106 SEQUENCES
CHAPTER 10

A third specification:
Project allocation

4. What characteristics must a sequence possess if its inverse is also a
sequence?

5. Write a Z predicate which states that a given sequence of characters s is
a palindrome; that is, it spells the same backwards as it does forwards.

10.1 Introduction

In the previous chapter, we developed a specification which used a sequence to
model a queue of people. In this chapter, we will take this a stage further by
using sequences in combination with functions to model a more complex
situation, namely the allocation of undergraduate projects on a university

degree course.

10.2 Allocation of undergraduate projects: the problem

A university requires a computerised system to manage the allocation of the
individual projects undertaken by its final-year degree students. Each student

107

108 A THIRD SPECIFICATION

must be allocated to a personal supervisor from the lecturing staff. Each
lecturer has a maximum number of students which s/he is required to supervise.
“Each student and cach lecturer must list their areas of interest (in descending
order of their enthusiasm for the topic!) and the system must attempt to
allocate students to supervisors in such a way that the maximum contentedness
with the result is created. Contentedness is a difficult concept; we all have an
intuitive idea of how much of it we possess at any given time, but it is not easy
to quantify in the context of a potentially large group of students and lecturers.
O Inevitably, some people will be more content with the allocation than others!
Y To make things worse, we are trying to specify contentedness in a formal
N language, where we must give a precise definition. This means that we have to
simplify and make compromises. We will arbitrarily decide that the priority is

’(le?ff

BASIC TYPES AND THE SYSTEM STATE SCHEMA 109

given list more than once; that is, there are no duplicates. The lists are assumed
to be sorted into descending order of preference for the topics.

The set of all students in the system is
dom studlInterests

and the set of all lecturers in the system is
dom lecInterests

The function allocation relates the students who have been allocated a project

to their supervisors. It is a function because this means that any given student

to allocate the student currently under consideration his/her most desired
choice of topic from those which are available (i.e. those which are on the
", areas of interest’ list of at least one lecturer who has not already got a full
complement of students to supervise), the student being allocated to the

71"{0"' Pr‘i}f

’I

/

can be related to at most one supervisor.

The function maxPlaces relates each lecturer to the maximum number of
students which they are required to supervise. This specification will not allow
any lecturer to supervise more than their maximum number of students.
We allow the possibility that a lecturer may be in the system with no places as

[ecturer who has this topic highest on his/her Tist of preferences. If more than
one lecturer has the topic at the same level of priority, an arbitrary choice of

his/her maximum, so that the system may contain the information as to the

lecturer’s interests for some future allocation. (vhafi¢lacen (e — () n

o

supervisor can be made from these lecturers. We are thus putting the students’
wishes above those of the lecturers.

10.3 Basic types and the system state schema
These are

[PERSON] the set of all people
[TOPIC] the set of all academic areas of interest

__ ProjectAlloc _
studlnterests, lecInteresis: PERSON —iseq TOPIC | 4. |¢ Aureg

allocation : PERSON — PERSON ik

maxPlaces; PERSON N B VR e

-. S fecturer Sy
J dom studinterests Ndom lecInterests=1{} S*U'fu“"h aned e i

{ dom allocation C dom studInterests By at

The predicate sk iyl)
dom studInterests Ndom lecInterests = { }

specifies that a person in the system cannot be both a student and a supervisor.
The predicates

dom allocation C dom studInterests
ran allocation C dom lecInterests

specify that those students and lecturers who have been allocated to projects
must be students and lecturers in the system.
The predicate

_dom maxPlaces =dom lecInterests

specifies that a/l lecturers in the system have a designated maximum number of

/ ran allocation C dom lecInterests b s
| dom maxPlaces=dom lecInterests W @ leckiacer \Iﬁ‘”‘f 3010 |
| Vlec : dom maxPlaces AT RONE L \J‘::Q 2
{ o # (allocation > {lec}) < maxPlaces lec e

The functions studInterests and lecInterests map individual students and
lecturers respectively to their preference lists. The lists are represented by
injective sequences of topics, which means that a given topic cannot appear in a

supervisions which they may undertake.
The initial state is as follows: (whidh) be er o)

— InitProjectAlloc
ProjectAlloc’

lecInterests' ={ }
studInterests' = { }

/.-—-________‘__ = e

110 A THIRD SPECIFICATION

These values for lecInterests’ and studInterests’ imply that all of the sets in the
abstract state are empty, and all of the state invariant predicates are satisfied,
so that this is a valid state for the system.

10.4 Operations

We will now specify the successful cases of operations to add a student to the
system, add a lecturer to the system, allocate a supervisor to a student, deallocate
a supervisor from a student, remove a topic from a lecturer’s preference list and
output the set of all lecturers available for the supervision of a given topic.

Adding a student to the system

The inputs required for this operation are a student and that student’s list of
preferences for his/her project topic. The list is assumed to be organised in
descending order of the student’s preference for the topics therein.

. AddStudent
A ProjectAlloc

s7: PERSON
ts?:iseq TOPIC

s?¢ dom studInterests\Jdom lecInterests (check o Had=SLns
studInterests' = studInterests U {s?— ts7} nok zleckuree h
lecInterests' = lecInterests

allocation’ = allocation

maxPlaces' = maxPlaces

The student must not already be in the system, as either a lecturer or a student!
s? & dom studInterests\Udom lecInterests

The appropriate maplet is added to the studInterests function.
studInterests' = studInterests U {s? — ts?}

Note that it would be sufficient to have the precondition
s? & dom studinterests

because

s? & dom leclnterests

OPERATIONS 111
is implied by the postcondition
studInterests’ = studlnterests U {57 — ts7}
and the ‘after’ state invariant
dom studInterests' Ndom lecInterests’ = { }

I_n fact, we don’t need an explicit precondition at all, as the above postcondi-
tion implies that either

57+ 15? € studinterests
in which case the operation has no effect on the state, or
s?¢ dom studInterests

This is because studinterests is a function, so s? cannot be mapped to more than
one range element. However, in an implementation of the system, we would
like the system to produce a message to tell the user when such events occur, so
we will leave the explicit precondition in the schema, and write appropriate
error case schemas to produce a total version of the operation.

Adding a lecturer to the system

The inputs required for this operation are a lecturer, the list of topics which
that lecturer is prepared to supervise and the maximum number of students
which the lecturer may supervise. Again, the list of topics is assumed to be
organised in descending order of the lecturer’s preference for the topics.

_ AddLecturer
A ProjectAlloc

[7: PERSON
ts?:iseq TOPIC
maxAlloc? : N,

17 ¢ dom studInterests Udom lecInterests
lecInterests’ = lecInterests U {17 — ts?}
maxPlaces' = maxPlaces U {17 — maxAlloc?}
studInterests’ = studInterests

allocation’ = allocation

112 A THIRD SPECIFICATION

The lecturer must not already be in the system, as either a lecturer or a
student!

[? ¢ dom studInterests Udom lecInterests

The appropriate maplet is added to the lecInterests function
lecInterests’ = lecInterests U {17 57}

and to the maxPlaces function.

maxPlaces' = maxPlaces U {17+ maxAlloc?}

Exercises 10.1

1. Write a predicate which specifies a state where there are no unallocated
students.

2. Write a predicate which specifies a state where all students in the system are
unallocated.

3. Write a schema for an operation to remove a student from the system.

4. Write a schema for an operation to remove a lecturer from the system.

5. Write a Z expression for the set of all the students allocated to a given
supervisor s.

6. Write a Z expression for the set of all students with the same supervisor
as a given student p.

Allocating a student to a supervisor

The input to this operation is the student to be allocated. The operation must

allocate this student to a supervisor in such a way that the student gets to do

the highest priority topic from his/her list for which a supervisor is available.

(‘Available’ means that the topic appears in the preference list of at least one
supervisor who still has places left for supervisions.) Remember that pre-
ference lists are assumed to be sorted into descending order of preference.
Additionally, the student is to be allocated to the lecturer who has this topic

highest on his/her list of preferences. If more than one lecturer has the topic at

the same level of priority, an arbitrary choice of supervisor will be made from

these lecturers.

OPERATIONS 113

Allocate
A Project Alloc
s7: PERSON

s? e dom studlnterests
s? ¢ dom allocation

dsup:dom lecInterests; t: TOPIC; i,j: N

Aallocation' = allocation U {s? — sup} b\',«quf prrodene M
He hortn owp dt 4 i

I mwrk ok Le Bt case Haat |ec
Eorr— Tuptrn L

)

studInterests' = studInterests
lecInterests’ = lecInterests

|
| maxPlaces sup > # (allocation > {sup}) ~ Swufer /Y KU\ hay 2wy }'f,i.,
A it € studInterests 5?7 AT
Ajr t € lecInterests sup {
o Gor all Lo hnetn o bt ot
Vlec:dom lecInterests; k: N | maxPlaces lec > # (allocation > {lec})
o TN A YA ek
N ot Licdurt prRE TP DA
Sicr—> t € lecInterests lec=k = j) -‘*’:a' 1 hs‘i' onflunrias 4—‘;:_;&
(ljan(l. -.i—1 < studlnterests s?) Nran(lecInterests lec)={ })
) Shudnt Prefectay of dopaty AW

ghadesd W B

o Hol Me shadent pPrfrn

The student must be in the system, and must not be already allocated to a ™t

SUpervisor.

s?edom studInterests
s?¢ dom allocation

The other preconditions and postconditions of interest are specified by the
rather complex quantified expression above, which we will look at piece by piece.

There is a supervisor who has places left for project supervision and who has
one of the students’ topics on his/her list of preferences:

Jsup :dom lecinterests; t: TOPIC; i, j: N

| max Places sup > # (allocation [> {sup})
A i t € studlnterests s?
Ajrs t € lecInterests sup

There are no supervisors available who have this topic at a higher priority in
their list of preferences than the given supervisor

Vlec:dom lecinterests; k : N | maxPlaces lec > # (allocation [> {lec})
o

(k+— 1 € lecInterests lec=>k = J)

114 A THIRD SPECIFICATION

and there are no supervisors available who are interested in any of the topics
which the student has at a higher priority than the given topic.

A
(ran(1 ..i— 1 < studInterests s7) N ran(lecinterests lec)={})

)

The allocation of the student to the supervisor is specified by

allocation’ = allocation U {57 — sup}

Deallocating a student from a supervisor

The input to this operation is the student to be deallocated. The precondition is
that the student is allocated to a supervisor.

DeAllocate
A ProjectAlloc
s?: PERSON

e

Jsup : dom lecinterests
o (57— sup € allocation
A allocation' = allocation \ {s? — sup})
studInterests’ = studInterests
lecInterests’ = lecInterests

Allocation policies

We now have operations to add new people to the system and to allocate
students to supervisors according to the preferences of both. However, we have
said nothing about the temporal aspects of our allocation policy. The initial
state is one with no people in the system. Clearly we must first use our ‘add’
operations to place some people into the system, before we can allocate any
students to supervisors. In a real system, we might add all the lecturers who are
designated for project supervision first, and then either add each student in
turn in the order in which they show up for registration, immediately allocating
each student to a supervisor (first-come, first-served policy), or add all the
students, and then randomly allocate them to supervisors until there are no
unallocated students left in the system. A more sophisticated policy could be
(specified in an effort to improve the overall ‘contentedness’ with the allocation;
9 that is, a policy which pleases most of the people most of the time, rather than
the first students to come along getting their highest preferences, and later

O+ T LA I “% (f.rmlv““‘ ..\"’l) WSS

oY

OPERATIONS 115

students getting whatever is still available. In the interests of simplicity, we will
leave such considerations out of the current specification, but you may wish to
Fhink about how such ideas could be represented in Z. Of course, real life
is never straightforward, and it is possible that all supervisors will have used
up the_ir allocation while there are still students unallocated, so that extra
supervisors have to be added, or that there are students whose chosen pre-
ferences for topics do not occur in the preference lists for any supervisors, in
which case further compromises will be necessary.

Removing a topic from a lecturer’s preference list

The lecture.r must be in the system and the topic must be in the lecturer’s
preference list. If the lecturer is already allocated to supervise this topic, it’s too
bad — the lecturer has made an agreement! However, the lecturer will not have
to take on any further students for thi i -

is topic. 53 e Hanm et y

dradany o bide & TV

RemoveLecsTopic g
A ProjectAlloe

[7: PERSON

t?: TOPIC ;
Lalt)

[? € dom lecinterests Lant i M[2

t? € ran(lecInterests 17)

lecInterests' = lecInterests & {17 — squash(lecInterests 17 B> {17})}
maxPlaces’ = maxPlaces

studInterests’ = studInterests

allocation' = allocation

Range anti-restriction is used to remove the topic from the sequence, and
squash is used to make the result into a sequence. An alternative would have
been to use an existentially quantified expression as follows:

\ 3 higher, lower :iseq TOPIC
o (lecInterests 7= higher ~ (17} ~ lower
AlecInterests' [?= higher — lower)

The set of all lecturers available for supervision of a given topic

Eor a given lecturer to be a member of this set, the topic must be in that lecturer’s
list of preferences and the lecturer must still have supervision places available.

116 A THIRD SPECIFICATION

LecsAvailable

= ProjectAlloc
7 TOPIC

FRv -

ps!: P PERSON

ps!={ p:dom lecInterests | 1? € ran(lecInterests p)
A maxPlaces p > # (allocation > { p})}

Exercises 10.2

1. Write a schema for an operation to add a new topic to a lecturer’s
priority list at a given position. If the position is greater than the length of
the list, the topic should be added to the back of the list.

2. Write a Z expression for the set of all students who are doing project topic .

3. Write a schema for an operation to output the topic which a given
student was allocated for his/her project.

4. Write a Z expression for the set of all unallocated students for whom
none of their chosen topics are available for supervision.

5. Write a Z expression for the set of all students who were allocated their nth
choice of topic in order of preference, where # is a natural number
(excluding zero).

10.5 Error handling schemas

The following free type represents the set of output messages required to
construct total versions of the above operations, and for reports from the query
operations which are defined below:

MESSAGE ::= success | isStudent | isLecturer | notStudent | isdllocated
| noLecAvailable | notAllocated | notLecturer | not ListedTopic

The success message is used to indicate that an operation has been successfully
completed, using the following schema:

7{ SuccessMessage = [outcome! : MESSAGE | outcome! = success)
The precondition for the AddStudent operation is
s?7 ¢ dom studInterests\Udom lecInterests

The exceptions to this operation occur if 5?7 is already a student or a lecturer.

ERROR HANDLING SCHEMAS 117

In these cases, the state does not change and the appropriate message is pro-
duced. This is specified by the following schemas:

; IsStudent

= ProjectAlloc

s?7: PERSON

outcome!: MESSAGE

5?7 € dom studInterests
outcome! = isStudent

B e,

IsLecturer

Z ProjectAlloc

57: PERSON
outcome!: MESSAGE

s?edom lecInterests
outcome! = isLecturer

For the AddLecturer operation, the exceptions are specified by the same sche-
mas with appropriate renaming:

(' IsStudent [52/17]
1 IsLecturer [s?/17]

The preconditions for the Allocate operation are that the student is in the
system and is not already allocated:

s? € dom studInterests
s? & dom allocation

and that there is at least one lecturer with places left who has at least one of the
student’s preferred topics on his/her preference list:

3 sup:dom lecInterests e
max Places sup ># (allocation [> {sup})

Aran(studinterests s7) Nran(lecinterests sup) # { }

This leads to the following exception schemas:

118 A THIRD SPECIFICATION

NotStudent

E ProjectAlloc

§7: PERSON
outcome! : MESSAGE

s?7 ¢ dom studInterests
outcome! = notStudent

IsAllocated
= ProjectAlloc
s?: PERSON
outcome!: MESSAGE

s? e dom allocation
outcome! = isAllocated

NoLecAvailable
Z ProjectAlloc

s?7: PERSON

outcome! : MESSAGE

= dsup:dom lecnterests e
maxPlaces sup > # (allocation > {sup})
Aran(studinterests s?) Nran(lecInterests sup) # { }
outcome! = noLecAvailable

The precondition for the DeAllocate operation is that the student is allocated
to a supervisor. This leads to the following exception schema:

NotAllocated
= ProjectAlloc

5?7: PERSON
outcome!: MESSAGE

s? ¢ dom allocation
outcome! = notAllocated

The preconditions for the RemoveLecsTopic schema are that the person is a

lecturer in the system and that the topic is in the lecturer’s preference list.

1?7 € dom lecInterests
1? € ran(lecInterests 17)

TOTAL OPERATIONS

This leads to the following exception schemas:

NotLecturer
= ProjectAlloc

[7: PERSON

5 outcome! : MESSAGE

1?7 ¢ dom lecInterests
outcome! = notLecturer

NotListedTopic
= ProjectAlloc
1?: PERSON

 |n:TopIC

) | outcome!: MESSAGE

t7¢ ran(lecinterests 17)
outcome! = not ListedTopic

10.6 Total operations

119

We can now define the total versions of the operation schemas using the above

exception handling schemas.

Total AddStudent = (AddStudent N\ SuccessMessage)
V IsStudent
V IsLecturer

TotalAddLecturer = (AddLecturer N\ SuccessMessage)
V IsStudent [s7 [17]
V IsLecturer [s? [17]

TotalAllocate = (Allocate N\ SuccessMessage)
\ NotStudent
v IsAllocated
\ NoLecAvailable

TotalDeAllocate = (DeAllocate /\ SuccessMessage)
V NotAllocated

TotalRemoveLecsTopic = (Remove LecsTopic A\ SuccessMessage)
v NotLecturer
V NotListedTopic

The LecsAvailable operation has no precondition; it may be applied in any state.

120 A THIRD SPECIFICATION
10.7 A new concept: operation schema composition

The composition of two operation schemas A4 and B is a schema which specifies

the effect of doing operation A followed by operation B. It is written 4 ; B.

Let A4 and B be the following schemas:

L 4 L B
a,a’,cl:Z a,a' b7
a' =a+42 bh? < 10
el=a' a'=a+b?

All variables with the same name (ignoring decorations) in the two schemas

ABSTRACTION 121
10.8 Changing supervisor

We will now use the concept of schema composition to define an operation

“whereby a student, already assigned to a supervisor, changes to another super-

visor. This operation may be specified as the composition of the DeAllocate

and Allocate operations. However, this would allow the possibility that the new

supervisor was the same as the old supervisor. We can disallow this by con-

joining the result with a schema which specifies that the ‘before’ supervisor and

the ‘after’ supervisor are different.

must also have the same type. The composition is formed as follows.

Firstly, we rename each variable which is both an ‘after’ variable (primed) in

A and a ‘before’ variable (unprimed) in B to the same, new name. (See Chapter 4

il you need a reminder of what is meant by renaming.) In our example, we will

<

rename a' from A and a from B to the new name a,. to give the schemas

NewA = Ala.[a'] and NewB= Bla, | al:

_ NewAd ____ _ NewR.
a,a.,cl:Z ac,a', bl %
a. =a+42 b? < 10
¢l =a. a'=a,+b?

Next, we conjoin the two schemas, and hide the renamed variables. (Again, see
Chapter 4 if you need a reminder of what is meant by hiding.) In our example,
this gives the schema

AcompB= A ;B i [ILJ\‘«*‘)
where _;/
AcompB= (Alac/a') A Blac/a))\(a) e)
n

/-_AcompB___ ! \f"'J\ 3

a,a' bl ez

g e
’ 5
Ja,:Z > \o%u‘ﬁ

e(a.=a+42
Nel=a,
AB? < 10
ANa' =a.+b?)

78 SupsDiffer
A ProjectAlloc
s?: PERSON

Jold, new:dom lecInterests
o (s?+— old € allocation A
s7— new € allocation’ A
old + new)

" The operation to change supervisor may now be specified.

{ ChangeSup = (DeAllocate ; Allocate) A SupsDiffer

Note that the Allocate schema is non-deterministic in that more than one final
state is possible (more than one lecturer may have places left and have the
appropriate topic at the same priority on their list). Thus the ChangeSup
operation is also non-deterministic. If we were to compose such a schema with
a schema for which not all of those final states satisfied the precondition, then
only the valid final states would count in the composition schema.

Exercise 10.3

How could we specify allocation which was on a first-come, first-served basis?

10.9 Abstraction

This specification is a little more abstract than the video shop specification of
Chapter 8. In the latter, we used a number to represent the stock level of each
video, comparing this number with the number of copies of the video out on
rental when deciding whether any copies were available for rental. Modelling
the concept of the whereabouts of copies using numbers is an example of

122 A THIRD SPECIFICATION

CHAPTER 11

Two outline Z specifications

modelling at a low level of abstraction, akin to modelling an algorithm in a pro-
gramming language. (See the answer to question 8 of Exercises 8.1 for a
suggested alternative, more abstract, representation for the concept of a video
copy for this specification.) This type of modelling may lead to a specification
which is easier to implement in a programming language, but may also lead to a
lack of clarity in the specification, and possibly less flexibility if it later becomes
necessary to modify the specification to accommodate new requirements.

In contrast, the project allocation specification has a higher level of abstrac-
tion, with some use of non-determinism as already discussed. It may not be
quite so obvious how to produce an implementation from such a specification,
as it very much specifies what the system must do and not how it is to do it.
However, the greater level of abstraction means that we can study the problem
in its own right without having to be concerned about the paraphernalia of
how we are eventually going to produce a program. So is it better to write
specifications with a low level of abstraction, or a high level of abstraction?
As always in the field of science, the answer is ‘it depends’ The important thing
is that the specification correctly represents the requirements, and is clear and
understandable to all those who must read, discuss and use it. There are tech-
niques in Z for writing specifications at a high level of abstraction, and then
refining them to a lower level of abstraction, while proving that the properties
of the original specification are preserved, thus getting the best of both worlds.
However, these techniques are beyond the scope of this book.

Aims

To z_t_pp!y the preceding material to some more demanding specifications,
and to illustrate the use of generic constants.

Learning objectives

When you have completed this chapter, you should be able to:

o apply the Z notation to modelling the state of more complex systems
using combinations of mathematical structures;
e specify more challenging operations;
e appreciate the need to validate your specifications to ensure they are
- a true description of the required system;
° i'ec(jgg_ise situations in which it is desirable to define a new operator,
or to name subexpressions using let, to enhance the readability of
a specification.

&

11.1 Introduction

In tl:liS cl_1aptcr, we will outline the construction of two Z specifications. The
specifications are incomplete and not very large, but they are a little more
f:hallengmg than the examples we have encountered so far, and should
illustrate the value of Z in expressing complex ideas clearly and precisely.

' 11.2 A timetabling system

A university requires a timetabling system to keep track of where and when its
degree mog.uicg are scheduled, and which students are registered for each
module. Sometimes a module can be scheduled in several rooms at the same

123

