122 A THIRD SPECIFICATION

modelling at a Jow level of abstraction, akin to modelling an algorithm in a pro-
gramming language. (See the answer to question 8 of Exercises 8.1 for a
suggested alternative, more abstract, representation for the concept of a video
copy for this specification.) This type of modelling may lead to a specification
which is easier to implement in a programming language, but may also lead to a
lack of clarity in the specification, and possibly less flexibility if it later becomes
necessary to modify the specification to accommodate new requirements.

In contrast, the project allocation specification has a higher level of abstrac-
tion, with some use of non-determinism as already discussed. It may not be
quite so obvious how to produce an implementation from such a specification,
as it very much specifies what the system must do and not how it is to do it.
However, the greater level of abstraction means that we can study the problem
in its own right without having to be concerned about the paraphernalia of
how we are eventually going to produce a program. So is it better to write
specifications with a low level of abstraction, or a high level of abstraction?
As always in the field of science, the answer is ‘it depends’! The important thing
is that the specification correctly represents the requirements, and is clear and
understandable to all those who must read, discuss and use it. There are tech-
niques in Z for writing specifications at a high level of abstraction, and then
refining them to a lower level of abstraction, while proving that the properties
of the original specification are preserved, thus getting the best of both worlds.
However, these techniques are beyond the scope of this book.

CHAPTER 11

Two outline Z specifications

Aims

To apply the preceding material to some more demanding specifications,
and to illustrate the use of generic constants.

Learning objectives

Wheﬂ ;.?ou have completed this chapter, you should be able to:

. apply the Z notation to modelling the state of more complex systems
using combinations of mathematical structures;
o specify more challenging operations;
. appreciate the need to validate your specifications to ensure they are
. atrue descnptlan of the required system;
e recognise situations in which it is desirable to define a new operator,
or to name subexpressions using let, to enhance the readability of
a specification.

11.1 Introduction

In this chapter, we will outline the construction of two Z specifications. The
specifications are incomplete and not very large, but they are a little more
challenging than the examples we have encountered so far, and should
illustrate the value of Z in expressing complex ideas clearly and precisely.

' 11.2 A timetabling system

A university requires a timetabling system to keep track of where and when its
degree mcgyles are scheduled, and which students are registered for each
module. Sometimes a module can be scheduled in several rooms at the same

123

‘schedule. This models the real-world situation, where each student will carry

rooms. Therefore, the type of a student’s schedule will be

124 TWO OUTLINE Z SPECIFICATIONS

time, perhaps for tutorial sessions in smaller groups, in which case we wish to
know which room any given student should be in. We could visualise the final
system as an on-line facility by which students can find out where they should
be at any given time, register for modules, find out where their friends will be,
etc. For simplicity, we will say that a given student may attend any number of
modules provided none of their chosen modules clash on the timetable, and we
will assume that there is no limit on the capacity of rooms or the number of
students permitted to register for a module. For the time being, we will also
ignore the role of lecturers and tutorial staff in the specification!

For our preliminary analysis, we identify the basic types (given sets)
necessary for the specification. We will assume that for the purpose of time-
tabling, the week is divided into fixed-size time slots in which modules may be
scheduled. This suggests the following basic types:

[STUDENT, MODULE, TIMESLOT, ROOM]

which are respectively the set of all students, the set of all modules, the set of all
time slots and the set of all teaching rooms.

The time slots could be units of one hour, two hours, half a day, or what-
ever. Making TIMESLOT a basic type means that we do not need to concern
ourselves with the precise nature of a time slot at our chosen level of
abstraction,

We must now describe the abstract state of the system using appropriate
mathematical structures. Clearly, there is more than one way of doing this, but
the one we will choose is based on the idea that each individual student and
each individual module will be associated with their/its own individual

around their personal schedule, and a module lecturer might issue a schedule
for his/her module. We can model a schedule as a relation between time slots
and rooms. However, for any given time slot, a given student can only be in
a maximum of one room (one cannot be in two places at the same time!),
so therefore a student’s schedule will be a partial function from time slots to

em:JN-J pvmd\‘/“

Jode (o 0€E Y ”"51
G = Fv{r.]‘-\W-' g

TIMESLOT - ROOM

and the type of a module’s schedule will be ~ ™M°

TIMESLOT — ROOM b warsy reloh

Now, we need a way to represent the schedules for all students and a/l modules
on the course. We can do this using two partial functions, one of which maps
individual students to their schedules, and the other of which maps individual

A TIMETABLING SYSTEM 125

modules to their schedules. These functions are called studentTT and module TT
respectively.

studentTT: STUDENT - (TIMESLOT - ROOM)
moduleTT: MODULE —» (TIMESLOT «— ROOM)

studentTT s is the schedule for student s, and moduleTTm is the schedule for
module m.

dom studentTT
is the set of all students on the course and -
\ AT ik v W LM[\{J—L\ Jenfe] (= ‘?mémm)
dom moduleTT Jgn,
4 G
x i
is the set of all modules which may be offered on the course. However, not all

students are registered for modules and not all modules are offered at any given
time. For a student s not registered for any modules,

studentTT s = (&

and for a module m not currently offered,
moduleTTm= (&

that is, s and m are mapped to empty schedules.
These structures constitute the state declarations for the specification. We
must now identify the invariant properties required to define the state predicate:

1. It must not be possible to have two modules scheduled in the same room at
the same time; in other words, the relations (schedules) in the range of
moduleTT must be disjoint.

¥r,s:ran moduleTT disjoint (r, s)

The predicate implies that no two module schedules have any maplets in

common; that is, no two modules are scheduled in the same room at the
same time.

2. A student can only be scheduled for a time and place where a module is

scheduled. In other words, any maplet found in any of the functions in the
range of studentTT must also be found in precisely one of the relations
in the range of moduleTT.

To express this requirement in Z, we need a convenient way of referring
to the set of all the maplets in the ranges of studentTT and of moduleTT

)
126 TWO OUTLINE Z SPECIFICATIONS)ﬂ TA‘B 5
,g._\u-l\‘

respectively. We will define a generic global constant function allPairs,
which when applied to objects such as studentTT or moduleTT returns the
distributed union of all the relations in the object’s range. (See Section 9.4

for a description of generic constants.)
(T -\-uj P-E 5

X
I {X) YaZ]
allPairs . (X = (Y— Z))—(Y— Z) Lnc Hun

V(X (Y Z))e
allPairs f=|J{x: X | x€dom fefx}

For example, say studentTT has the following value:

student TT = {sally — {t; — rq, 13— 4, ls — 11},
helen— {ty— ry, t3—rs4},
John — {th—=r,t5— ."2}

}
then
allPairs studentTT = {t) 14, 13— ra, ts =P, L F, L = T Es =12}
Condition 2 can now be expressed as
allPairs studentTT C allPairs moduleTT

Note that this predicate simply states that every maplet in every
student’s schedule also occurs in the schedule of at least one module.
The additional constraint that each student schedule maplet is in the
schedule of precisely one module is implied by the predicate for
condition 1. No tws wodrliy g2 ¢ I g
Here is our final condition. At e e,

3. Any given student is either scheduled to attend a given module at every
available time slot, or not at all. Although this is a valid requirement
for our specification, it may not be reflected in the behaviour of real
students!

Vs :dom studentTT; m:dom moduleTT
o (studentTT s N\ moduleTT m) # (& =
dom(student TT s N module TT m) = dom(moduleTT m)

The expression

(studentTT s N moduleTT m) # &

wm‘\ﬂf“\

A TIMETABLING SYSTEM 127

is true iff student s and module m are scheduled to be in the same place
at the same time on at least one occasion. The expression

dom(student TT s N\ module TT m) = dom(module TT m)

states that student s is scheduled to attend module m at all of the times
when the module is available.

The state schema for our system is therefore
Timetable

studentTT: STUDENT -+ (TIMESLOT -+ ROOM)
moduleTT: MODULE — (TIMESLOT «— ROOM)

?
Vr,s:ran moduleT e disjoint(r, s)
allPairs studentTT C allPairs moduleTT
s :dom studentTT; m:dom moduleTT

o (studentTT s N moduleTT m) # 7 =
dom(studentTT s "\ module TT m) = dom(module TT m)

For the initial state, we will have no students and no modules in the system.

_ InitTimetable __
TimeTable'

studentTT'={}
moduleTT'={}

Inspection of the system state shows that this initial state exists. (Strictly, we
are obliged to verify this formally.)

We should examine our specification to see whether it has any unforeseen
undesirable properties. This check could take the form of a walkthrough with

_colleagues, in which the group tries to find inconsistencies in the specification

as a representation of the user’s requirements. For example, is it possible for a
student to be scheduled for two different modules which clash on the timetable;
that is, which take place at the same time? The answer is no, because every
student’s schedule is a function.

We should also check for any particular desirable properties which we would
expect the specification to have. Other questions can give us more insight into
our specification. For example, if two students are never in the same place at

128 TWO OUTLINE Z SPECIFICATIONS

the same time, must it be that they have no modules in common? A moment’s
consideration reveals that this is not necessarily true. It may be that a module
has concurrent sessions in more than one room at every time slot in which it is
scheduled, in which case two students could do the module without ever being
in the same room.

Such checks can be made at any stage in the development of the
specification, but it is a good idea to find any errors in the state specification
before embarking on operation specifications.

The use of implication = is a common source of errors, and it is a good idea
to check that the correct meaning has been captured. In condition 3, for
example, what have we said about the following situation?

(studentTT s "moduleTT m)= &

In fact, dom & =& (Spivey 1992), and so the consequent (right-hand side
of =) will be true iff moduleTT m = (J, that is module m is not timetabled, and
false otherwise; either way the predicate will be true. 5% u'nj daw e cart '1

Validation exercises are not guaranteed to reveal all inconsistencies in the
specification, but the fact that the specification is expressed in a formal lan-
guage makes it easier to identify such inconsistencies. Verification by formal

proof gives more confidence, but is much more expensive in time and effort.

Exercises 11.1

1. What assumption is implicit in condition 3 of the state invariant?

2. What issues would have to be considered in order to introduce the concept
of lecturers for the modules? For example, what assumptions must you
make about the case where a module is scheduled in more than one room
at the same time?

A\

A TIMETABLING SYSTEM 129

AddStudent
A Timetable
s7:STUDENT

s? ¢ dom studentTT
studentTT' = studentTT U {57 — @f}
moduleTT' = moduleTT

Exercises 11.2

1. Write the operation schema AddModule, to add a module with an empty
schedule to the system.
2. Write the operation schemas RemoveStudent and RemoveModule.

Scheduling a module

The module m? must be a valid module for the course
m? € dom moduleTT
and it must not already be scheduled:

moduleTT m? = &

The postcondition is non-deterministic in that more than one valid potential
schedule for the module may be possible, and in these circumstances, the
postcondition does not state which valid schedule is to be selected. This
arbitrary decision is left to the implementors of the system. Thus the schema
defines more than one possible final state.

3 schedule: TIMESLOT < ROOM o

\
Lol
Adding a student to the course \ (allPairs moduleTT M schedule = & ds wet chouls LAty ancolfor I—“M{ 1
\ oy &
The student s? must not already be on the course. AmoduleTT' = moduleTT & {m? — schedule}) ™ ’f g 8
The components of this predicate are explained as follows. Any valid schedule

‘) .
s? ¢ dom studentTT for this module must not clash with that of any other module.

The student joins the course with an initially empty schedule. allPairs moduleTT N schedule = ¢

studentTT' = studentTTU {s?— &} The module is scheduled by overriding the moduleTT function.

The operation schema is as follows: moduleTT' = moduleTT & {m? — schedule}

130 TWO OUTLINE Z SPECIFICATIONS

The operation schema is as follows:

Schedule Module

m? € dom moduleTT
moduleTT m? = &
3 schedule: TIMESLOT < ROOM e
(allPairs moduleTT N schedule = &
AmoduleTT' = moduleTT & {m? — schedule})

studentTT' = studentTT

Descheduling a module

The module to be descheduled m? must be a valid module for the course.
m? € dom moduleTT
and the schedule for m? must not already be empty.

moduleTT m? # &

To deschedule the module, we override moduleTT to map the module to the
empty schedule.

moduleTT' = moduleTT & {m?— &}

We must also remove the module from the schedules of all students who are
registered for it.

studentTT' = | J{s:dom studentTT & {s— (studentTT s\ moduleTT m?)}}

The operation schema is as follows:

Deschedule Module
A Timetable
m?: MODULE

m? e dom moduleTT

moduleTT m?# &

moduleTT' = moduleTT & {m? — &}

studentTT' = | J{s:dom studentTT e {5+ (studentTT's\ moduleTT m?)}}

A TIMETABLING SYSTEM 131

Note that the precondition moduleTT m? # ¢ is not necessary for the opera-
tion as specified, but it may be important to identify it at implementation, to
output an appropriate message if the precondition is not satisfied. This
At 1 1d la hamAdlad e o0 camaesata gnhame n.—.d

CXCEPUONn WoliG o€ nandica oy a scparaie sChncima, ai
would be specified using schema calculus.

) e ey TS

i€ totai operation

Registering a student for a module

The student s? must be on the course, and the module m? must be a valid
module for the course.

s?edom studentTT
m? € dom moduleTT

The module must be scheduled.
moduleTT m? # &

The student must be free at all the times when the module is scheduled.
dom(studentTT s?) Ndom(moduleTTmN) =& 1w ;ri‘:‘f?:')ﬁ S

We do not want to add all the module’s slots to the student’s schedule; where
the module is scheduled in more than one room at the same time, the student
must be allocated only one of these slots. The following postcondition predicate
is non-deterministic in this respect, in that it does not state specifically which
slot is to be allocated in these circumstances. (In a real system, issues such as
room capacities and previous allocations would come into play.) The post-
condition is as follows:

3 newPairs : TIMESLOT - ROOM

e ((dom newPairs =dom moduleTTm?) 1"
A (new Pairs Cmodule TT m?)
A (studentTT' = studentTT & {57 — student TT 57U new Pairs}))

W binerbbs it flne of

ML e

newPairs is the set of those pairs from the module’s schedule which are to
be added to the student’s schedule. Note that because students’ schedules are
functions, new Pairs must be a function. The constituent parts of this predicate
are explained as follows.

The time slots for the pairs to be added to the student’s schedule are precisely
all the time slots when the module is available.

dom new Pairs = dom moduleTT m?

132 TWO OUTLINE Z SPECIFICATIONS

The pairs to be added to the student’s schedule are pairs from the module’s
schedule.

The appropriate pairs are added to the student’s schedule by overriding the
studentTT function.

studentTT' = studentTT @ {57 — student TT 57U new Pairs}

The operation schema is as follows:

RegForModule
A Timetable
s?: STUDENT
m?: MODULE

s?€dom studentTT
m? e dom moduleTT

moduleTT m? #£
dom(studentTT s7) Ndom(moduleTT m?) = &

3 newPairs: TIMESLOT - ROOM
e ((dom newPairs =dom moduleTT m?)
A (newPairs C moduleTT m?)
A (studentTT' = studentTT & {s? — studentTT 57U new Pairs}))

module TT' = moduleTT

Exercises 11.3

Write a schema to ‘deregister’ a student from a module.

How could we modify the state schema to specify that each module

can use a maximum of one room in any given time slot?

3. How could we modify the state schema to specify that each module is
only allowed one time slot in the schedule?

Write a Z expression for the set of all students registered for a module m.
Write a Z expression for the set of all modules being taken by a stu_dent s,
Write a Z expression for the set of all students in a room r at a time ¢.
Write a Z expression for the set of all modules which student p and
student g have in common.

8. Write a Z expression for the set of all times when student p and student ¢
are in the same room.

-

Nowma

i

A GENEALOGICAL DATABASE 133

9. Write a Z expression for the set of all modules which clash with a

module m on the timetable, that is which take place at the same time
as module m.

10. Write a Z expression for the set of all time/room maplets for which
one or more modules are scheduled, but no students are scheduled.

11. What would it mean if allPairs moduleTT was one-to-one? (See
Section 7.4 for a definition of the term one-to-one for functions.)

12. What would it mean if allPairs studentTT was one-to-one?

13. How could you extend the specification to include concepts such as room
capacities and maximum numbers of students allowed in a module.

14. Why would it be difficult to extend the module registration example in
Chapter 6 to include timetabling information?

11.3 A genealogical database

A database is required to keep track of genealogical relationships between
people (family trees). It would be possible to represent the required relation-
ships (parent, grandparent, aunt, cousin, etc.) separately, but this would limit
the number of relationships, increase the complexity of the specification, and
would make it necessary to carry out extensive integrity checks every time
the database is updated. We will therefore represent only the minimum infor-
mation necessary to be able to define operations to output any required
relationships. The most fundamental genealogical relationship is that of parent
to child, and this, together with the sex of all the individuals in the database,
will be enough to enable us to specify all the operations we require. This sug-
gests the following types:

[PERSON]
GENDER ::=male | female

the set of all people

The parent/child relationship can be represented by the relation

“has Porent)

parent: PERSON < PERSON
(cmsides as
where

X =y € parent

represents the information that y is x’s parent.
The sex of all the people in the database can be represented by the function

B o L

sex: PERSON - GENDER

134 TWO OUTLINE Z SPECIFICATIONS

where

is the set of all people in the database. A person can be in the database even if
they do not occur in parent. It may be that information about their parents or
children is not available or is incomplete.

sex p

is the sex of person p. .
We need an invariant predicate to state that the relation parent only holds
information about people in the database.

dom parent Uran parent C dom sex

We also need an invariant predicate to capture such requirements as: . S
1 S o\
1. If y is x’s parent, then x cannot be y’s parent. N ;
2. If y is x’s parent, then y cannot also be an ancestor of x at a depth in
. g _ :
the family tree greater than that of parent, that is y cannot be x’s
grandparent, great-grandparent, etc.

3. A person cannot be their own parent.

We can neatly capture all of these requirements in a predicate yvhich states .that
a person cannot be their own ancestor. (You may have to think about this to
convince yourself that it is true.) Now the transitive closure of parent

parent™

will relate any person to their ancestors (parents, grandparents, great-
grandparents, etc.). The required predicate is therefore simply

Vp: PERSON e p+— p & parent™

The final restriction is that anyone in the database can have a'maximum of two
parents, and if they have two, the parents must be of opposite sexes!

Vp,gq,r: PERSON e {p+q,pr—r} C parent A\ g # r => sex q # sexr

Note that the condition restricts the number of parents to a maximum of two
because the type GENDER only has two values.

A GENEALOGICAL DATABASE 135

The state schema is as follows:

GenDB

parent : PERSON « PERSON
sex: PERSON - GENDER

dom parent Uran parent C dom sex
Vp: PERSON e p+ p & parent ™

Vp,q,r: PERSONe {p— q,p—r} C parent A q#r=>sex q+sexr

You may notice that there is no requirement for a person’s parents to come
from the same generation as each other; nor does the database contain any
information about whether the people it contains are alive or dead. Thus a
person in the database could have Julius Caesar as one parent and Joan of Arc
as the other. However, for simplicity, we will quietly ignore this.

For the initial state, we will have an empty database.

— InitGenDB _
GenDB'

sex!=@)
parent' = &

The predicate parent’ = & is not strictly necessary, as it is implied by the state
invariant, but increases the clarity of the specification. The initial state satisfies
the state invariant.

Operations to change the database

The users of the database will be able to modify the information it contains
using operations to add a person to the database, remove a person from the
database, add or remove a parent/offspring relationship to/from the database,

change the name of a person in the database, and change the sex of a person in
the database.

Adding a person to the database

The inputs are a person and their sex.

name?: PERSON
morf?: GENDER

The person name? must not already be in the database.

name' ¢ dom sex

136 TWO OUTLINE Z SPECIFICATIONS

We add them to the sex function.
sex' = sex U {name?— morf 7}

The operation schema is as follows:

AddPerson
A GenDB

name?: PERSON
morf?: GENDER

name? ¢ dom sex
sex' = sex U {name? — morf 7}
parent' = parent

Exercise 11.4

Write a schema for an operation to remove a person from the database.

Adding a parentloffspring relationship to the database

The inputs are a potential offspring and a potential parent.
off 1, par?: PERSON

The potential offspring and parent must be in the database
{off 7, par?} C dom sex

and must not already be a maplet in parent, in either order.

off 7+ par? & parent
par?— off ? & parent

There must not be more than one parent already in the database for the
potential offspring

#({off 7} < parent) < 1

and if there is one such parent, their sex must not be the same as the new
potential parent.

‘Yx: PERSON e off 7 x € parent = sex X # sex par?

A GENEALOGICAL DATABASE 137
For the postcondition, we simply add the new maplet to the relation parent.
parent' = parent U {off 7— par?}

The operation schema is as follows:

_ AddRel
A GenDB
off 7, par? : PERSON

{off 7, par?} C dom sex

off 7+ par? & parent

parl— off? & parent

#({off 7} < parent) < 1

Vx: PERSON s off ?— x € parent = sex x # sex par?
parent' = parent U {off 7 — par?}

sex’ = sex

Exercise 11.5

Write a schema for an operation to remove a parent/offspring relationship
from the database.

Changing the name of a person in the database

This is a rather artificial example, as we will now have to describe the type
PERSON as the set of all people’s names, which implies that all names are
unique. In a real system, PERSON would have to be implemented as a set of
unique identifiers of some sort, and for simplicity, when we refer to a ‘name’,
we will take it to mean one of these identifiers. The inputs are the old name and
the new name.

old?, new?: PERSON
The old name must be in the database, and the new one must not.

old? € dom sex
new? & dom sex

The old name must be replaced by the new one in the sex function

sex' = ({old?} < sex) U {new?— sex old?}

138 TWO OUTLINE Z SPECIFICATIONS

and all relationships involving the old name must be modified to use the new

name. : r
r A«'NJ ot mrk\‘“‘hw e

parent’ = ({old?} < parent B> {old?) &5 v
U{x: PERSON | x € parent ({0ld?}) ® new?— x}

U{x: PERSON | x € parent™" ({old?})® x — new?}

uh B

The operation schema is as follows:

ChangeName
A GenDB
old?, new?: PERSON

old? € dom sex

new? & dom sex

sex' = ({old?} < sex)U {new?— sex old?}

parent' = ({old?} < parent B> {old?})
U{x: PERSON | x € parent ({old?}) e new? %}
U{x:PERSON | x € parent™" ({old?}) ® x — new?}

Changing the sex of a person in the database

The person p? must be in the database.

At first sight, this operation would appear to require a simple overriding
of the sex function. However, the tricky part in specifying the opera-
tion is that the person may be recorded as a parent in the database, that is they
may be a member of ran parent. This means that the sex recorded for other
people may have to change in order to maintain the integrity of the data-
base, that is so that the database will not contain children with two mothers or
two fathers.

An implementation of the operation would probably ask the user whether
s/he wished to proceed in these circumstances, as it is unlikely that s/he would
wish to make such changes simply to maintain the integrity of the database.
It is much more likely that the proposed change was not correct in the first
place. However, we will specify a rather contrived operation which simply
makes the necessary changes. Essentially, any people with whom our person
has had children must change their sex, as must anyone who has had children
with those people, and so on, to ensure that anyone with two parents in the
database has one of each sex.x'\

Now the relation prrnt _

So mbrribfe 15 not Goon

parent™' ; parent

\

ol) R

A GENEALOGICAL DATABASE 139

relates together people who have had children with each other. The transitive
closure of this relation

£ o a—] o T O
(parent ™" ; paret)

is the relation such that
p g € (parent™! ; parent)*

iff p has had children with g, or p has had children with someone who has had
children with ¢, or p has had children with someone who has had children with
someone w’ho has had children with ¢, ... well, you get the idea. The relational
image in this relation of the set consisting solely of our person p? gives the set of
all people who must have their sex changed by this operation.

(parent™" ; parent)* ({ p?})

We can now use this to specify a function mapping these people to the opposite
sex fr_om that given them by the sex function, and finally use this function to
override the original sex function. The resulting postcondition is as follows:

W {4 k |
sex' =sex @ = S Gonntes [

{q: PERSON;s: GENDER |(q € (parent™" ; parent)* ({ p?}))
A(s#sex q)e g s}

No'te that the relation parent ! ; parent also relates every parent to themselves,
which enables the postcondition to specify the sex change for p? him/herself.
The operation schema is as follows:

ChangeSex
A GenDB
p?: PERSON

p? €dom sex

sex' =sex ®

{q: PERSON;s: GENDER |(q € (parent™" ; parent)* ({ p?}))
A (s #sex q) e g s}

parent’ = parent

We also rf:quire query operations to interrogate the database for information
about various relationships. The next set of exercises gives you the opportunity
to specify some, after which we conclude with an operation to find the common
ancestors of two given people, and an operation to find the set of all cousins of
specified type and removedness for a given person.

140 TWO OUTLINE Z SPECIFICATIONS

Exercises 11.6

........ mema ~f tha
L

1. Specify an operation to return the set of all people who have any one o
following relationships to a given person x?. The name of the required
relationship should be an input to the operation.

(i) The parents of person x?

(i) The grandparents of person x?
(iii) The grandchildren of person x?
(iv) The descendants of person x?
(v) The siblings of person x?

(vi) The aunts of person x?

2. Give a Z expression for the set of all people in the database who have
no relatives in the database.

3. Give a Z expression for the set of all people in the database who have
no siblings in the database. ‘ !

4, Specify an operation to output the number of genera_tlons through which
a given individual p can trace his/her family history in the database.

The common ancestors of two given people

This operation must return the set cas! containing the common ancestors of

A GENEALOGICAL DATABASE 141

CommonAncestors
= GenDB

pl,q?: PERSON

cas!:I®P PERSON

{p?.q7} Ucas! C dom sex

cas!={ca: PERSON |3m,n:Ne
((p?+ ca € parent” A q? — ca € parent™)
A—3r: PERSON;x,y:Ne
((x+y<m+n)Ap?—r€parent™ A\ g?— r € parent”))}

Note that the specification allows for the special case where one of the two
people is a direct descendant of the other, in which case the common ancestor
is the person higher in the family tree. m and » are natural numbers, and it is
therefore possible for either or both to be zero, yielding the identity relation
on PERSON. The only debate might be as to whether a person can be their
own ancestor!

The cousins of a given person

This operation returns the set cousins! containing all cousins of a given type
and removedness for a given person, say p?. Cousins are people who have a

3 sy

common ancestor who is more distant than a parent, and who are not siblings. .Tﬂ, s '
The type of cousinship is determined by the shortest path from the common ., /

two people, say p? and ¢?. We will further stipulate that the set contains only
the common ancestors of minimum degree, where the degree refers to the

number of steps in the path up and/or down the family tree between the two

people. For example, if p? and ¢? are siblings, the degree is 2. If p? and_ q? are

first cousins, the degree is 4. If p? is the grandparent of ¢?, the degree is 2.
The precondition is that all the people involved are in the database.

sl
{p?,q?}Ucas\!gdom sex Bk cas 1' (s He <.'4'w~{’°*L"‘A e in

The postcondition characterises elements of the set of common ancestors of
minimum degree as people for whom there are multiple compositions of parent

which map both p? and ¢? to them, and furthermore there are no other
common ancestors with degree smaller than that of members of this set.

Lv] . b
cas!={ca: PERSON |3m,n:Ne S (A
((p?+ ca€parent” Nql—cae parent™)

((x+y <m+n) Apl—r€parent™ Nql—r € parent”))}

The operation schema is as follows:

stV
A—3r: PERSON; x,y:Ne e Y

ancestor to either one of the cousins. For example, for first cousins the
common ancestor would be a grandparent of one cousin, for second cousins a
great-grandparent, and so on. ‘Removed’ refers to the difference in the number
of steps in the path from each cousin to the common ancestor. ‘Once removed’
means a difference of one step, ‘twice removed’ means a difference of two steps,
etc. For example, my first cousins’ children are my first cousins once removed,
and their children are my first cousins twice removed.

This operation has an input nth? : Ny, to represent the type of cousinship, and
an input rem?: N, to represent how far removed the relationship is. nth? has
type N; because the minimum type of cousinship is first cousins, represented by
the number 1.

The precondition simply states that everyone involved is in the database:

{ p?7} U cousins!C dom sex

For the postcondition we define a relation which maps a cousin to his/her
cousins at the same or a lower level in the family tree. Remember that nth? is
defined with respect to the cousin with the shortest path to the common

142 TWO OQUTLINE Z SPECIFICATIONS

ancestor, and rem? represents the difference in length between the two paths.
The required relation is

(parent™+1 5 (parent™ 'y HIEremy\ ((parent ; parent™")
e ;
sib low reled o,

The set subtraction removes from the relation all pairs of people who have the ;1
same parents. Therefore if rem? is zero, the relation does not relate anyone to 4 LG
i

themselves or their siblings.

The image of our person in this relation will yield all the relevant cousins at
the same or a lower level in the family tree as our person, However, if the value
of rem? is non-zero, our person may have some cousins with the same
relationship at a higher level in the tree. We therefore also require the image of
our person in the inverse of the above relation. To avoid repeating the
expression for this relation, we use a Z construct called a let predicate which
provides a method for naming subexpressions in complex predicates.

let n=—cep

stands for the predicate p, but wherever the name n occurs in p, it represents the
value e. We use a let predicate to give the name cosrel to the above relation for
use as a subexpression in specifying the set of all nth? cousins rem? removed,
both above and below person p? in the family tree.

The operation schema is as follows:

g Cousins
= GenDB

p?: PERSON

nth?: Nl

rem?: N

cousins! ;P PERSON

{ p?} U cousins!C dom sex

let cosrel — (parent™+1 ; (parent™" " +1+7em")\ (parent ; parent™") e
cousins! = cosrel ({ p7}) U cosrel ' ({ p7})

11.4 In conclusion

In this chapter, we have looked at two outline specifications which are
somewhat more complex than those we have met previously. However, we have
not introduced much new notation; we have simply applied our previous
knowledge to some harder problems. Hopefully these examples will serve to

I tha i il A

IN CONCLUSION 143

dcmpnstrate the power of the Z notation to model complex situations
succmc;tly, clearly and precisely. If you are having difficulty understanding
thelp_, it may hglp to draw pictures of typical values of the state variables, to
enable you to visualise what is going on. If you understand the examples at first
viewing that’s fine, but if not, don’t be disheartened! Complex problems require
a lot of study, and if it was easy it wouldn’t be rewarding. When you can
understand, modify and extend the above examples, you will be very well
prepared for further study of the Z language.

