Graphs: Shortest Paths

Atul Gupta

@Problems Specific with Graphs

* Minimum Spanning Tree
 Path Problems

— Simple Paths

— Shortest Path Problem

* Single source shortest paths
* All-pair shortest paths

— Find Cycles
— Euler Path and Circuit Problem
— Hamiltonian Path and Circuit Problem (or TSP)

e Graph Coloring
 Connected Components
e |somorphic graphs

e Search Graphs

@ Shortest Path

e Given a weighted graph G(V, E) with weight
function w: E 2 R

* Weight w(p) of path p (v, v,, v,, ..., v/} is given
by

k
w(p) =) wvii,vi)
=1

e Ashortest path between two nodes will be a
path with minimum w(p)

@ Single Source Shortest Paths

6

@ Shortest Paths

 Main Idea: Relaxing edges in the graph

— Two cases

U V U V
2 2
RELAX(2,v,w) RELAX(21,v,w)

oot G

(a) (b)

Relaxing an Edge (u, v) in the
Graph

RELAX(u, v, w)

1 ifv.d>u.d+ w(u,v)
2 v.d = u.d+ w(u,v)
3 V.T = U

ain Components of Shortest Path
Algorithms

INITIALIZE-SINGLE-SOURCE(G, s)
1 for each vertexv € G.V

2 v.d = o0
3 V.71 = NIL
4 s.d =0

RELAX (u, v, w)

1 ifv.d>u.d+ w(u,v)
2 v.d = u.d +w(u,v)
3 V.IT = U

@ Dijkestra’s Algorithm

DIIKSTRA(G, w,)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 § =10

3 0=G.V

4 while Q # 0

5 u = EXTRACT-MIN(Q)

6 S = 8§ U{u}

7 for each vertex v € G.Adj|u]

8 RELAX(u, v, w)

4 Dijkestra’s SP vs. Prim’s MIST

MST-PRIM(G, w, r) DUKSTRA(G, w, s)

1 foreachu €G.Vdo 1 INITIALIZE-SINGLE-SOURCE(G, s)
2 keyl[u] € oo 2 §S=90

3 mfu] ¢ NIL i \%hiTe Z‘; .

4 keylr] <0 5 u = EXTRACT-MIN(Q)

5 Q=GV 6 S =SU{u; |
6 while Q # @ do ’; for e;;}i\;i‘t(zxs Z)G'Adj[u]
7 u & EXTRACT-MIN(Q) o

8 for each v € Adj[u] do

9 if v € Q and w(u, v) < key[v] REL.AX (. v, w)

o0 wemen L
11 key[v] < w(u, v) 3 VT o= u ’

@ Negative Weight Edges

Stacks 11

@ Negative Weight Edges and Cycles

e |f a graph contains a "negative cycle", i.e., a cycle
whose edges sum to a negative value, then walks
of arbitrarily low weight can be constructed, i.e.,
there may be no shortest path

* |f a graph contains no negative cycle but some
edges with negative weights, Bellman-Ford
algorithm will be useful

e Bellman-Ford algorithm can also detect negative
cycles and report their existence

@ Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori =1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX (u, v, w)

5 foreachedge (u,v) € G.E

6 ifv.d >u.d+ w(u,v)

7 return FALSE

8 return TRUE

@ Example: Bellman-Ford Algo

Summary

Here we presented two algorithms for single source shortest paths
— Dijkestra’s
— Bellman-Ford’s
Both make use of “Edge Relaxation” approach
Dijkestra’s algorithm is faster but can not be used with graphs
having negative weight edges
Bellman-Ford’s algorithm can work with graphs having negative
weight edges but not the “negative cycles”

The Dijkestra algorithm is an example of greedy approach whereas
Bellman-Ford algorithm in an example of dynamic programming
approach.

