CMPE 534 Automated Deduction					
Department: Computer Engine	ering				
Instructor Information Name: Assoc. Prof. Zeki Bayram E-mail: zeki.bayram@emu.edu.tr Office: CMPE 216 Office Tel: 0392 6302840					
Assistant Information					
Meeting times and places Tuesday 12:30- 13:20, Room CMPE 129 Thursday 10:30 – 12:20, Room CMPE 129 Program Names Commuter Engineering					
		rigram coue. 25			
Course Code CMPE 534	Credits 3		Year/Semester 2019-2020 Fall		
Prerequisite(s) Graduate standing.	1				
Specialization Categories (For the Ph.D. qualifying Exam) B3 – INFORMATION SYSTEMS					
Catalog Description This course is about automatically (and mechanically) proving theorems in first order predicate calculus. Introduction to propositional logic, predicate calculus and proof methods. Herbrand's theorem. The resolution principle (in its various forms) as the theoretical background for the programming language Prolog. Paramodulation, term rewriting systems and e-unification under equational logic. Applications of automated reasoning.					
Course Web Page https://staff.emu.edu.tr/zekibayram/en					
Textbook Jean H. Gallier. "Logic For Computer Science, Foundations of Automatic Theorem Proving". John Wiley & Sons, 2003 (Second Edition, copyright Jean H. Gallier) (Available by the author at ftp://ftp.cis.upenn.edu/pub/papers/gallier/logic.pdf.gz)					
Reference books Chin-Liang Chang, Richard Char-Tung Lee. "Symbolic Logic and Mechanical Theorem Proving". Academic Press, 1973					
Rolf Socher-Abbrosius, Patricia Johann. "Deduction Systems". Springer Verlag, 1996					
M. Ben Ari. "Mathematical Logic for Computer Science", Prentice Hall, 1993					

Topics Covered and Class Schedule (3 hours of lectures per week)

Week 1	Overview of Automated Deduction	
Week 2	Syntax and semantics of Propositional Logic	
Week 3	Proof Theory of Propositional Logic: The Gentzen System G	
Week 4	Proof Theory for Infinite Sequents	
Week 5	Programming in Flora-2	
Week 6	The Resolution Method for Propositional Logic	
Week 7	First-Order languages - syntax and semantics	
Week 8	Proof Theory of First-Order Languages	
Week 9	Negation Normal Form, Prenex Normal Form	
Week 10	Herbrand's Theorem for Prenex Formulae	
Week 11	Resolution Method for First-order Logic	
Week 12	SLD-Resolution and Prolog	
Week 13	Review	

Course Learning Outcomes

Upon successful completion of the course, students are expected to have the following competencies:

- (1) Write syntactically correct propositional and first order formulas to describe a situation
- (2) Prove validity of formulas in propositional logic using the truth table method
- (3) Prove validity of formulas in propositional logic using Gentzen Systems
- (4) Prove validity of formulas in propositional logic using resolution
- (5) Prove validity of formulas in first-order logic using Gentzen Systems
- (6) Prove validity of formulas in first-order logic using resolution
- (7) Write simple theorem provers in FLORA-2
- (8) Draw resolution trees

	Method	No	Percentage
Assessment	Midterm Exam(s)	1	40%
	Final Examination	1	45%
	Project	1	15%

Policy on makeups: For eligibility to take a makeup exam, the student should bring a doctor's report within 3 working days of the missed exam.

Policy on cheating and plagiarism: Any student caught cheating at the exams or assignments will automatically fail the course and may be sent to the disciplinary committee at the discretion of the instructor.

Prepared by: Assoc. Prof. Dr. Zeki Bayram Date Prepared: 23 September 2019	Prepared by: Assoc. Prof. Dr. Zeki Bayram	Date Prepared: 23 September 2019
--	---	----------------------------------