
Computational Logic

A “Hands-on” Introduction to Logic Programming

1

Syntax: Variables, Constants, Structures

(using Prolog notation conventions)

• Variables: start with uppercase character (or “ ”), may include “ ” and digits:

Examples: X, Im4u, A little garden, , x, 22

• Constants: lowercase first character, may include “ ” and digits. Also, numbers
and some special characters. Quoted, any character:

Examples: a, dog, a big cat, 23, ’Hungry man’, []

• Structures: a functor (like a constant name) followed by a fixed number of
arguments between parentheses:

Example: date(monday, Month, 1994)

Arguments can in turn be variables, constants and structures.

� Arity: is the number of arguments of a structure. Functors are represented as
name/arity . A constant can be seen as a structure with arity zero.

� Variables, constants, and structures as a whole are called terms (they are the
terms of a “first–order language”): the data structures of a logic program.

2

Syntax: Terms

(using Prolog notation conventions)
• Examples of terms:

Term Type Main functor:
dad constant dad/0
time(min, sec) structure time/2
pair(Calvin, tiger(Hobbes)) structure pair/2
Tee(Alf, rob) illegal —
A good time variable —

• Functors can be defined as prefix, postfix, or infix operators (just syntax!):

a + b is the term ’+’(a,b) if +/2 declared infix
- b is the term ’-’(b) if -/1 declared prefix

a < b is the term ’<’(a,b) if </2 declared infix
john father mary is the term father(john,mary) if father/2 declared infix

We assume that some such operator definitions are always preloaded.

3

Syntax: Atoms, Literals

• Atoms: an expression of the form: p(t1, t2, ..., tn)

� p is the atom’s predicate symbol (same convention as with functors),

� n is its arity,

� and t1, t2, ..., tn are terms.

� The predicate symbol of an atom is also represented as p/n.

• Atoms and terms are syntactically identical!
They are distinguished by context:
if dog(name(barry), color(black)) is an atom
then name(barry) and color(black) are terms

if color(dog(barry,black)) is an atom
then dog(barry,black) is a term

• I.e., atoms cannot appear inside terms; terms are the arguments of atoms.

• Literals: A literal is a positive (non negated) or negative (negated) atom.

4

Syntax: Rules

• Rules: A rule is an expression of the form:
p0(t1, t2, . . . , tn0

)←
p1(t

1
1, t

1
2, . . . , t

1
n1

),

. . .

pm(tm1 , tm2 , . . . , tmnm

).

� The expression to the left of the arrow has to be an atom (no negation) and is
called the head of the rule.
� Those to the right of the arrow are literals and form the body of the rule.
� Literals in the body of a rule are also called procedure calls.

Example:

meal(First, Second, Third) <-

appetizer(First),

main_dish(Second),

dessert(Third).

5

Syntax: Facts, Clauses, Predicates

• Facts: A fact is an expression of the form: p(t1, t2, ..., tn) <-.

(i.e., a fact is a rule with an empty body).

Examples:
dog(name(barry), color(black)) <-.

friends(’Ann’, ’John’) <-.

• Rules and facts are both called clauses.

• Predicates: all clauses whose heads have the same name and arity form a
predicate (or procedure) definition.

Example:

pet(spot) <-.

pet(X) <- animal(X), barks(X).

pet(X) <- animal(X), meows(X).

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules.

6

Declarative Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to
certain conventions:

• Rules:

� Commas in rule bodies represent conjunction, i.e.,
p← p1, · · · , pm. represents p← p1 ∧ · · · ∧ pm.

� “←” represents as usual logical implication.

Thus, a rule p← p1, · · · , pm. means “if p1 and . . . and pm are true, then p is true”

Example: the rule pet(X) <- animal(X), barks(X).

can be read as “X is a pet if it is an animal and it barks”.

• Facts: state things that are true.
(Note that a fact p can be seen as the rule “ p <- true. ”)

Example: the fact animal(spot) <-.

can be read as “spot is an animal”.

7

Declarative Meaning of Predicates

• Predicates: clauses in the same predicate

p ← p1, ..., pn

p ← q1, ..., qm

...

provide different alternatives (for p).

Example: the rules

pet(X) <- animal(X), barks(X).

pet(X) <- animal(X), meows(X).

express two ways for X to be a pet.

• Note (variable scope): the X variables in the two clauses above are different,
even if they have the same name. Variables are local to clauses (and are
renamed any time a clause is used).

8

Programs, Queries, and Execution

• Logic Program: a set of predicates.

Example:

animal(spot) <-.

animal(barry) <-.

animal(hobbes) <-.

pet(X) <- animal(X), barks(X).

pet(X) <- animal(X), meows(X).

barks(spot) <-.

meows(barry) <-.

roars(hobbes) <-.

• Query: an expression of the form: ← p1(t
1
1, . . . , t

1
n1

), . . . , pn(t
n
1 , . . . , t

n
nm

).

(i.e., a clause without a head). A query represents a question to the program.
Example: <- pet(X).

• Execution: given a program and a query, executing the logic programming is
attempting to find an answer to the query.

Example: above, the system will try to find a “substitution” for X which makes
pet(X) true. Intuitively, we have two possible answers: spot and barry.

The declarative semantics does not specify how this is done – this is the role of
the operational semantics.

9

Operational Meaning

• A logic program also has an operational meaning [Kowalski]:

� A clause p ← p1,...,pm. expresses:
“to obtain (prove) p you have to obtain (prove) p1 and ...and pm first”
In principle, the order in which body literals p1, ..., pn are solved does not
matter, but, for a given system this may be fixed.

� A set of clauses:
p ← p1, ..., pn

p ← q1, ..., qm

...
expresses “to prove p, prove p1 ∧ ...∧ pn, or prove q1 ∧ ...∧ qn, or . . . ”

The presence of several applicable clauses for a given body literal means that
several possible paths exist to a solution and they should be explored.
Again, in principle, the order in which these paths are explored does not matter
(if certain conditions are met), but, for a given system, this may also be fixed.

10

Unification

• Unifying two terms is finding (the minimal) values for the variables in those terms
which make them syntactically equal.

• Only variables can be given values!

• Two terms can be made identical only by making identical their arguments.

Example:
Unify A With B Using θ

dog dog ∅

X Y {X = Y}

X a {X = a}

f(X, g(t)) f(m(h), g(M)) { X=m(h), M=t }

f(X, g(t)) f(m(h), t(M)) Impossible (1)
f(X, X) f(Y, l(Y)) Impossible (2)

• (1) Terms with different name and/or arity cannot be unified.
• (2) A variable cannot be given as value a term which contains that variable,

because it would create an infinite term. This is known as the occurs check.

• All applies to unification of atoms as well!

11

Substitutions

• If the equation A = B has a solution then A and B are unifiable.

• Solutions of a set of term equations are called substitutions.

• In a solution all values for the variables are completely explicit!

• Substitution: a set of equations assigning values to variables, with:

� Only variables on the left hand side of each equation.
� Only one equation for each left hand side variable.
� Variables on the left hand side cannot appear on the right of any equation.

Example:
Set of Equations Substitution

{ X=f(Y), Y=f(Z) } NO
{ X=f(f(Z)), Y=f(Z) } YES
{ X=f(f(Z)), Z=Y } NO
{ X=f(f(Z)), Y=Z } YES
{ X=l(Y), Y=l(Y) } NO (2)
{ X=l(Y), X=Y } NO!

12

Unifiers

• A substitution θ which is a solution of A = B is called a unifier of A and B.

• Most general unifier: one which assigns to the variables the values strictly
required to unify.

• Given two terms, if they are unifiable, then there exists a unique (up to variable
renaming) most general unifier (m.g.u.) for them.

Example:

Terms Unifiers MGU (unique!)

f(X, g(T)) { X=m(a), H=a, M=b, T=b } { X=m(H), M=T }
f(m(H), g(M)) { X=m(H), M=f(A), T=f(A) } { X=m(A), H=A, M=B, T=B }

• Unifying two terms: find the minimal substitution which makes them identical.

• Unification should find the (unique) m.g.u., if it exists, or fail otherwise.

13

Unification Algorithm

• Let A and B be two terms:

1 θ = ∅, E = {A = B}

2 while not E = ∅:

2.1 delete an equation T = S from E

2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
* (occur check) if T occurs in the term S → halt with failure
* substitute variable T by term S in all terms in θ

* substitute variable T by term S in all terms in E

* add T = S to θ

2.3 case T and S are non-variable terms:
* if their names or arities are different→ halt with failure
* obtain the arguments {T1, . . . , Tn} of T and {S1, . . . , Sn} of S

* add {T1 = S1, . . . , Tn = Sn} to E

3 halt with θ being the m.g.u of A and B

14

Unification Algorithm Examples (I)

• Unify: A = p(X,X) and B = p(f(Z),f(W))

θ E T S

{} { p(X,X)=p(f(Z),f(W)) } p(X,X) p(f(Z),f(W))

{} { X=f(Z), X=f(W) } X f(Z)

{ X=f(Z) } { f(Z)=f(W) } f(Z) f(W)

{ X=f(Z) } { Z=W } Z W

{ X=f(W), Z=W } {}

• Unify: A = p(X,f(Y)) and B = p(Z,X)

θ E T S

{} { p(X,f(Y))=p(Z,X) } p(X,f(Y)) p(Z,X)

{} { X=Z, f(Y)=X } X Z

{ X=Z } { f(Y)=Z } f(Y) Z

{ X=f(Y), Z=f(Y) } {}

15

Unification Algorithm Examples (II)

• Unify: A = p(X,f(Y)) and B = p(a,g(b))

θ E T S

{} { p(X,f(Y))=p(a,g(b)) } p(X,f(Y)) p(a,g(b))

{} { X=a, f(Y)=g(b) } X a

{ X=a } { f(Y)=g(b) } f(Y) g(b)

fail

• Unify: A = p(X,f(X)) and B = p(Z,Z)

θ E T S

{} { p(X,f(X))=p(Z,Z) } p(X,f(X)) p(Z,Z)

{} { X=Z, f(X)=Z } X Z

{ X=Z } { f(Z)=Z } f(Z) Z

fail

16

A (Schematic) Interpreter for Logic Programs (SLD–resolution)

Input: A logic program P , a query Q

Output: Qµ (answer substitution) if Q is provable from P , failure otherwise

Algorithm:

1. Initialize the “resolvent” R to be {Q}
2. While R is nonempty do:

2.1.Take the leftmost literal A in R

2.2.Choose a (renamed) clause A′ ← B1, . . . , Bn from P ,
such that A and A′ unify with unifier θ

(if no such clause can be found, branch is failure; explore another branch)
2.3.Remove A from R, add B1, . . . , Bn to R

2.4.Apply θ to R and Q

3. If R is empty, output Q (a solution). Explore another branch for more sol’s.

• Step 2.2 defines alternative branches to be tried before obtaining the solution(s);
execution explores this tree (for example, breadth-first).

• (Step 2.1 also allows some freedom, but not needed.)

17

A (Schematic) Interpreter for Logic Programs (Contd.)

• Dealing with the fact that steps 2.1 and 2.2 are nondeterministic.
A given logic programming system must specify how it deals with this by providing
two additional rules:

� Computation rule: “which literal is selected in 2.1.”

� Search rule: “which clause/branch is selected in 2.2.”

• If the search rule is not specified execution is nondeterministic,
since choosing a different clause (in step 2.2) can lead to different solutions
(finding solutions in a different order).

Example (two valid executions):

?- pet(X). ?- pet(X).

X = spot ? ; X = barry ? ;

X = barry ? ; X = spot ? ;

no no

?- ?-

18

Running programs

C1: pet(X) <- animal(X), barks(X).

C2: pet(X) <- animal(X), meows(X).

C3: animal(spot) <-.

C4: animal(barry) <-.

C5: animal(hobbes) <-.

C6: barks(spot) <-.

C7: meows(barry) <-.

C8: roars(hobbes) <-.

• <- pet(P).

Q R Clause θ

pet(P) pet(P) C2* {P = X1}

pet(X1) animal(X1), meows(X1) C4* {X1 = barry}

pet(barry) meows(barry) C7 {}

pet(barry) — — —

* means that there are
other clauses whose
head unifies.

• A different branch (i.e., a different choice in C2* or C4*) can be explored to try to
find another solution.

19

Running programs (different strategy)

C1: pet(X) <- animal(X), barks(X).

C2: pet(X) <- animal(X), meows(X).

C3: animal(spot) <-.

C4: animal(barry) <-.

C5: animal(hobbes) <-.

C6: barks(spot) <-.

C7: meows(barry) <-.

C8: roars(hobbes) <-.

• <- pet(P). (different strategy)

Q R Clause θ

pet(P) pet(P) C1* {P = X1}

pet(X1) animal(X1), barks(X1) C5* {X1 = hobbes}
pet(hobbes) barks(hobbes) ??? failure

• → explore another branch (different choice in C1* or C5*) to find a solution.
Q R Clause θ

pet(P) pet(P) C1* {P = X1}

pet(X1) animal(X1), barks(X1) C3* {X1 = spot}

pet(spot) barks(spot) C6 {}
pet(spot) — — —

20

The Search Tree

• A query + a logic program together specify a search tree.

Example: query← pet(X) with the previous program generates this search tree
(the boxes represent the “and” parts [except leaves]):

animal(spot) animal(barry) animal(hobbes)

pet(X)

animal(X), barks(X)

animal(hobbes)animal(barry)animal(spot)

animal(X),meows(X)

meows(barry)barks(spot)

• The details of the operational semantics explain how the search tree will be
explored during execution.

• Different query→ different tree.

21

Role of Unification in Execution

• Unification is used to pass parameters in procedure calls.

• Unification is used to return values upon procedure exit.

Q R Clause θ

pet(P) pet(P) C1* { P=X1 }

pet(X1) animal(X1), barks(X1) C3* { X1=spot }

pet(spot) barks(spot) C6 {}

pet(spot) — — —

• Argument positions are not fixed a priory to be input or output.

Example: Consider query <- pet(spot).

• Thus, procedures can be used in different “modes”
(different sets of arguments are input or output in each mode).

• Unification is also used to access data.

Example: Consider query <- animal(A), named(A,Name). with:

animal(dog(barry)) <- . named(dog(Name),Name) <- .

22

An Example of a Pure and Complete Logic Programming System

• The Ciao Prolog system includes a pure, complete logic programming subsystem.

� A number of complete search rules are available
(breadth-first, iterative deepening, ...).

� A module can be set to pure mode so that no impure built-ins are accessible to
the code in that module.

In this case we have a quite good approximation of “Greene’s dream.”

• The following examples will use Ciao’s breadth-first execution mode.

• To achieve this:

� The following must be added at the beginning of a file:

:- use_package([bf]).

� The neck (arrow) of rules must be <- .

� Facts must end with <-. .

23

Database Programming

• A Logic Database is a set of facts and rules (i.e. a logic program):
father_of(john,peter) <-.

father_of(john,mary) <-.

father_of(peter,michael) <-.

mother_of(mary, david) <-.

grandfather_of(L,M) <- father_of(L,N),

father_of(N,M).

grandfather_of(X,Y) <- father_of(X,Z),

mother_of(Z,Y).

• Given such database, a logic programming system can answer questions
(queries) such as:
<- father of(john, peter).

Answer: Yes

<- father of(john, david).

Answer: No

<- father of(john, X).

Answer: {X = peter}
Answer: {X = mary}

<- grandfather of(X, michael).

Answer: {X = john}
<- grandfather of(X, Y).

Answer: {X = john, Y = michael}
Answer: {X = john, Y = david}
<- grandfather of(X, X).

Answer: N o

• Rules for grandmother of(X, Y)?

24

Database Programming (Contd.)

• Another example:

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1) <-.

resistor(power,n2) <-.

transistor(n2,ground,n1) <-.

transistor(n3,n4,n2) <-.

transistor(n5,ground,n4) <-.

inverter(Input,Output) <-

transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) <-

transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).

and_gate(Input1,Input2,Output) <-

nand_gate(Input1,Input2,X), inverter(X, Output).

• Query and gate(In1,In2,Out) has solution: {In1=n3, In2=n5, Out=n1}

25

Structured Data and Data Abstraction (and the ’=’ Predicate)

• Data structures are created using (complex) terms.

• Structuring data is important:
course(complog,wed,19,00,21,00,’M.’,’Hermenegildo’,new,5102) <-.

• When is the Computational Logic course?
<- course(complog,Day,StartH,StartM,FinishH,FinishM,C,D,E,F).

• Structured version:
course(complog,Time,Lecturer, Location) <-

Time = t(wed,19:00,21:00),

Lecturer = lect(’M.’,’Hermenegildo’),

Location = loc(new,5102).

Note: “X=Y” is equivalent to “’=’(X,Y)”
where the predicate =/2 is defined as the fact “’=’(X,X) <-.” – Plain unification!

• Equivalent to:

course(complog, t(wed,19:0,21:00),

lect(’M.’,’Hermenegildo’), loc(new,5102)) <-.

26

Structured Data and Data Abstraction (and The Anonymous Variable)

• Given:
course(complog,Time,Lecturer, Location) <-

Time = t(wed,19:00,21:00),

Lecturer = lect(’M.’,’Hermenegildo’),

Location = loc(new,5102).

• When is the Computational Logic course?
<- course(complog,Time, A, B).

has solution:
{Time=t(wed,19:0,21:0), A=lect(’M.’,’Hermenegildo’), B=loc(new,5102)}

• Using the anonymous variable (“ ”):
<- course(complog,Time, ,).

has solution:
{Time=t(wed,19:0,21:0)}

27

Structured Data and Data Abstraction (Contd.)

• The circuit example revisited:
resistor(r1,power,n1) <-. transistor(t1,n2,ground,n1) <-.

resistor(r2,power,n2) <-. transistor(t2,n3,n4,n2) <-.

transistor(t3,n5,ground,n4) <-.

inverter(inv(T,R),Input,Output) <-

transistor(T,Input,ground,Output), resistor(R,power,Output).

nand_gate(nand(T1,T2,R),Input1,Input2,Output) <-

transistor(T1,Input1,X,Output), transistor(T2,Input2,ground,X),

resistor(R,power,Output).

and_gate(and(N,I),Input1,Input2,Output) <-

nand_gate(N,Input1,Input2,X), inverter(I,X,Output).

• The query <- and gate(G,In1,In2,Out).

has solution: {G=and(nand(t2,t3,r2),inv(t1,r1)),In1=n3,In2=n5,Out=n1}

28

Logic Programs and the Relational DB Model

Traditional→ Codd’s Relational Model
File Relation Table
Record Tuple Row
Field Attribute Column

• Example:

Name Age Sex

Brown 20 M
Jones 21 F
Smith 36 M

Person

Name Town Years

Brown London 15
Brown York 5
Jones Paris 21
Smith Brussels 15
Smith Santander 5

Lived–in
• The order of the rows is immaterial.

• (Duplicate rows are not allowed)

29

Logic Programs and the Relational DB Model (Contd.)

Relational Database → Logic Programming
Relation Name → Predicate symbol
Relation → Procedure consisting of ground facts

(facts without variables)
Tuple → Ground fact
Attribute → Argument of predicate

• Example:
person(brown,20,male) <-.

person(jones,21,female) <-.

person(smith,36,male) <-.

• Example:
lived in(brown,london,15) <-.

lived in(brown,york,5) <-.

lived in(jones,paris,21) <-.

lived in(smith,brussels,15) <-.

lived in(smith,santander,5) <-.

Name Age Sex

Brown 20 M
Jones 21 F
Smith 36 M

Name Town Years

Brown London 15
Brown York 5
Jones Paris 21
Smith Brussels 15
Smith Santander 5

30

Logic Programs and the Relational DB Model (Contd.)

• The operations of the relational model are easily implemented as rules.

� Union:
r union s(X1,. . .,Xn) ← r(X1,. . .,Xn).

r union s(X1,. . .,Xn) ← s(X1,. . .,Xn).

� Set Difference:
r diff s(X1,. . .,Xn) ← r(X1,. . .,Xn), not s(X1,. . .,Xn).

r diff s(X1,. . .,Xn) ← s(X1,. . .,Xn), not r(X1,. . .,Xn).

(we postpone the discussion on negation until later.)

� Cartesian Product:
r X s(X1,. . .,Xm,Xm+1,. . .,Xm+n) ← r(X1,. . .,Xm),s(Xm+1,. . .,Xm+n).

� Projection:
r13(X1,X3) ← r(X1,X2,X3).

� Selection:
r selected(X1,X2,X3) ← r(X1,X2,X3),≤(X2,X3).

(see later for definition of ≤/2)

31

Logic Programs and the Relational DB Model (Contd.)

• Derived operations – some can be expressed more directly in LP:

� Intersection:

r meet s(X1,. . .,Xn) ← r(X1,. . .,Xn), s(X1,. . .,Xn).

� Join:

r joinX2 s(X1,. . .,Xn) ← r(X1,X2,X3,. . .,Xn), s(X ′1,X2,X
′
3,. . .,X

′
n).

• Duplicates an issue: see “setof” later in Prolog.

32

Deductive Databases

• The subject of “deductive databases” uses these ideas to develop logic-based
databases.

� Often syntactic restrictions (a subset of definite programs) used
(e.g. “Datalog” – no functors, no existential variables).

� Variations of a “bottom-up” execution strategy used: Use the Tp operator
(explained in the theory part) to compute the model, restrict to the query.

33

Recursive Programming

• Example: ancestors.
parent(X,Y) <- father(X,Y).

parent(X,Y) <- mother(X,Y).

ancestor(X,Y) <- parent(X,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).

...

• Defining ancestor recursively:
parent(X,Y) <- father(X,Y).

parent(X,Y) <- mother(X,Y).

ancestor(X,Y) <- parent(X,Y).

ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

• Exercise: define “related”, “cousin”, “same generation”, etc.

34

Types

• Type: a (possibly infinite) set of terms.

• Type definition: A program defining a type.

• Example: Weekday:

� Set of terms to represent: Monday, Tuesday, Wednesday, . . .

� Type definition:
is weekday(’Monday’) <-.

is weekday(’Tuesday’) <-. . . .

• Example: Date (weekday * day in the month):

� Set of terms to represent: date(’Monday’,23), date(Tuesday,24), . . .

� Type definition:
is date(date(W,D)) <- is weekday(W), is day of month(D).

is day of month(1) <-.

is day of month(2) <-.

. . .

is day of month(31) <-.

35

Recursive Programming: Recursive Types

• Recursive types: defined by recursive logic programs.

• Example: natural numbers (simplest recursive data type):

� Set of terms to represent: 0, s(0), s(s(0)), . . .

� Type definition:
nat(0) <-.

nat(s(X)) <- nat(X).

A minimal recursive predicate:
one unit clause and one recursive clause (with a single body literal).

• We can reason about complexity, for a given class of queries (“mode”).
E.g., for mode nat(ground) complexity is linear in size of number.

• Example: integers:

� Set of terms to represent: 0, s(0), -s(0),. . .
� Type definition:
integer(X) <- nat(X).

integer(-X) <- nat(X).

36

Recursive Programming: Arithmetic

• Defining the natural order (≤) of natural numbers:

≤(0,X) <- nat(X).

≤(s(X),s(Y)) <- ≤(X,Y).

• Multiple uses: ≤(s(0),s(s(0))), ≤(X,0),. . .

• Multiple solutions: ≤(X,s(0)), ≤(s(s(0)),Y), etc.

• Addition:

plus(0,X,X) <- nat(X).

plus(s(X),Y,s(Z)) <- plus(X,Y,Z).

• Multiple uses: plus(s(s(0)),s(0),Z), plus(s(s(0)),Y,s(0))

• Multiple solutions: plus(X,Y,s(s(s(0)))), etc.

37

Recursive Programming: Arithmetic

• Another possible definition of addition:

plus(X,0,X) <- nat(X).

plus(X,s(Y),s(Z)) <- plus(X,Y,Z).

• The meaning of plus is the same if both definitions are combined.

• Not recommended: several proof trees for the same query→ not efficient, not
concise. We look for minimal axiomatizations.

• The art of logic programming: finding compact and computationally efficient
formulations!

• Try to define: times(X,Y,Z) (Z = X*Y), exp(N,X,Y) (Y = XN),
factorial(N,F) (F = N!), minimum(N1,N2,Min), . . .

38

Recursive Programming: Arithmetic

• Definition of mod(X,Y,Z)
“Z is the remainder from dividing X by Y”

(∃ Q s.t. X = Y*Q + Z and Z < Y):

mod(X,Y,Z) <- Z < Y, times(Y,Q,W), plus(W,Z,X).

• Another possible definition:

mod(X,Y,X) <- X < Y.

mod(X,Y,Z) <- plus(X1,Y,X), mod(X1,Y,Z).

• The second is much more efficient than the first one
(compare the size of the proof trees)

39

Recursive Programming: Arithmetic/Functions

• The Ackermann function:
ackermann(0,N) = N+1

ackermann(M,0) = ackermann(M-1,1)

ackermann(M,N) = ackermann(M-1,ackermann(M,N-1))

• In Peano arithmetic:
ackermann(0,N) = s(N)

ackermann(s(M),0) = ackermann(M,s(0))

ackermann(s(M),s(N)) = ackermann(M,ackermann(s(M),N))

• Can be defined as:
ackermann(0,N,s(N)) <-.

ackermann(s(M),0,Val) <- ackermann(M,s(0),Val).

ackermann(s(M),s(N),Val) <- ackermann(s(M),N,Val1),

ackermann(M,Val1,Val).

• In general, functions can be coded as a predicate with one more argument, which
represents the output (and additional syntactic sugar often available).

• Syntactic support available (see, e.g., the Ciao functions package).

40

Recursive Programming: Lists

• Binary structure: first argument is element, second argument is rest of the list.

• We need:

� a constant symbol: the empty list denoted by the constant []
� a functor of arity 2: traditionally the dot “.” (which is overloaded).

• Syntactic sugar: the term .(X,Y) is denoted by [X|Y] (X is the head, Y is the tail).
Formal object Cons pair syntax Element syntax
.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

.(a,.(b,.(c,[]))) [a|[b|[c|[]]]] [a,b,c]

.(a,X) [a|X] [a|X]

.(a,.(b,X)) [a|[b|X]] [a,b|X]

• Note that:
[a,b] and [a|X] unify with {X = [b]} [a] and [a|X] unify with {X = []}
[a] and [a,b|X] do not unify [] and [X] do not unify

41

Recursive Programming: Lists

• Type definition (no syntactic sugar):
list([]) <-.

list(.(X,Y)) <- list(Y).

• Type definition (with syntactic sugar):
list([]) <-.

list([X|Y]) <- list(Y).

42

Recursive Programming: Lists (Contd.)

• X is a member of the list Y:

member(a,[a]) <-. member(b,[b]) <-. etc. ⇒ member(X,[X]) <-.

member(a,[a,c]) <-. member(b,[b,d]) <-. etc. ⇒ member(X,[X,Y]) <-.

member(a,[a,c,d]) <-. member(b,[b,d,l]) <-.etc. ⇒ member(X,[X,Y,Z]) <-.

⇒ member(X,[X|Y]) <- list(Y).

member(a,[c,a]), member(b,[d,b]). etc. ⇒ member(X,[Y,X]).

member(a,[c,d,a]). member(b,[s,t,b]). etc. ⇒ member(X,[Y,Z,X]).

⇒ member(X,[Y|Z]) <- member(X,Z).

• Resulting definition:
member(X,[X|Y]) <- list(Y).

member(X,[|T]) <- member(X,T).

43

Recursive Programming: Lists (Contd.)

• Resulting definition:
member(X,[X|Y]) <- list(Y).

member(X,[|T]) <- member(X,T).

• Uses of member(X,Y):

� checking whether an element is in a list (member(b,[a,b,c]))

� finding an element in a list (member(X,[a,b,c]))

� finding a list containing an element (member(a,Y))

• Define: prefix(X,Y) (the list X is a prefix of the list Y), e.g.
prefix([a, b], [a, b, c, d])

• Define: suffix(X,Y), sublist(X,Y), . . .

• Define length(Xs,N) (N is the length of the list Xs)

44

Recursive Programming: Lists (Contd.)

• Concatenation of lists:

� Base case:
append([],[a],[a]) <-. append([],[a,b],[a,b]) <-. etc.

⇒ append([],Ys,Ys) <- list(Ys).

� Rest of cases (first step):
append([a],[b],[a,b]) <-.

append([a],[b,c],[a,b,c]) <-. etc.

⇒ append([X],Ys,[X|Ys]) <- list(Ys).

append([a,b],[c],[a,b,c]) <-.

append([a,b],[c,d],[a,b,c,d]) <-. etc.

⇒ append([X,Z],Ys,[X,Z|Ys])<- list(Ys).

This is still infinite→ we need to generalize more.

45

Recursive Programming: Lists (Contd.)

• We note that:
append([a,b],Ys,[a|[b|Ys]]) ≡ append([a,b],Ys,[a|Zs])

with Zs = [b|Ys]

append([a,b,c],Ys,[a|[b|Ys]]) ≡ append([a,b,c],Ys,[a|Zs])

with Zs = [b|Ws], Ws = [c|Ys].

⇒ append([X|Xs],Ys,[X|Zs]) <- append(Xs,Ys,Zs).

• So, we have:

append([],Ys,Ys) <- list(Ys).

append([X|Xs],Ys,[X|Zs]) <- append(Xs,Ys,Zs).

• Uses of append:

� concatenate two given lists: <- append([a,b],[c],Z)

� find differences between lists: <- append(X,[c],[a,b,c])

� split a list: <- append(X,Y,[a,b,c])

46

Recursive Programming: Lists (Contd.)

• reverse(Xs,Ys): Ys is the list obtained by reversing the elements in the list Xs

It is clear that we will need to traverse the list Xs

For each element X of Xs, we must put X at the end of the rest of the Xs list
already reversed:

reverse([X|Xs],Ys) <-

reverse(Xs,Zs),

append(Zs,[X],Ys).

How can we stop?

reverse([],[]) <-.

• As defined, reverse(Xs,Ys) is very inefficient. Another possible definition:

reverse(Xs,Ys) <- reverse(Xs,[],Ys).

reverse([],Ys,Ys) <-.

reverse([X|Xs],Acc,Ys) <- reverse(Xs,[X|Acc],Ys).

• Find the differences in terms of efficiency between the two definitions.

47

Recursive Programming: Binary Trees

• Represented by a ternary functor tree(Element,Left,Right).

• Empty tree represented by void.

• Definition:

binary_tree(void) <-.

binary_tree(tree(Element,Left,Right)) <-

binary_tree(Left),

binary_tree(Right).

• Defining tree member(Element,Tree):

tree_member(X,tree(X,Left,Right)) <-.

tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Left).

tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Right).

48

Recursive Programming: Binary Trees

• Defining pre order(Tree,Order):

pre_order(void,[]) <-.

pre_order(tree(X,Left,Right),Order) <-

pre_order(Left,OrderLeft),

pre_order(Right,OrderRight),

append([X|OrderLeft],OrderRight,Order).

• Define in order(Tree,Order), post order(Tree,Order).

49

Creating a Binary Tree in Pascal and Prolog

• In Prolog:
T = tree(3, tree(2,void,void), tree(5,void,void))

3

2 5

voidvoidvoidvoid• In Pascal:

type tree = ^treerec;

treerec = record

data : integer;

left : tree;

right: tree;

end;

var t : tree;

...

new(t);

new(t^left);

new(t^right);

t^left^left := nil;

t^left^right := nil;

t^right^left := nil;

t^right^right := nil;

t^data := 3;

t^left^data := 2;

t^right^data := 5;

...

50

Polymorphism

• Note that the two definitions of member/2 can be used simultaneously:

lt_member(X,[X|Y]) <- list(Y).

lt_member(X,[_|T]) <- lt_member(X,T).

lt_member(X,tree(X,L,R)) <- binary_tree(L), binary_tree(R).

lt_member(X,tree(Y,L,R)) <- lt_member(X,L).

lt_member(X,tree(Y,L,R)) <- lt_member(X,R).

Lists only unify with the first two clauses, trees with clauses 3–5!

• <- lt member(X,[b,a,c]).

X = b ; X = a ; X = c

• <- lt member(X,tree(b,tree(a,void,void),tree(c,void,void))).

X = b ; X = a ; X = c

51

Recursive Programming: Manipulating Symbolic Expressions

• Recognizing polynomials in some term X:

� X is a polynomial in X

� a constant is a polynomial in X

� sums, differences and products of polynomials in X are polynomials

� also polynomials raised to the power of a natural number and the quotient of a
polynomial by a constant

polynomial(X,X) <-.

polynomial(Term,X) <- pconstant(Term).

polynomial(Term1+Term2,X) <- polynomial(Term1,X), polynomial(Term2,X).

polynomial(Term1-Term2,X) <- polynomial(Term1,X), polynomial(Term2,X).

polynomial(Term1*Term2,X) <- polynomial(Term1,X), polynomial(Term2,X).

polynomial(Term1/Term2,X) <- polynomial(Term1,X), pconstant(Term2).

polynomial(Term1^N,X) <- polynomial(Term1,X), nat(N).

52

Recursive Programming: Manipulating Symb. Expressions (Contd.)

• Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

deriv(X,X,s(0)) <-.

deriv(C,X,0) <- pconstant(C).

deriv(U+V,X,DU+DV) <- deriv(U,X,DU), deriv(V,X,DV).

deriv(U-V,X,DU-DV) <- deriv(U,X,DU), deriv(V,X,DV).

deriv(U*V,X,DU*V+U*DV) <- deriv(U,X,DU), deriv(V,X,DV).

deriv(U/V,X,(DU*V-U*DV)/V^s(s(0))) <- deriv(U,X,DU), deriv(V,X,DV).

deriv(U^s(N),X,s(N)*U^N*DU) <- deriv(U,X,DU), nat(N).

deriv(log(U),X,DU/U) <- deriv(U,X,DU).

...

• <- deriv(s(s(s(0)))*x+s(s(0)),x,Y).

• A simplification step can be added.

53

Recursive Programming: Automata (Graphs)

• Recognizing the sequence of characters accepted by the following
non-deterministic, finite automaton (NDFA):

q0

a

q1 b

b

where q0 is both the initial
and the final state.

• Strings are represented as lists of constants (e.g., [a,b,b]).

• Program:
initial(q0) <-. delta(q0,a,q1) <-.

delta(q1,b,q0) <-.

final(q0) <-. delta(q1,b,q1) <-.

accept(S) <- initial(Q), accept_from(S,Q).

accept_from([],Q) <- final(Q).

accept_from([X|Xs],Q) <- delta(Q,X,NewQ), accept_from(Xs,NewQ).

54

Recursive Programming: Automata (Graphs) (Contd.)

• A nondeterministic, stack, finite automaton (NDSFA):

accept(S) <- initial(Q), accept_from(S,Q,[]).

accept_from([],Q,[]) <- final(Q).

accept_from([X|Xs],Q,S) <- delta(Q,X,S,NewQ,NewS),

accept_from(Xs,NewQ,NewS).

initial(q0) <-.

final(q1) <-.

delta(q0,X,Xs,q0,[X|Xs]) <-.

delta(q0,X,Xs,q1,[X|Xs]) <-.

delta(q0,X,Xs,q1,Xs) <-.

delta(q1,X,[X|Xs],q1,Xs) <-.

• What sequence does it recognize?

55

Recursive Programming: Towers of Hanoi

• Objective:

� Move tower of N disks from peg a to peg b, with the help of peg c.

• Rules:

� Only one disk can be moved at a time.

� A larger disk can never be placed on top of a smaller disk.

cba

N = 2

N = 1

N = 3

56

Recursive Programming: Towers of Hanoi (Contd.)

• We will call the main predicate hanoi moves(N,Moves)

• N is the number of disks and Moves the corresponding list of “moves”.

• Each move move(A, B) represents that the top disk in A should be moved to B.

• Example:

is represented by:

hanoi_moves(s(s(s(0))),

[move(a,b), move(a,c), move(b,c), move(a,b),

move(c,a), move(c,b), move(a,b)])

57

Recursive Programming: Towers of Hanoi (Contd.)

• A general rule:

n−1 n−1
n−1 n−1

• We capture this in a predicate hanoi(N,A,B,C,Moves) where
“Moves contains the moves needed to move a tower of N disks from peg A to peg
B, with the help of peg C.”

hanoi(s(0),A,B,C,[move(A, B)]) <-.

hanoi(s(N),A,B,C,Moves) <-

hanoi(N,A,C,B,Moves1),

hanoi(N,C,B,A,Moves2),

append(Moves1,[move(A, B)|Moves2],Moves).

• And we simply call this predicate:

hanoi_moves(N,Moves) <-

hanoi(N,a,b,c,Moves).

58

Learning to Compose Recursive Programs

• To some extent it is a simple question of practice.

• By induction (as in the previous examples): elegant, but generally difficult – not
the way most people do it.

• State first the base case(s), and then think about the general recursive case(s).

• Sometimes it may help to compose programs with a given use in mind (e.g.,
“forwards execution”), making sure it is declaratively correct. Consider also if
alternative uses make declarative sense.

• Sometimes it helps to look at well-written examples and use the same “schemas”.

• Global top-down design approach:

� state the general problem

� break it down into subproblems

� solve the pieces

• Again, best approach: practice.

59

