
%d\n",i,indegree(adj,i,n)); 
        printf("The outdegree of the node %d is %d\ n", 
i,outdegree(adj,i,n)); 
   } 
} 

Explanation 

1. This program uses the adjacency matrix representation of a directed graph to 
compute the indegree and outdegree of each node of the graph. 

2. It first builds an adjacency matrix of the graph by calling a buildadjm  function, 
then goes in a loop to compute the indegree and outdegree of each node by calling 
the indegree  and outdegree  functions, respectively. 

3. The indegree function counts the number of 1's in a column of an adjacency 
matrix using the node number whose indegree is to be computed as a column 
index. 

4. The outdegree  function counts the number of 1's in a row of an adjacency matrix 
by using the node number whose outdegree is to be computed as a row index. 

o Input: 1. The number of nodes in a graph 
2. Information about edges, in the form of values, to be stored in 
adjacency matrix 1, if there is an edge from node i to node j; 0 otherwise. 

o Output: The indegree and outdegree of each node. 
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Example 

 

The adjacency matrix for graph G1 is: 

 

For this graph as the input, the output is: 

• The indegree of node 0 is 1 
• The outdgree of node 0 is 2 
• The indegree of node 1 is 1 
• The outdgree of node 1 is 1 
• The indegree of node 2 is 1 
• The outdgree of node 2 is 1 
• The indegree of node 3 is 2 
• The outdgree of node 3 is 1 
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DEPTH-FIRST TRAVERSAL 

Introduction 

A graph can be traversed either by using the depth-first traversal or breadth-first 
traversal. When a graph is traversed by visiting the nodes in the forward (deeper) 
direction as long as possible, the traversal is called depth-first traversal. For example, for 
the graph shown in Figure 22.9, the depth-first traversal starting at the vertex 0 visits the 
node in the orders: 

i. 0 1 2 6 7 8 5 3 4 
ii.  0 4 3 5 8 6 7 2 1 

 
Figure 22.9: Graph G and its depth first traversals starting at vertex 0.  

A complete C program for depth-first traversal of a graph follows. It makes use of an 
array visited of n elements where n is the number of vertices of the graph, and the 
elements are Boolean. If visited[i] = 1 then it means that the ith vertex is visited. Initially 
we set visited[i] = 0. 

Program 
#include <stdio.h> 
#define max 10 
 
/* a function to build adjacency matrix of a graph */ 
void buildadjm(int adj[][max], int n) 
   { 
     int i,j; 
     for(i=0;i<n;i++) 
         for(j=0;j<n;j++) 
          { 
     printf("enter 1 if there is an edge from %d to  %d, otherwise enter 
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0 \n", 
   i,j); 
 
            scanf("%d",&adj[i][j]); 
            } 
      } 
 
/* a function to visit the nodes in a depth-first o rder */ 
void dfs(int x,int visited[],int adj[][max],int n) 
{ 
   int j; 
   visited[x] = 1; 
   printf("The node visited id %d\n",x); 
   for(j=0;j<n;j++) 
      if(adj[x][j] ==1 && visited[j] ==0) 
           dfs(j,visited,adj,n); 
} 
void main() 
   { 
      int adj[max][max],node,n; 
      int i, visited[max]; 
      printf("enter the number of nodes in graph ma ximum = %d\n",max); 
      scanf("%d",&n); 
      buildadjm(adj,n); 
      for(i=0; i<n; i++) 
        visited[i] =0; 
      for(i=0; i<n; i++) 
       if(visited[i] ==0) 
            dfs(i,visited,adj,n); 
      } 

Explanation 

1. Initially, all the elements of an array named visited  are set to 0 to indicate that 
all the vertices are unvisited. 

2. The traversal starts with the first vertex (that is, vertex 0), and marks it visited by 
setting visited[0]  to 1. It then considers one of the unvisited vertices adjacent to 
it and marks it visited , then repeats the process by considering one of its 
unvisited adjacent vertices.  

3. Therefore, if the following adjacency matrix that represents the graph of Figure 
22.9 is given as input, the order in which the nodes are visited is given here: 

o Input: 1. The number of nodes in a graph 
2. Information about edges, in the form of values to be stored in adjacency 
matrix 1 if there is an edge from node i to node j, 0 otherwise 

o Output: Depth-first ordering of the nodes of the graph starting from the 
initial vertex, which is vertex 0, in our case. 

Example 

Input 
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Output 

0, 1, 2, 6, 8, 5, 3, 4, 7 

Analysis 

1. If the graph G to which the depth-first search (dfs) is applied is represented using 
adjacency lists, then the vertices y adjacent to x can be determined by following 
the list of adjacent vertices for each vertex. 

2. Therefore, the for  loop searching for adjacent vertices has the total cost of d1 + d2 
+…+ dn, where di is the degree of vertex vi, because the number of nodes in the 
adjacency list of vertex vi are di.  

3. If the graph G has n vertices and e edges, then the sum of the degree of each 
vertex (d1 + d2 + …+ dn) is 2e. Therefore, there are total of 2e list nodes in the 
adjacency lists of G. If G is a directed graph, then there are a total of e list nodes 
only. 

4. The algorithm examines each node in the adjacency lists once, at most. So the 
time required to complete the search is O(e), provided n<= e. Instead of using 
adjacency lists, if an adjacency matrix is used to represent a graph G, then the 
time required to determine all adjacent vertices of a vertex is O(n), and since at 
most n vertices are visited, the total time required is O(n2). 
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BREADTH-FIRST TRAVERSAL 

Introduction 

When a graph is traversed by visiting all the adjacent nodes/vertices of a node/vertex 
first, the traversal is called breadth-first traversal. For example, for a graph in which the 
breadth-first traversal starts at vertex v1, visits to the nodes take place in the order shown 
in Figure 22.10. 

 
Figure 22.10: Breadth-first traversal of graph G starting at vertex v1.  

Program 

A complete C program for breadth-first traversal of a graph appears next. The program 
makes use of an array of n visited elements where n is the number of vertices of the 
graph. If visited[i] = 1 , it means that the ith vertex is visited. The program also makes 
use of a queue and the procedures addqueue  and deletequeue  for adding a vertex to the 
queue and for deleting the vertex from the queue, respectively. Initially, we set 
visited[i] = 0 . 

#include <stdio.h> 
#include <stdlib.h> 
#define MAX 10 
struct node 
   { 
     int data; 
     struct node *link; 
   }; 
void buildadjm(int adj[][MAX], int n) 
   { 
     int i,j; 
     printf("enter adjacency matrix \n",i,j); 
     for(i=0;i<n;i++) 
         for(j=0;j<n;j++) 



Prepared by Data Structure Team, CSE Dept, Galgotias University 
 

                 scanf("%d",&adj[i][j]); 
   } 
 
/* A function to insert a new node in queue*/ 
struct node *addqueue(struct node *p,int val) 
{ 
   struct node *temp; 
   if(p == NULL) 
   { 
      p = (struct node *) malloc(sizeof(struct node )); /* insert the 
new node first node*/ 
      if(p == NULL) 
         { 
              printf("Cannot allocate\n"); 
              exit(0); 
         } 
     p->data = val; 
     p->link=NULL; 
  } 
 else 
 { 
 temp= p; 
while(temp->link != NULL) 
{ 
 temp = temp->link; 
} 
   temp->link = (struct node*)malloc(sizeof(struct node)); 
   temp = temp->link; 
   if(temp == NULL) 
        { 
              printf("Cannot allocate\n"); 
              exit(0); 
        } 
   temp->data = val; 
   temp->link = NULL; 
} 
return(p); 
} 
struct node *deleteq(struct node *p,int *val) 
{  struct node *temp; 
   if(p == NULL) 
   { 
        printf("queue is empty\n"); 
               return(NULL); 
   } 
    *val = p->data; 
    temp = p; 
    p = p->link; 
    free(temp); 
    return(p); 
  } 
 
void bfs(int adj[][MAX], int x,int visited[], int n , struct node **p) 
{ 
    int y,j,k; 
    *p = addqueue(*p,x); 
    do{ 
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            *p = deleteq(*p,&y); 
            if(visited[y] == 0) 
                 { 
                      printf("\nnode visited = %d\t ",y); 
              visited[y] = 1; 
                  for(j=0;j<n;j++) 
              if((adj[y][j] ==1) && (visited[j] == 0)) 
                      *p = addqueue(*p,j); 
               } 
 
      }while((*p) != NULL); 
} 
void main() 
   { 
     int adj[MAX][MAX]; 
 
     int n; 
     struct node *start=NULL; 
     int i, visited[MAX]; 
     printf("enter the number of nodes in graph max imum = %d\n",MAX); 
     scanf("%d",&n); 
     buildadjm(adj,n); 
     for(i=0; i<n; i++) 
        visited[i] =0; 
     for(i=0; i<n; i++) 
       if(visited[i] ==0) 
            bfs(adj,i,visited,n,&start); 
    } 

Example 

Input and Output 

Enter the number of nodes in graph maximum = 10 9 

Enter adjacency matrix 

0 1 0 0 1 0 0 0 0 
1 0 1 1 0 0 0 0 0 
0 1 0 0 0 0 1 0 0 
0 1 0 0 1 1 0 0 0 
1 0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 1 0 0 
node visited = 0 
node visited = 1 
node visited = 4 
node visited = 2 
node visited = 3 
node visited = 6 
node visited = 5 
node visited = 7 
node visited = 8 
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DEPTH-FIRST SPANNING TREE AND BREADTH-
FIRST SPANNING TREE 

Introduction 

If graph G is connected, the edges of G can be partitioned into two disjointed sets. One is 
a set of tree edges, which we denote by set T, and the other is a set of back edges, which 
we denote by B. The tree edges are precisely those edges that are followed during the 
depth-first traversal or during the breadth-first traversal of graph G. If we consider only 
the tree edges, we get a subgraph of G containing all the vertices of G, and this subgraph 
is a tree called spanning tree of the graph G. For example, consider the graph shown in 
Figure 22.14. 

 
Figure 22.14: Graph G.  

One of the depth-first traversal orders for this tree is 1-2-3-4, so the tree edges are (1,2), 
(2,3) and (3,4). Therefore, one of the spanning trees obtained by using depth-first 
traversal of the graph of Figure 22.14 is shown in Figure 22.15. 



Prepared by Data Structure Team, CSE Dept, Galgotias University 
 

 
Figure 22.15: Depth first spanning tree of the graph of Figure 22.14.  

Similarly, one of the breadth-first traversal orders for this tree is 1-2-4-3, so the tree 
edges are (1,2), (1,4) and (4,3). Therefore, one of the spanning trees obtained using 
breadth-first traversal of the graph of Figure 22.14 is shown in Figure 22.16. 

 
Figure 22.16: Breadth-first spanning tree of the graph of Figure 22.14.  

The algorithm for obtaining the depth-first spanning tree (dfst) appears next. 

T = f; {initially set of tree nodes is empty} 
dfst( v : node); 
{ 
   if (visited[v] = false) 
   { 
      visited[v] = true; 
      for every adjacent i of v do 
      { 
            T = T È {(v,i)} 
            dfst(i); 
      } 
   } 
} 

If a graph G is not connected, the tree edges, which are precisely those edges followed 
during the depth-first, traversal of the graph G, constitute the depth-first spanning forest. 
The depth-first spanning forest will be made of trees, each of which is one of the 
connected components of graph G. 
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When a graph G is directed, the tree edges, which are precisely those edges followed 
during the depth-first traversal of the graph G, form a depth-first spanning forest for G. In 
addition to this, there are three other types of edges. These are called back edges, forward 
edges, and cross edges. An edge A →B is called a back edge, if B is an ancestor of A in 
the spanning forest. A non-tree edge that goes from a vertex to a proper descendant is 
called a forward edge. An edge which goes from a vertex to another vertex that is neither 
an ancestor nor a descendant is called a cross edge. An edge from a vertex to itself is a 
back edge. For example, consider the directed graph G shown in Figure 22.17. 

 
Figure 22.17: A directed graph G.  

The depth-first spanning forest for graph G of Figure 22.17 is shown in Figure 22.18. 

 
Figure 22.18: Depth-first spanning forest for the graph G of Figure 22.17.  

In graph G of Figure 22.17, the edges such as C → A and D → A are the back edges, the 
edges such as D → C and G → D are cross edges. 

Example 

Consider the graph shown in Figure 22.19. 
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Figure 22.19: A graph G.  

If we apply the procedure dfst to this graph, one of the depth-first spanning trees that we 
get by starting with vertex 1 is shown in Figure 22.20. 

 
Figure 22.20: Depth-first spanning tree of the graph G of Figure 22.19.  
 

 
  

  
 

 

MINIMUM -COST SPANNING TREE 

Introduction 

When the edges of the graph have weights representing the cost in some suitable terms, 
we can obtain that spanning tree of a graph whose cost is minimum in terms of the 
weights of the edges. For this, we start with the edge with the minimum-cost/weight, add 
it to set T, and mark it as visited. We next consider the edge with minimum-cost that is 
not yet visited, add it to T, and mark it as visited. While adding an edge to the set T, we 
first check whether both the vertices of the edge are visited; if they are, we do not add to 
the set T, because it will form a cycle. For example, consider the graph shown in Figure 
22.21. 
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Figure 22.21: A graph G.  

The minimum-cost spanning tree of the graph of Figure 22.21 is shown in Figure 22.22. 

 
Figure 22.22: The minimum-cost spanning tree of graph G of Figure 22.21.  

MST Property 

Let G = (V,E) be a connected graph with a cost function defined on the edges. Let U be 
some proper subset of the set of vertices V. If (u,v) is an edge of lowest cost such that u is 
in U, and v is in V-U, there is a minimum-cost spanning tree that includes edge (u,v). 
Many of the methods of constructing a minimum-cost spanning tree use the following 
properties. 

Prim's Algorithm 

Let G = (V,E) be a weighted graph, and suppose V = {1,2,…,n}. The Prim's algorithm 
begins with a set U initialized to {1}, and at each stage finds the shortest edge (u,v) that 
connects u in U and v in V-U, and then adds v to U. It repeats this step until U = V. 

mcost(G is a graph; T is a set of edges) 
   U is a set of vertices 
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   u,v are vertices; 
{ 
   T= ô 
   U = {1} 
   while U '" V 
   { 

Find the lowest-cost edge (u,v) such that u is in U and v is in V-U 

      add (u,v) to T 
      add v to U 
   } 
} 

Program 

The following program can be used to find the minimum spanning tree of a graph. 

#include <stdio.h> 
 
#define MAXVERTICES 10 
#define MAXEDGES 20 
typedef enum {FALSE, TRUE} bool; 
 
int getNVert(int edges[][3], int nedges) { 
   /* 
    * returns no of vertices = maxvertex + 1; 
    */ 
   int nvert = −1; 
   int j; 
 
   for( j=0; j<nedges; ++j ) { 
      if( edges[j][0] > nvert ) 
             nvert = edges[j][0]; 
 
      if( edges[j][1] > nvert ) 
             nvert = edges[j][1]; 
   } 
   return ++nvert;         // no of vertices = maxv ertex + 1; 
} 
 
bool isPresent(int edges[][3], int nedges, int v) {  
   /* 
    * checks whether v has been included in the spa nning tree. 
    * thus we see whether there is an edge incident  on v which has 
    * a negative cost. negative cost signifies that  the edge has been 
    * included in the spanning tree. 
    */ 
 
   int j; 
   for(j=0; j<nedges; ++j) 
      if(edges[j][2] < 0 && (edges[j][0] == v || ed ges[j][1] == v)) 
               return TRUE; 
 
   return FALSE; 
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} 
 
void spanning(int edges[][3], int nedges) { 
   /* 
    * finds a spanning tree of the graph having edg es. 
    * uses kruskal's method. 
    * assumes all costs to be positive. 
    */ 
   int i, j; 
   int tv1, tv2, tcost; 
   int nspanedges = 0; 
   int nvert = getNVert(edges, nedges); 
 
   // sort edges on cost. 
   for(i=0; i<nedges−1; ++i) 
      for(j=i; j<nedges; ++j) 
             if(edges[i][2] > edges[j][2]) { 
                    tv1 = edges[i][0]; tv2 = edges[ i][1]; tcost = 
edges[i][2]; 
                    edges[i][0] = edges[j][0]; edge s[i][1] = 
edges[j][1]; edges[i][2] = edges[j][2]; 
                    edges[j][0] = tv1; edges[j][1] = tv2; edges[j][2] = 
tcost; 
                  } 
    for(j=0; j<nedges-1; ++j) { 
        // consider edge j connecting vertices v1 a nd v2. 
        int v1 = edges[j][0]; 
        int v2 = edges[j][1]; 
 
         // check whether it forms a cycle in the u p until now formed 
spanning tree. 
         // checking can be done easily by checking  whether both v1 and 
v2 are in 
        // the current spanning tree! 
        if(isPresent(edges, nedges, v1) && isPresen t(edges, nedges, 
v2)) // cycle. 
                 printf("rejecting: %d %d %d...\n",  edges[j][0], 
edges[j][1], edges[j][2]); 
   else { 
           edges[j][2] = -edges[j][2]; 
           printf("%d %d %d.\n", edges[j][0], edges [j][1], -
edges[j][2]); 
           if(++nspanedges == nvert-1) 
                   return; 
         } 
   } 
   printf("No spanning tree exists for the graph.\n "); 
} 
 
main() { 
    int edges[][3] = { 
                                 {0,1,16}, 
                                 {0,4,19}, 
                                 {0,5,21}, 
                                 {1,2,5}, 
                                 {1,3,6}, 
                                 {1,5,11}, 
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                                 {2,3,10}, 
                                 {3,4,18}, 
                                 {3,5,14}, 
                                 {4,5,33} 
                           }; 
 int nedges = sizeof(edges)/3/sizeof(int); 
 spanning(edges, nedges); 
 
 return 0; 
} 

Explanation 

1. A tree consisting solely of edges in a graph G, and including all vertices in G, is 
called a spanning tree. A minimum spanning tree of a weighted graph is the 
spanning tree with minimum total cost of its edges.  

 

2. The graph is represented as an array of edges. Each entry in the array is a triplet 
representing an edge consisting of source vertex, destination vertex, and the cost 
associated with the edge. The method used in finding a minimum spanning tree is 
that given by Kruskal. In this approach, a minimum spanning tree T is built edge 
by edge. Edges are considered for inclusion in T in non- decreasing order of their 
costs. An edge is included if it does not form a cycle with the edges that are 
already in T. Since graph G is connected and has n > 0 vertices, exactly n − 1 
edges will be selected for inclusion in T. 

3. Kruskal's algorithm is as follows: 
4.  T={};      // empty set. 
5.  while T contains less than n-1 edges and E not empt y do 
6.     choose an edge (v, w) from E of lowest cost. 
7.     delete (v, w) from E. 
8.     if (v, w) does NOT create a cycle in T 
9.            add (v, w) to T. 
10.     else 
11.            discard (v, w). 
12.  endwhile. 
13.  if T contains less than n-1 edges 
14.     print("no spanning tree exists for this graph.") ; 

15. In order for the choice of the lowest-cost edge from E to become efficient, we sort 
the edge array over the cost of edge. To check whether an edge (v, w) forms a 
cycle, we simply need to check whether both v and w appear in any of the 
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previously added edges in T. We assume that all the costs are positive and we 
make them negative to signify that the edge has been included in T.  

16. Example: 

For the example graph in item 1, the run of the algorithm goes as follows: 

STEP EDGE COST ACTION  SPANNING-TREE 

0 — — — {}. 

1 (1, 2) 5 accept {(1, 2)}. 

2 (1, 3) 6 accept {(1, 2), (1, 3)}. 

3 (2, 3) 10 reject {(1, 2), (1, 3)}. 

4 (1, 5) 11 accept {(1, 2), (1, 3), (1, 5)}. 

5 (3, 5) 14 reject {(1, 2), (1, 3), (1, 5)}. 

6 (0, 1) 16 accept {(1, 2), (1, 3), (1, 5), (0, 1)}. 

7 (3, 4) 18 accept {(1, 2), (1, 3), (1, 5), (0, 1), (3, 4)}. 

Points to Remember 

1. A minimum spanning tree of a weighted graph G is a tree that consists of edges 
solely from the edges of G, which covers all the vertices in G, and which has the 
minimum combined cost of its edges. 

2. The complexity of Kruskal's method used for finding the minimum spanning tree 
of a graph G is O(eloge) where e is the number of edges in G. 

3. Note that the union and find algorithms for set representation can be used for 
checking for cycle and inclusion of an edge in a set. 

4. There can be multiple minimum spanning trees in a graph. 

Application of Minimum-Cost Spanning Tree 

A property of a spanning tree of a graph G is that a spanning tree is a minimal connected 
subgraph of G (by minimal, we mean the one with the fewest number of edges). 
Therefore, if nodes of G represent cities and the edges represent possible communication 
links connecting two cities, then the spanning trees of graph G represent all feasible 
choices of the communication network. If each edge has weight representing cost 
measured in some suitable terms (such as cost of construction or distance etc.), then the 
minimum-cost spanning tree of G is the selection of the required communication 
network. 

 
 

  

 


