
ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

1

Threaded Binary Trees

Atul Gupta

Binary Tree Traversals

• Depth-First Traversals

– Pre-order

– Post-order

– In-order

• Breadth First Traversals

Note that

1. these traversals use stacks/queues as auxiliary data structures

2. It is not simple to determine predecessor/successor for an order

traversal

3. Here we demonstrate how to perform traversal without

stacks/queues and to get the predecessor/successor for an order

traversal

Note that

1. these traversals use stacks/queues as auxiliary data structures

2. It is not simple to determine predecessor/successor for an order

traversal

3. Here we demonstrate how to perform traversal without

stacks/queues and to get the predecessor/successor for an order

traversal

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

2

Binary Trees

• An observation: Majority of pointers in a

binary tree are NULL

– e.g. a binary tree with n nodes has n+1 NULL

pointers, and they are wasted

"A binary tree is threaded by making all right
child pointers that would normally be null point
to the inorder successor of the node, and all left
child pointers that would normally be null point
to the inorder predecessor of the node”

Treaded Binary Tree

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

3

Threaded Binary Tree

• makes it possible to traverse the values in the

binary tree via a linear traversal that is more

rapid than a recursive in-order traversal

• to discover the parent of a node from a

threaded binary tree

Threaded Binary Trees: Classification

• Based on left/right

threaded

– Left-threaded

– Right-threaded

– Fully Threaded

• Based on traversal

order

– Preorder threaded

– In-order threaded

– Post-order threaded

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

4

Normal Binary Tree vs. Threaded

Binary Tree

• Threaded Binary Tree• Normal Binary Tree

Left data Right

structBinaryTree {

struct BinaryTree *left;

int data;

struct BinaryTree *right;

}

Left LTag data RTag Right

struct ThreadedBinaryTree{

struct ThreadedBinaryTree*left;

int Ltag;

int data;

int Rtag;

struct ThreadedBinaryTree*right;

}

Meaning

LTag == 0 Left points to in-order predecessor

LTag == 1 Left point to left child

RTag == 0 Left points to in-order successor

RTag == 1 Right points to right child

Non recursive Inorder traversal for a

Threaded Binary Tree

1. curr-node node � leftmost (root)

2. While (curr_node != Null)

a. print (curr_node)

b. If (curr_node.RTag == 0) then

curr_node � curr_node.right

go to step 2.

c. else

curr_node � leftmost(curr_node.right)

go to step 2.

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

5

9

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Start at leftmost node, print it

Output

1

10

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

6

11

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow link to right, go to leftmost

node and print

Output

1

3

5

Amir Kamil 8/8/02 12

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

7

Amir Kamil 8/8/02 13

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

14

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

7

8

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

8

15

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

8

9

16

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow thread to right, print node

Output

1

3

5

6

7

8

9

11

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

9

17

Threaded Tree Traversal

8

75

3

11

13

1

6

9

Follow link to right, go to

leftmost node and print

Output

1

3

5

6

7

8

9

11

13

18

Threaded Tree Traversal Algorithm

(In-Order)
struct Node* leftMost(structNode** n) {

struct Node* ans = n;

if (ans == null) {

return null;

}

while (ans�left != null) {

ans = ans � left;

}

return ans;

}

void inOrder(struct Node* n) {
struct Node* cur = leftmost(n);
while (cur != null) {

print(cur);
if not (cur � RTag) {

cur = cur � right;
} else {

cur = leftmost(cur� right);
}

}
}

ES 103: Data Structures and Algorithms 2012

Instructor – Dr Atul Gupta

10

Threaded Tree Traversals

• Similarly can also be employed to pre-order

and post-order traversals

• A useful idea to utilize the otherwise wasted links to store

meaningful information

• Can be threaded using any order traversal

• Useful in applications which require

– Information about predecessor and successor nodes

– For efficient order traversals

Summary: Threaded Binary Tree

