Computational Logic

A "Hands-on" Introduction to Logic Programming

Syntax: Variables, Constants, Structures

(using Prolog notation conventions)

- Variables: start with uppercase character (or "_"), may include "_" and digits: *Examples:* X, Im4u, A_little_garden, _, _x, _22
- Constants: lowercase first character, may include "_" and digits. Also, numbers and some special characters. Quoted, any character:

Examples: a, dog, a_big_cat, 23, 'Hungry man', []

• Structures: a functor (like a constant name) followed by a fixed number of arguments between parentheses:

Example: date(monday, Month, 1994)

Arguments can in turn be variables, constants and structures.

- Arity: is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.
- Variables, constants, and structures as a whole are called *terms* (they are the terms of a "first-order language"): the *data structures* of a logic program.

	(using Prolog notatio	n conventio	ons)
Examples of	terms:		
	Term	Туре	Main functor:
	dad	constant	dad/0
	time(min, sec)	structure	time/2
	pair(Calvin, tiger(Hobbes))	structure	pair/2
	Tee(Alf, rob)	illegal	
	A_good_time	variable	
$\frac{Functors car}{a + b}$	be defined as <i>prefix</i> , <i>postfix</i> ,	or infix op	erators (just syntax!):
a + 1 _ b		(a,b) '(b)	if -/1 declared prefix
a < h		(b) (a,b)	if 2 declared infix</td
	r mary is the term father(

Syntax: Atoms, Literals Atoms: an expression of the form: p is the atom's predicate symbol (same convention as with functors), n is its arity, and t₁, t₂, ..., t_n are terms. The predicate symbol of an atom is also represented as p/n. Atoms and terms are syntactically identical! They are distinguished by context: if dog(name(barry), color(black)) is an atom then name(barry) and color(black) are terms if color(dog(barry,black)) is an atom then dog(barry,black) is a term I.e., atoms cannot appear inside terms; terms are the arguments of atoms. Literals: A literal is a positive (non negated) or negative (negated) atom.

Syntax: Rules

• Rules: A rule is an expression of the form:

 $p_0(t_1, t_2, \dots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \dots, t_{n_1}^1), \dots \\ \dots \\ p_m(t_1^m, t_2^m, \dots, t_{n_m}^m).$

- \diamond The expression to the left of the arrow has to be an *atom* (no negation) and is called the head of the rule.
- \diamond Those to the right of the arrow are *literals* and form the ${\bf body}$ of the rule.
- \diamond Literals in the body of a rule are also called procedure calls.

Example:

```
meal(First, Second, Third) <-
    appetizer(First),
    main_dish(Second),
    dessert(Third).</pre>
```

Syntax: Facts, Clauses, Predicates

 Facts: A fact is an expression of the form: (i.e., a fact is a rule with an empty body).
 <u>Examples</u>: dog(name(barry), color(black)) <-.

```
p(t_1, t_2, \ldots, t_n) <-.
```

• Rules and facts are both called clauses.

friends('Ann', 'John') <-.</pre>

• Predicates: all clauses whose heads have the same name and arity form a predicate (or *procedure*) definition.

Example:

```
pet(spot) <-.
pet(X) <- animal(X), barks(X).
pet(X) <- animal(X), meows(X).</pre>
```

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules.

	ative Meaning of Facts and Rules
	larative meaning is the corresponding one in first order logic, according to conventions:
• Rule	es:
p	commas in rule bodies represent conjunction, i.e., $\leftarrow p_1, \cdots, p_m$. represents $p \leftarrow p_1 \land \cdots \land p_m$. —" represents as usual logical implication.
Exan	s, a rule $p \leftarrow p_1, \dots, p_m$. means "if p_1 and \dots and p_m are true, then p is true" <i>mple</i> : the rule $pet(X) <- animal(X)$, $barks(X)$. be read as "X is a pet if it is an animal and it barks".
(Note Exan	es: state things that are true. e that a fact p can be seen as the rule " p <- true. ") <i>mple</i> : the fact <u>animal(spot) <</u> be read as "spot is an animal".

Declarative Meaning of Predicates

• Predicates: clauses in the same predicate

```
\mathbf{p} \leftarrow \mathbf{p}_1, \ldots, \mathbf{p}_n
\mathbf{p} \leftarrow \mathbf{q}_1, \ldots, \mathbf{q}_m
\ldots
```

provide different alternatives (for p).

Example: the rules

```
pet(X) <- animal(X), barks(X).
pet(X) <- animal(X), meows(X).</pre>
```

express two ways for X to be a pet.

• Note (variable *scope*): the X variables in the two clauses above are different, even if they have the same name. Variables are *local to clauses* (and are *renamed* any time a clause is used).

Programs, Queries, and Execution

• Logic Program: a set of predicates.

```
Example:
```

```
animal(spot) <-. ba:
animal(barry) <-. med
animal(hobbes) <-. roa
```

```
pet(X) <- animal(X), meows(X).
barks(spot) <-.
meows(barry) <-.
roars(hobbes) <-.</pre>
```

pet(X) <- animal(X), barks(X).</pre>

- Query: an expression of the form: (i.e., a clause without a head). A query represents a *question to the program*. *Example*: <- pet(X).
- Execution: given a program and a query, *executing* the logic programming is *attempting to find an answer to the query*.

<u>Example</u>: above, the system will try to find a "substitution" for X which makes pet(X) true. Intuitively, we have two possible answers: spot and barry.

The *declarative semantics* does not specify *how* this is done – this is the role of the operational semantics.

Operational Meaning

- A logic program also has an operational meaning [Kowalski]:
 - \diamond A clause $p \leftarrow p_1, \ldots, p_m$. expresses:
 - "to obtain (prove) p you have to obtain (prove) p_1 and ...and p_m first" In principle, the order in which body literals p_1 , ..., p_n are solved does not matter, but, for a given system this may be fixed.

A set of clauses:

```
\begin{array}{l} \mathsf{p}\ \leftarrow\ \mathsf{p}_1,\ \ldots,\ \mathsf{p}_n\\ \mathsf{p}\ \leftarrow\ \mathsf{q}_1,\ \ldots,\ \mathsf{q}_m\\ \ldots\\ \text{expresses "to prove }\mathsf{p}, \mathsf{prove }\mathsf{p}_1\ \wedge\ \ldots\wedge\ \mathsf{p}_n, \, \text{or prove }\mathsf{q}_1\ \wedge\ \ldots\wedge\ \mathsf{q}_n, \, \text{or}\ \ldots"\\ \end{array}
```

The presence of several applicable clauses for a given body literal means that several possible paths exist to a solution and they should be explored.

Again, in principle, the order in which these paths are explored does not matter (if certain conditions are met), but, for a given system, this may also be fixed.

Unifi cation

- Unifying two terms is finding (the minimal) values for the variables in those terms which make them syntactically equal.
- Only variables can be given values!
- Two terms can be made identical only by making identical their arguments. *Example*:

Unify A	With B	Using θ
dog	dog	Ø
Х	Y	$\{\mathtt{X}=\mathtt{X}\}$
Х	a	$\{\mathtt{X}=\mathtt{a}\}$
f(X, g(t))	f(m(h), g(M))	$\{ X=m(h), M=t \}$
f(X, g(t))	f(m(h), t(M))	Impossible (1)
f(X, X)	f(Y, l(Y))	Impossible (2)

- (1) Terms with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the occurs check.
- All applies to unification of atoms as well!

Substitutions

- If the equation A = B has a solution then A and B are unifiable.
- Solutions of a set of term equations are called substitutions.
- In a solution all values for the variables are completely explicit!
- Substitution: a set of equations assigning values to variables, with:
 - ◇ Only variables on the left hand side of each equation.
 - ◇ Only one equation for each left hand side variable.
 - Variables on the left hand side cannot appear on the right of any equation.

Example:

Set of Equations	Substitution
$\{ X=f(Y), Y=f(Z) \}$	NO
$\{ X=f(f(Z)), Y=f(Z) \}$	YES
$\{ X=f(f(Z)), Z=Y \}$	NO
$\{ X=f(f(Z)), Y=Z \}$	YES
$\{ X=1(Y), Y=1(Y) \}$	NO (2)
$\{ X=1(Y), X=Y \}$	NO!

Unifi ers

- A substitution θ which is a solution of A = B is called a unifier of A and B.
- Most general unifier: one which assigns to the variables the values strictly required to unify.
- Given two terms, if they are unifiable, then there exists a *unique* (up to variable renaming) most general unifier (m.g.u.) for them.

Example:

Terms	Unifiers	MGU (unique!)
f(X, g(T))	$\{ X=m(a), H=a, M=b, T=b \}$	$\{ X=m(H), M=T \}$
f(m(H), g(M))	$\{ X=m(H), M=f(A), T=f(A) \}$	$\{ X=m(A), H=A, M=B, T=B \}$

- Unifying two terms: find the minimal substitution which makes them identical.
- Unification should find the (unique) m.g.u., if it exists, or fail otherwise.

Unifi cation Algorithm

- Let A and B be two terms:
 - 1 $\theta = \emptyset, E = \{A = B\}$
 - 2 while not $E = \emptyset$:
 - **2.1** delete an equation T = S from E
 - 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 - * (occur check) if T occurs in the term $S \rightarrow$ halt with failure
 - * substitute variable T by term S in all terms in θ
 - * substitute variable T by term S in all terms in E
 - * add T = S to θ
 - **2.3** case T and S are non-variable terms:
 - * if their names or arities are different \rightarrow halt with failure
 - * obtain the arguments $\{T_1, \ldots, T_n\}$ of T and $\{S_1, \ldots, S_n\}$ of S

* add $\{T_1 = S_1, \dots, T_n = S_n\}$ to E

3 halt with θ being the m.g.u of A and B

Unifi cation Algorithm Examples (I)

θ	E	T	S
{}	$\{p(X,X)=p(f(Z),f(W))\}$	p(X,X)	p(f(Z),f(W))
{}	$\{ X=f(Z), X=f(W) \}$	Х	f(Z)
$\{ X=f(Z) \}$	$\{ f(Z)=f(W) \}$	f(Z)	f(W)
$\{X=f(Z)\}$	{ Z=W }	Z	W
X=f(W), Z=W	{}		
nify: $A = p(X, f)$	Y)) and $B = p(Z,X)$		
nify: $A = p(X, f($	Y)) and $B = p(Z, X)$	<i>T</i>	<u>S</u>
	•	_	,
	$\frac{E}{\{p(X,f(Y))=p(Z,X)\}}$	_	,
θ {} {}	E { p(X,f(Y))=p(Z,X) } { X=Z, f(Y)=X }	p(X,f(Y)) p(Z,X)
θ {} {}	E { p(X,f(Y))=p(Z,X) } { X=Z, f(Y)=X } { f(Y)=Z }	p(X,f(Y) X) p(Z,X) Z

Unifi cation Algorithm Examples (II) • Unify: A = p(X, f(Y)) and B = p(a, g(b)) θ ETS{} $\{p(X,f(Y))=p(a,g(b))\} p(X,f(Y)) p(a,g(b))$ {} $\{X=a, f(Y)=g(b)\}$ Х а $\{ X=a \}$ $\{ f(Y) = g(b) \}$ f(Y) g(b) fail • Unify: A = p(X, f(X)) and B = p(Z, Z) θ ETS $\{p(X,f(X))=p(Z,Z)\} p(X,f(X)) p(Z,Z)$ {} $\{ X = Z, f(X) = Z \}$ {} Х Ζ $\{ f(Z)=Z \}$ $\{X=Z\}$ f(Z) Ζ fail

A (Schematic) Interpreter for Logic Programs (SLD-resolution)

Input: A logic program *P*, a query *Q*

Output: $Q\mu$ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

- **1.** Initialize the "resolvent" R to be $\{Q\}$
- **2**. While R is nonempty do:
 - **2.1.** Take the leftmost literal A in R
 - 2.2. <u>Choose</u> a (renamed) clause $A' \leftarrow B_1, \ldots, B_n$ from *P*, such that *A* and *A'* unify with unifier θ (if no such clause can be found, branch is *failure*; explore another branch)
 - **2.3.** Remove A from R, add B_1, \ldots, B_n to R
 - **2.4.** Apply θ to R and Q
- 3. If R is empty, output Q (a solution). Explore another branch for more sol's.
- Step 2.2 defines *alternative branches* to be tried before obtaining the solution(s); execution explores this tree (for example, breadth-first).
- (Step 2.1 also allows some freedom, but not needed.)

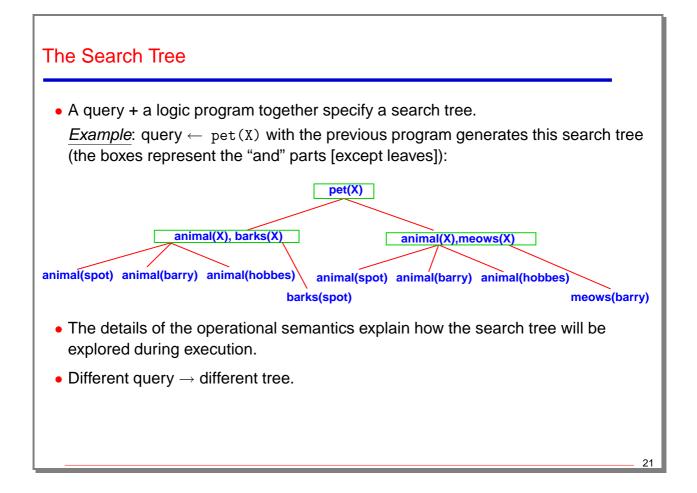
A (Schematic) Interpreter for Logic Programs (Contd.) • Dealing with the fact that steps 2.1 and 2.2 are nondeterministic. A given logic *programming* system must specify how it deals with this by providing two additional rules: Computation rule: "which literal is selected in 2.1." \diamond Search rule: "which clause/branch is selected in 2.2." • If the search rule is not specified execution is nondeterministic, since choosing a different clause (in step 2.2) can lead to different solutions (finding solutions in a different order). Example (two valid executions): ?- pet(X). ?- pet(X). X = spot ? ;X = barry ?; X = barry ?;X = spot ? ;no no ?-?-

Running programs

C4: a C5: a	animal(b	arry) < C obbes) < C	C7: mec	rks(spot) <- ows(barry) < ars(hobbes)	:
	- Q	R	Clause	θ	
	pet(P)	pet(P)	C_2^*	$\{P = X_1\}$	* means that there are
	$pet(X_1)$	$animal(X_1)$, meows(X ₁)	C_4^*	$\{X_1 = \text{barry}\}$	other clauses whose
pe	et(barry)	meows(barry)	C_7	{}	head unifies.
pe	et(barry)	—	—	—	

```
19
```

Ru	nning pro	ograms (different s	strategy	')	
$egin{array}{c} \mathbf{C}_1: \\ \mathbf{C}_2: \end{array}$	-	<- animal(X), bark <- animal(X), meow			
$\begin{vmatrix} \mathbf{C}_3 \\ \mathbf{C}_4 \\ \mathbf{C}_5 \end{vmatrix}$	animal()	parry) <	\mathbf{C}_7 : mea	ks(spot) <- ws(barry) <- rs(hobbes) <	
•	<- pet(P)	. (different strategy)			
	Q	R	Claus	$\mathbf{e} \qquad \theta$	
	pet(P)	pet(P)	C ₁ *	$\{P = X_1\}$	
	$pet(X_1)$	$animal(X_1)$, barks(X	C_{1} C_{5}^{*}	$\{X_1 = \text{hobbes}\}$	3}
	pet(hobbes) <u>barks(hobbes)</u>	???	failure	
•	• \rightarrow explore another branch (different choice in C_1^* or C_5^*) to find a solution.				
	Q	R	Clause	θ	
	pet(P)	<u>pet(P)</u>	C_1^*	$\{P = X_1\}$	
	$pet(X_1)$	$animal(X_1)$, barks(X ₁)		$\{X_1 = \text{spot}\}$	
	<pre>pet(spot)</pre>	barks(spot)	C_6	{}	
	pet(spot)		—	—	



Role of Unifi cation in Execution

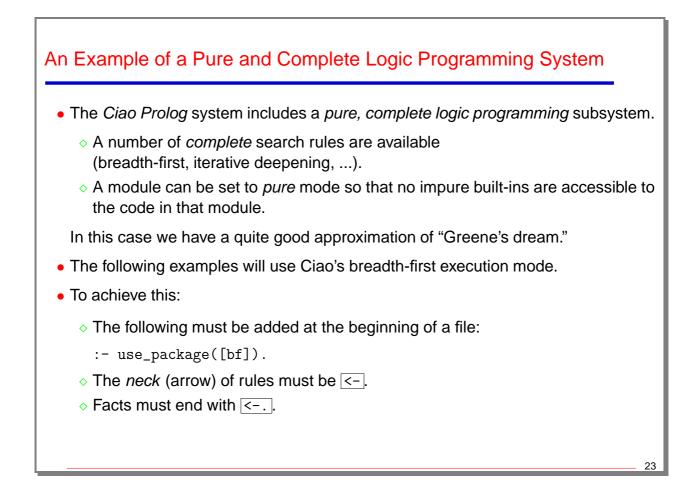
- Unification is used to pass parameters in procedure calls.
- Unification is used to return values upon procedure exit.

Q	R	Clause	θ
pet(P)	pet(P)	C_1^*	$\{ P=X_1 \}$
$pet(X_1)$	$\underline{\texttt{animal}(X_1)}, \texttt{barks}(X_1)$	C_3^*	$\{ X_1 = \texttt{spot} \}$
<pre>pet(spot)</pre>	<pre>barks(spot)</pre>	C_6	{}
<pre>pet(spot)</pre>		—	—

- Argument positions are not fixed a priory to be input or output.
 Example: Consider query <- pet(spot).
- Thus, procedures can be used in different "modes" (different sets of arguments are input or output in each mode).
- Unification is also used to access data.

```
Example: Consider query <- animal(A), named(A,Name). with:</pre>
```

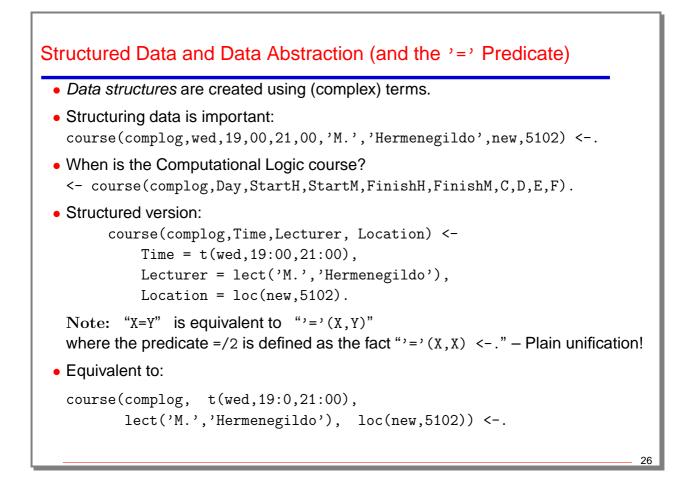
```
animal(dog(barry)) <- . named(dog(Name),Name) <- .</pre>
```



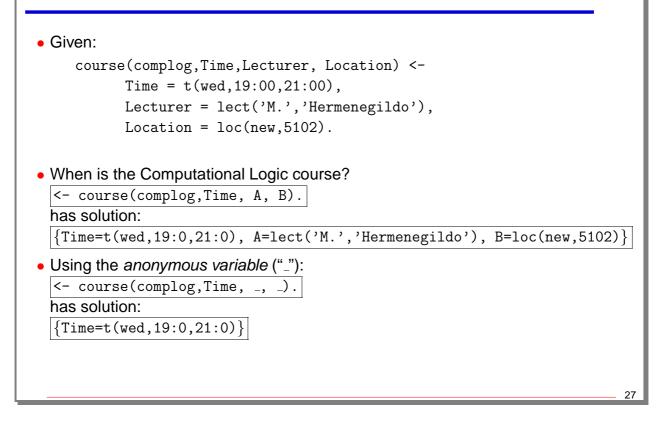
Database Programming

• A Logic Database is a set of facts and	
<pre>father_of(john,peter) < gra father_of(john,mary) <</pre>	ndfather_of(L,M) <- father_of(L,N),
	father_of(N,M).
rather_or(peter,michael) < gra	ndfather_of(X,Y) <- father_of(X,Z),
	$mother_of(Z,Y)$.
<pre>mother_of(mary, david) <</pre>	
 Given such database, a logic program 	ming system can answer questions
(queries) such as:	
<- father_of(john, peter).	<- grandfather_of(X, michael).
Answer: Yes	Answer: $\{X = john\}$
<- father_of(john, david).	<- grandfather_of(X, Y).
Answer: No	Answer: $\{X = john, Y = michael\}$
<- father_of(john, X).	Answer: $\{X = john, Y = david\}$
Answer: $\{X = peter\}$	<- grandfather_of(X, X).
Answer: $\{X = mary\}$	Answer: No
 Rules for grandmother_of(X, Y)? 	

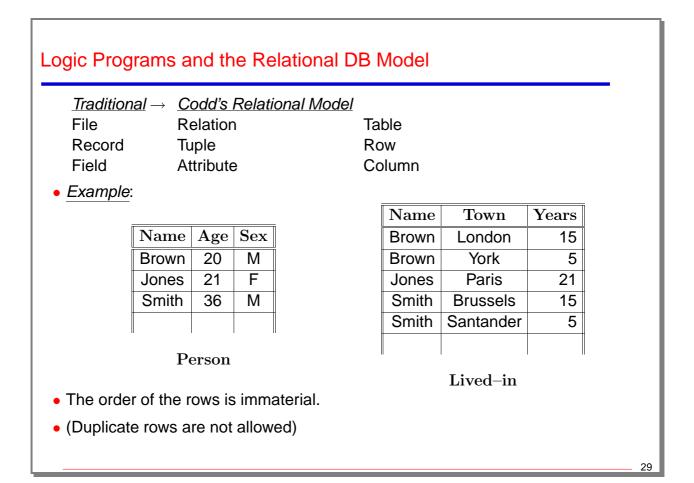




Structured Data and Data Abstraction (and The Anonymous Variable)



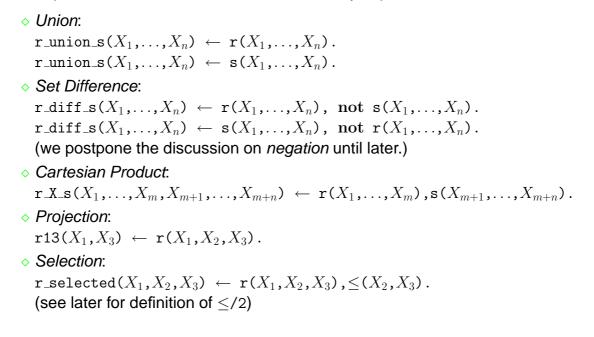
 The circuit example revisited: 	action (Contd.)
<pre>resistor(r1,power,n1) < resistor(r2,power,n2) <</pre>	<pre>transistor(t1,n2,ground,n1) < transistor(t2,n3,n4,n2) < transistor(t3,n5,ground,n4) <</pre>
<pre>inverter(inv(T,R),Input,Outp transistor(T,Input,ground nand_gate(nand(T1,T2,R),Inpu</pre>	,Output), resistor(R,power,Output).
	<pre>tput), transistor(T2,Input2,ground,X),</pre>
and_gate(and(N,I),Input1,Inp	ut2,Output) <-
nand_gate(N,Input1,Input2	,X), inverter(I,X,Output).
• The query <- and_gate(G,In1,]	[n2,Out).
has solution: $\{G=and(nand(t2,t3,t))\}$	r2),inv(t1,r1)),In1=n3,In2=n5,Out=n1}



ogic Programs and the Relational DE	B Model (Contd.)
$\begin{array}{rcl} \underline{Relational\ Database} & \rightarrow & \underline{Logic\ Programme}\\ Relation\ Name & \rightarrow & Predicate\ symbol{symbol}\\ Relation & \rightarrow & Procedure\ constants (facts\ without\ variation variation) & & & \\ & & & & \\ Tuple & \rightarrow & Ground\ fact & & \\ Attribute & \rightarrow & Argument\ of\ processon(\ brown, 20, male) & <\\ & & & \\ person(\ brown, 20, male) & <\\ & & \\ person(\ smith, 36, male) & < \end{array}$	bol sisting of ground facts ariables)
• <u>Example</u> : lived_in(brown,london,15) < lived_in(brown,york,5) < lived_in(jones,paris,21) < lived_in(smith,brussels,15) < lived_in(smith,santander,5) <	NameTownYearsBrownLondon15BrownYork5JonesParis21SmithBrussels15SmithSantander5

Logic Programs and the Relational DB Model (Contd.)

• The operations of the relational model are easily implemented as rules.



Logic Programs and the Relational DB Model (Contd.)

- Derived operations some can be expressed more directly in LP:
 - Intersection:

```
\texttt{r\_meet\_s}(X_1,\ldots,X_n) \leftarrow \texttt{r}(X_1,\ldots,X_n), \texttt{s}(X_1,\ldots,X_n).
```

◊ Join:

```
\texttt{r_joinX2_s}(X_1,\ldots,X_n) \leftarrow \texttt{r}(X_1,X_2,X_3,\ldots,X_n), \texttt{s}(X_1',X_2,X_3',\ldots,X_n').
```

• Duplicates an issue: see "setof" later in Prolog.

Deductive Databases

- The subject of "deductive databases" uses these ideas to develop *logic-based databases*.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. "Datalog" – no functors, no existential variables).
 - \diamond Variations of a "bottom-up" execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.

Recursive Programming

```
Example: ancestors.

parent(X,Y) <- father(X,Y).

parent(X,Y) <- mother(X,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,Y).

ancestor(X,Y) <- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).

....
Defining ancestor recursively:

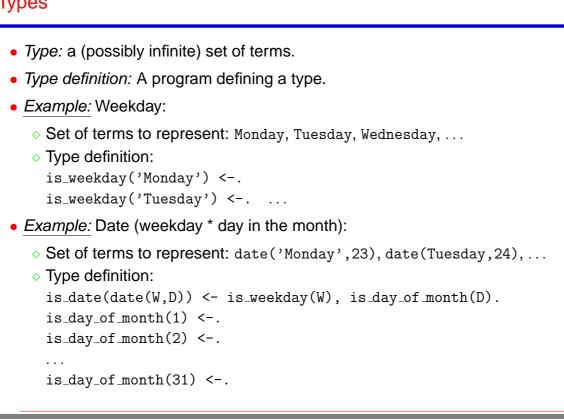
parent(X,Y) <- father(X,Y).

parent(X,Y) <- mother(X,Y).

ancestor(X,Y) <- parent(X,Y).

ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).</li>
Exercise: define "related", "cousin", "same generation", etc.
```

Types



Recursive Programming: Recursive Types

- Recursive types: defined by recursive logic programs.
- Example: natural numbers (simplest recursive data type):
 - \diamond Set of terms to represent: 0, s(0), s(s(0)), ...
 - ◊ Type definition: nat(0) <-. nat(s(X)) <- nat(X).</pre>

```
A minimal recursive predicate:
one unit clause and one recursive clause (with a single body literal).
```

- We can reason about *complexity*, for a given *class of queries* ("mode"). E.g., for mode nat (ground) complexity is *linear* in size of number.
- Example: integers:
 - \diamond Set of terms to represent: 0, s(0), -s(0),...

```
◊ Type definition:
  integer( X) <- nat(X).</pre>
  integer(-X) <- nat(X).</pre>
```

Recursive Programming: Arithmetic

• Defining the natural order (\leq) of natural numbers:

```
\leq(0,X) <- nat(X).
```

```
\leq (s(X),s(Y)) <- \leq (X,Y).
```

- Multiple uses: $\leq (s(0), s(s(0))), \leq (X, 0), \dots$
- Multiple solutions: \leq (X,s(0)), \leq (s(s(0)),Y), etc.
- Addition:

```
plus(0,X,X) <- nat(X).</pre>
```

```
plus(s(X),Y,s(Z)) \leftarrow plus(X,Y,Z).
```

- Multiple uses: plus(s(s(0)),s(0),Z), plus(s(s(0)),Y,s(0))
- Multiple solutions: plus(X,Y,s(s(s(0)))), etc.

Recursive Programming: Arithmetic

Another possible definition of addition:
 plus(X,0,X) <- nat(X).

plus(X,s(Y),s(Z)) <- plus(X,Y,Z).

- The meaning of plus is the same if both definitions are combined.
- Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.
- The art of logic programming: finding compact and computationally efficient formulations!

 Try to define: times(X,Y,Z) (Z = X*Y), exp(N,X,Y) (Y = X^N), factorial(N,F) (F = N!), minimum(N1,N2,Min),...

Recursive Programming: Arithmetic

Definition of mod(X,Y,Z)
"Z is the remainder from dividing X by Y"
(∃ Q s.t. X = Y*Q + Z and Z < Y):

mod(X,Y,Z) <- Z < Y, times(Y,Q,W), plus(W,Z,X).

• Another possible definition:

mod(X,Y,X) <- X < Y.

mod(X,Y,Z) <- plus(X1,Y,X), mod(X1,Y,Z).</pre>

• The second is much more efficient than the first one (compare the size of the proof trees)

Recursive Programming: Arithmetic/Functions

```
• The Ackermann function:
   ackermann(0,N) = N+1
   ackermann(M,0) = ackermann(M-1,1)
   ackermann(M,N) = ackermann(M-1,ackermann(M,N-1))
• In Peano arithmetic:
   ackermann(0,N)
                        = s(N)
   ackermann(s(M), 0) = ackermann(M, s(0))
   ackermann(s(M),s(N)) = ackermann(M,ackermann(s(M),N))
• Can be defined as:
   ackermann(0,N,s(N))
                              <-.
   ackermann(s(M),0,Val) <- ackermann(M,s(0),Val).</pre>
   ackermann(s(M),s(N),Val) <- ackermann(s(M),N,Val1),</pre>
                                  ackermann(M,Val1,Val).
• In general, functions can be coded as a predicate with one more argument, which
 represents the output (and additional syntactic sugar often available).
```

• Syntactic support available (see, e.g., the Ciao functions package).

Recursive Programming: Lists

- Binary structure: first argument is *element*, second argument is *rest* of the list.
- We need:
 - o a constant symbol: the empty list denoted by the constant []
 - ◊ a functor of arity 2: traditionally the dot "." (which is overloaded).
- Syntactic sugar: the term .(X,Y) is denoted by [X|Y] (X is the *head*, Y is the *tail*).

	Formal object	Cons pair syntax	Element syn	lax	
	.(a,[])	[a []]	[a]		
	.(a,.(b,[]))	[a [b []]]	[a,b]		
	.(a,.(b,.(c,[])))	[a [b [c []]]]	[a,b,c]		
	.(a,X)	[a X]	[a X]		
	.(a,.(b,X))	[a [b X]]	[a,b X]		
Note that:					
[a,b] and [a X] unify with $\{X = [b]\}$			b]}	[a] and [a X] unify with $\{X = []\}$	
[a] and [a,b X] do not unify				[] and [X] do not unify	,
					41

Recursive Programming: Lists

- Type definition (no syntactic sugar): list([]) <-. list(.(X,Y)) <- list(Y).
- Type definition (with syntactic sugar): list([]) <-. list([X|Y]) <- list(Y).

Recursive Programming: Lists (Contd.)

```
• X is a member of the list Y:
```

```
member(a,[a]) <-. member(b,[b]) <-. etc. \Rightarrow member(X,[X]) <-.
member(a,[a,c]) <-. member(b,[b,d]) <-. etc. \Rightarrow member(X,[X,Y]) <-
member(a,[a,c,d]) <-. member(b,[b,d,1]) <-. etc. \Rightarrow member(X,[X,Y,Z]) (-.
\Rightarrow member(X,[X|Y]) <- list(Y).
```

 \Rightarrow member(X,[Y,X]).

```
member(a,[c,a]), member(b,[d,b]). etc.
member(a, [c,d,a]). member(b, [s,t,b]). etc. \Rightarrow member(X, [Y,Z,X]).
```

```
\Rightarrow member(X,[Y|Z]) <- member(X,Z).
```

```
• Resulting definition:
 member(X,[X|Y]) <- list(Y).</pre>
 member(X, [_|T]) <- member(X, T).
```

Recursive Programming: Lists (Contd.)

```
• Resulting definition:
 member(X,[X|Y]) <- list(Y).</pre>
 member(X, [_|T]) <- member(X, T).
```

- Uses of member(X,Y):
 - o checking whether an element is in a list (member(b, [a,b,c]))
 - o finding an element in a list (member(X, [a, b, c]))
 - o finding a list containing an element (member(a,Y))
- Define: prefix(X,Y) (the list X is a prefix of the list Y), e.g. prefix([a, b], [a, b, c, d])
- Define: suffix(X,Y), sublist(X,Y),...
- Define length(Xs,N) (N is the length of the list Xs)

Recursive Programming: Lists (Contd.)

```
Concatenation of lists:
Base case:

append([],[a],[a]) <-. append([],[a,b],[a,b]) <-. etc.

⇒ append([],Ys,Ys) <- list(Ys).</li>
Rest of cases (first step):

append([a],[b],[a,b]) <-.

append([a],[b,c],[a,b,c]) <-. etc.

⇒ append([X],Ys,[X/Ys]) <- list(Ys).

append([a,b],[c],[a,b,c]) <-.

append([a,b],[c,d],[a,b,c,d]) <-. etc.

⇒ append([X,Z],Ys,[X,Z/Ys]) <- list(Ys).

This is still infinite → we need to generalize more.
```

```
Programming: Lists (Contd.)

• We note that:
    append([a,b],Ys,[a|[b|Ys]]) ≡ append([a,b],Ys,[a|Zs])
    with Zs = [b|Ys]
    append([a,b,c],Ys,[a|[b|Ys]]) ≡ append([a,b,c],Ys,[a|Zs])
    with Zs = [b|Ws], Ws = [c|Ys].
        ⇒ append([X|Xs],Ys,[X|Zs]) <- append(Xs,Ys,Zs).

• So, we have:
    append([],Ys,Ys) <- list(Ys).
    append([X|Xs],Ys,[X|Zs]) <- append(Xs,Ys,Zs).

• Uses of append:
        • concatenate two given lists: <- append([a,b],[c],Z)
        • find differences between lists: <- append(X,[c],[a,b,c])
        • split a list: <- append(X,Y,[a,b,c])
</pre>
```

Recursive Programming: Lists (Contd.)

```
reverse(Xs,Ys): Ys is the list obtained by reversing the elements in the list Xs
It is clear that we will need to traverse the list Xs
For each element X of Xs, we must put X at the end of the rest of the Xs list
already reversed:
reverse([X|Xs],Ys) <-
reverse(Xs,Zs),
append(Zs,[X],Ys).
How can we stop?
reverse([],[]) <-.</li>
As defined, reverse(Xs,Ys) is very inefficient. Another possible definition:
reverse(Xs,Ys) <- reverse(Xs,[],Ys).</li>
reverse([],Ys,Ys) <-.
reverse([],Ys,Ys) <-.
reverse([X|Xs],Acc,Ys) <- reverse(Xs,[X|Acc],Ys).</li>
Find the differences in terms of efficiency between the two definitions.
```

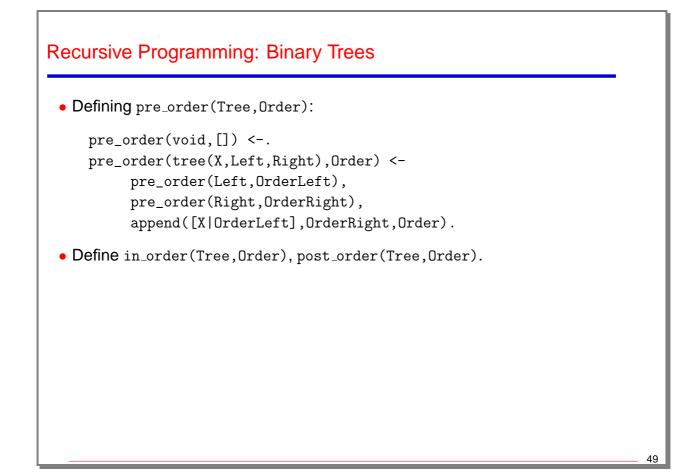
Recursive Programming: Binary Trees

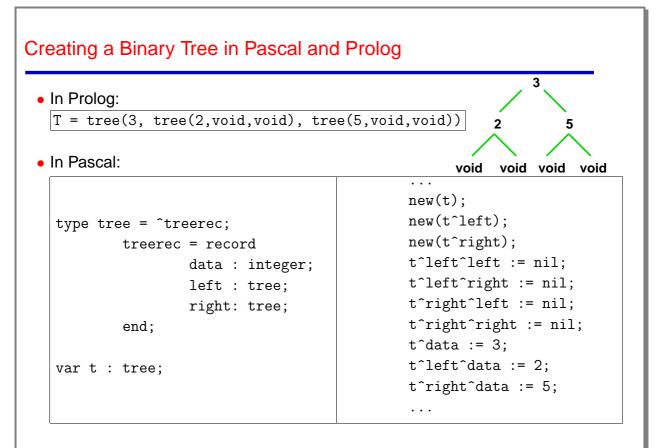
- Represented by a ternary functor tree(Element,Left,Right).
- Empty tree represented by void.
- Definition:

```
binary_tree(void) <-.
binary_tree(tree(Element,Left,Right)) <-
binary_tree(Left),
binary_tree(Right).</pre>
```

• Defining tree_member(Element,Tree):

```
tree_member(X,tree(X,Left,Right)) <-.
tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Left).
tree_member(X,tree(Y,Left,Right)) <- tree_member(X,Right).</pre>
```





Polymorphism

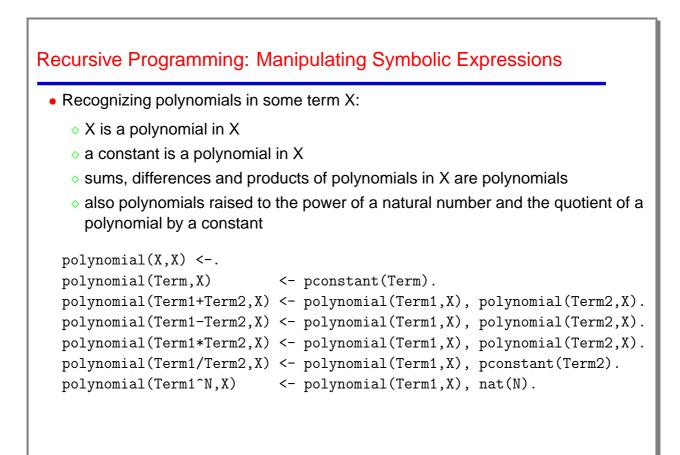
• Note that the two definitions of member/2 can be used simultaneously:

```
lt_member(X,[X|Y]) <- list(Y).
lt_member(X,[_|T]) <- lt_member(X,T).
lt_member(X,tree(X,L,R)) <- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) <- lt_member(X,L).
lt_member(X,tree(Y,L,R)) <- lt_member(X,R).</pre>
```

Lists only unify with the first two clauses, trees with clauses 3-5!

- <- lt_member(X,[b,a,c]). X = b ; X = a ; X = c
- <- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).</pre>

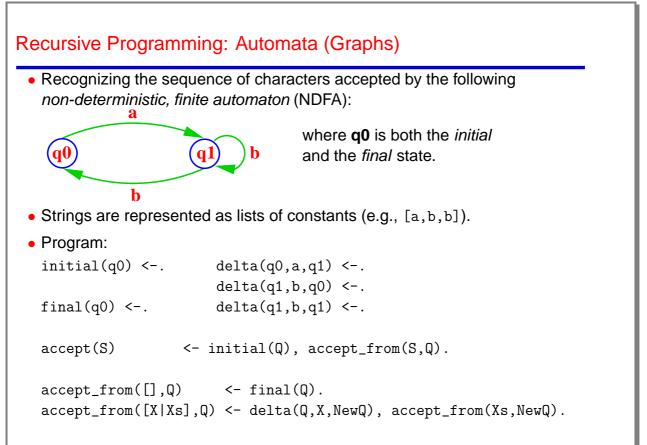
```
X = b; X = a; X = c
```



Recursive Programming: Manipulating Symb. Expressions (Contd.)

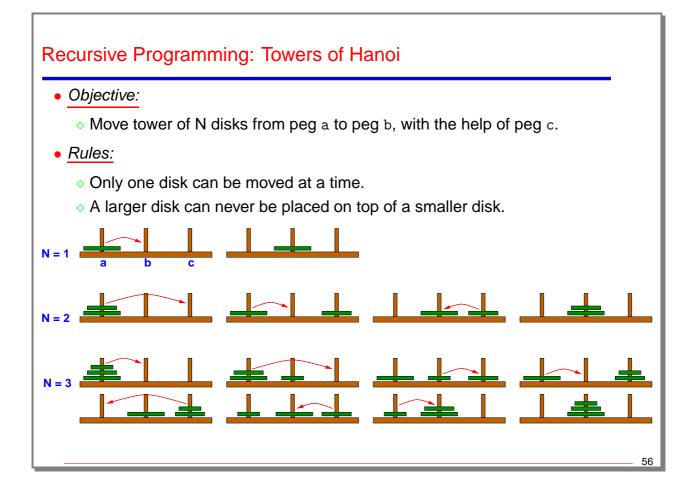
• Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

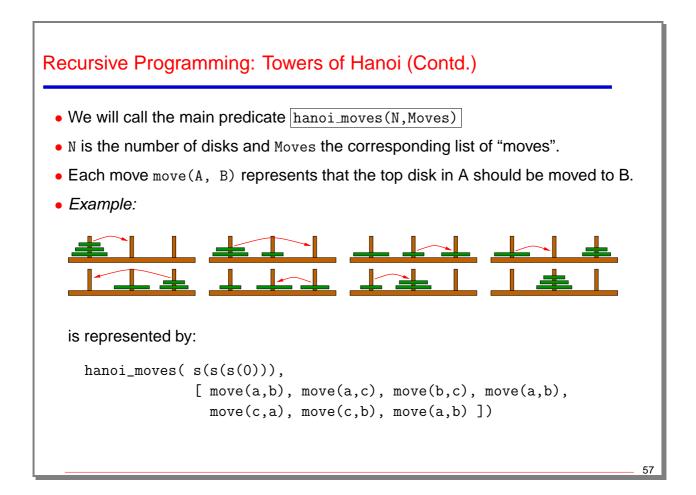
- • •
- deriv(s(s(s(0)))*x+s(s(0)),x,Y).
- A simplification step can be added.

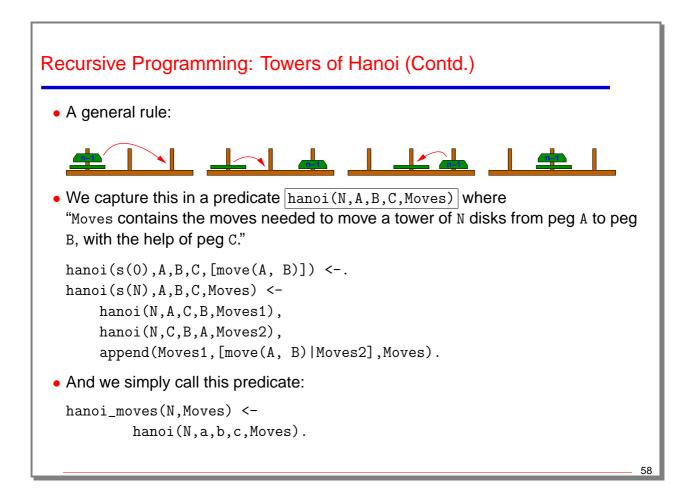


Recursive Programming: Automata (Graphs) (Contd.)

```
A nondeterministic, stack, finite automaton (NDSFA):
accept(S) <- initial(Q), accept_from(S,Q,[]).</li>
accept_from([],Q,[]) <- final(Q).</li>
accept_from([X|Xs],Q,S) <- delta(Q,X,S,NewQ,NewS), accept_from(Xs,NewQ,NewS).</li>
initial(q0) <-.</li>
final(q1) <-.</li>
delta(q0,X,Xs,q0, [X|Xs]) <-.</li>
delta(q0,X,Xs,q1, [X|Xs]) <-.</li>
delta(q0,X,Xs,q1,Xs) <-.</li>
delta(q1,X, [X|Xs],q1,Xs) <-.</li>
What sequence does it recognize?
```







Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By induction (as in the previous examples): elegant, but generally difficult not the way most people do it.
- State first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., "forwards execution"), making sure it is declaratively correct. Consider also if alternative uses make declarative sense.
- Sometimes it helps to look at well-written examples and use the same "schemas".
- Global top-down design approach:
 - state the general problem
 - break it down into subproblems
 - o solve the pieces
- Again, best approach: practice.