
CMPE 462 Assignment 3 

(Haskell) 

Due: 04 November 2019 (Monday), beginning of the lab session 

To be done in groups of two. Pick your partner! 

  

Take the following definitions as your starting point. A "Tree" object represents a binary search 
tree. 

data Tree a = Empty | Node (Tree a) a (Tree a) deriving (Show) 
 
insert n Empty = Node Empty n Empty 
insert n (Node left value right) =  
       if  
            n<value  
       then  
            (Node (insert n left) value right)  
       else  
             (Node left value (insert n right)) 
 
insertList [] = Empty 
insertList (h:t) = insert h (insertList t) 
 
size Empty = 0  
size (Node left value right) = 1 + (size left) + (size right) 
 
t = Node (Node Empty 5 Empty) 10 (Node Empty 15 Empty) 

  

Note how data constructors need to be put in parenthesis! Also please note that we need deriving 
(Show)  after the type declaration. We need this in order to see the resulting tree.  

Implement the following operations on binary search trees. 

find v t = True if value v is in the tree, otherwise False 

inorder t = a list containing the values in the tree in the same order as in an "inorder" traversal. 

inner_nodes t = a list containing the values in the inner (non-leaf) nodes of the tree. 

leaves t = a list containing the values in leaf nodes of the tree. 



 

subset t1 t2 = all values in tree t1 are also in tree t2 

union t1 t2 = the binary search tree that contains all the values in t1 and t2 without duplication! 

difference t1 t2 = the list of values that are in t1 but not in t2 

max t1 = the maximum value in t1 

min t1 = the maximum value in t1 

sum t1 = the sum of values in t1 

BONUS: 

tree_zip t1 t2 = a tree whose node values are pairs of corresponding values from t1 and t2. Must 
work similarly to the zip function for lists.  If a node in t1 (t2) does not have a corresponding 
node in t2 (t1), then that node must not be represented in the result. 

  

  

 


