CHAPTER 2

Logic

2.1 Introduction

We all use logic in our daily lives when we attempt to draw valid conclusions
from information we are given; in other words, logic is about reasoning. The

mathematics of formal logic was developed by George Boole (1815-1864), in an
attempt to describe human thought processes. In 1938, his boolean algebra was

successfully applied to the design of switching networks by Claude Shannon,

and more recently has found wide application in the field of computing,

_for example in design of computer circuits, control flow in programs, reason-

__ing about properties of programs, and as a description language and reasoning
mechanism for formal specification languages such as Z. This chapter, of
necessity, contains only those bare essentials of propositional and predicate
logic which are required for our study of the essence of Z; for a more
comprehensive introduction, the reader is referred to Kelly (1997).

6

2.2 Propositions

A proposition is a statement which is either true or false, but not both. These
truth values are represented by T and F respectively. The following are all
propositions:

‘This book is about Z.

‘There is a z in the word zoo.’

‘The Earth orbits the Moon.’

‘42 < 42’

‘Liverpool are the best football team in England.’
‘All cats wear hats.’

true

false

The last two are constant propositions, always true and always false
respectively.

Questions and commands are not propositions. For example, the following
are not propositions:

‘Is the answer 427
‘Don’t talk to me like that!’

Exercises 2.1

1. What are the truth values of the above propositions?

@ Why is x >0 not a proposition?

For brevity, the letters P, O, R, S, etc., are often used to stand for proposi-

tions.

2.3 Compound propositions and logical connectives

The propositions above are_atomic; that is, they are indivisible truth-valued
statements. In everyday situations, we combine such propositions with words
such as and, or and_not to produce compound propositions. For example,

‘This book is about Z and all cats wear hats.’

“There is a z in the word zoo or the Earth orbits the Mooﬁ, and Liverpool are
the best football team in England.’
“There is not a z in the word zoo.’

8 LOGIC

Note that although such sentences do not always make sense, they are valid
propositions; that is, they do have a truth value. ‘ .

In formal logic, the words and, or and not are logical connectives, or
operators. They are represented by the symbols A (conjunction), V (disjunc-

tion) and — (negation) respectively. The symbo?s_ A and V are binary operators;
That is, they are placed between two propositions to construct a new pro-
position. The symbol — is a unary operator, placed in front of a proposition to
construct a new one.

We must now define precisely what we mean when we use the symbols A, V
and — in logic expressions. We can do this by writing down the truth values of
the relevant expression for each combination of truth values of its operand
propositions (say P and Q), in a so-called truth table. The truth tables for the

above operators are given in Tables 2.1-2.3.

Table 2.1 Truth table for A

P Q PAQ
F F F
F T F
T F F
T T T

PAQ is true if and only if P and Q are both true.

Table 2.2 Truth table for vV

P Q PVQ
F F F
F T T
T F T
i T T

PV Q is true when either or both of P and Q are true.

Table 2.3 Truth table for —

P -P
F T
T F

=P is true when P is false, and vice versa.

Exercise 2.2 & v o

The meanings of A and — are fairly intuitive, but that of V is rather different
from our common interpretation. If P is the proposition ‘This afternoon I will
go to play football’, and Q is the proposition ‘This afternoon I will go to play
golf’, what can you say about the above definition of the connective V in
comparison with the usual meaning of the word or in everyday life? Write
down a truth table to capture the latter meaning, using the symbol & for
your connective.

Two more connectives, the implication operator = and the equivalence or
biconditional operator <>, are given in Tables 2.4 and 2.5 respectively.

Table 2.4 Truth table for =

2
o

P=Q

e i
e
— M=

Table 2.5 Truth table for &

E Q Peq
F F T
F T F
o F F
T 0 il

The implication operator is read as ‘P implies Q’ or ‘if P then Q’. For
example, ‘if it is a nice day then I will walk to work’. However, propositions
constructed with this operator do not have to make sense in everyday language.
From the table we can see that the proposition ‘if pigs can fly then there is a
spaceship in my teacup’ is true! A reasonable way to interpret the table is that
the last two lines capture the ‘if P is true then Q is true’ part, and the first two
lines capture the fact that if P isn’t true, the expression says nothing about the
value of Q; it may be true or false.

The equivalence or biconditional operator may be read as ‘P is equivalent to

Q' or ‘Pif and only if Q’. For example, ‘I fail my exam if and only if I score less

than 40%’. The phrase ‘if and only if’ may be shortened to ‘iff’, and this
abbreviation will be used in this book.

L'he OPErators /\; Vi dllu S7 GIULLALG W Wiv Ivity Trasary 77 swwwsmesss vy

right. This means that, for example,

5

P = Q = R is equivalent to P=(Q=> R) and
P& Q & Ris equivalent to (P Q)= R

The order of precedence of the connectives, from highest to lowest, 18 =4 A,V

= and <.

In writing down compound propositions, we can take advantage of these

properties to reduce the number of brackets needed. For example,
(~P)=(QAR)

may be written as
-P= QAR

and
P=@Q=-P)eQ

may be simplified to

P=Q=-P&Q

2.4 Truth tables for compound propositions
To draw the truth table of a compound proposition with more than one

operator in it, we can break the proposition down into its constituent subexpres-
sions, work out the truth tables for these, and then combine the result.

Example
Draw the truth table for the expression

(=PAQ)=~(QVR)

First, we will note that the number of rows in the truth table for a given

expression is always 2" where n is the number of distinct logic variables in

the expression. There are three distinct logic variables in the above
expression, P, O and R respectively, and therefore the table will have
eight rows. The easiest way to write down the permutations of the values

A 4y B MAAITA AT U A SALE LAL SSALIL AT LSS A TTA ALS WASASSSSES & TTALAL & LIS LIS SAWALE

four with T. In the next column, we put F in the first two rows, T in the
next two, and so on, and finally in the third column we alternate each row
with F and T.

We must now identify the ‘first-level’ subexpressions, according to the
precedence and association rules above; that is, we express our
proposition in the form

~(exp)
or the form

(expl) (op) (exp2)
as appropriate, where (exp), (expl) and (exp2) are the subexpressions
and (op) is one of the above operators. If the subexpressions are complex,
we would break these down similarly, until we have expressions for which

we are able to write down a column in our truth table. For the above
example, we can see that it has the form

(expl) (op) (exp2)
with
(expl)=(=PAQ) (op)== and (exp2)=-(QVR)

We write down columns for these expressions, and finally combine these
columns to give the column for the entire expression. The result is shown
in Table 2.6.

Table 2.6 Truth table for (-P A Q) = —(Q V R)

P Q R (~PAQ) —(QVRA) (~PAQ)= ~(QVR)

o Mo HE B By o e o £
4 —4mTm—=a<4Tmn
S e i s g B 1
mhmmmA-ATmm
mTmm—=anmm4
e s M B B s IR I

Z.5 1aUrtoiogy anu culiniauvivuvn

It can be seen that the above proposition is true for some rows of the table and
false for others. A proposition which is true for all the rows of the table is

called a tautology, and a proposition which is false for all the rows is called

a contradiction.

Exercises 2.3

1.

Draw truth tables for the following propositions, and state whether each is
a tautology, a contradiction or neither. Which are logically equivalent; that
is, which have the same truth table?

Example
Establish whether the proposition

A=(PNQV(PA-QAR)& PA(QVR)
is a tautology, a contradiction or neither.
We draw the truth table for the subexpressions
B=(PANQ)V(PA-QAR)
and
C=PA(QVR)

and then combine these using the operator < to obtain the column for
the entire expression.

Again, you may wish to break the expression down further, creating
more columns, to make the problem more tractable. The result is shown
in Table 2.7.

From the final column of the table, we can see that the expression is
a tautology.

/ Table 2.7 Truth table for (PAQ)V(PA-QAR)<PA(QVR)

/ P Q R B (& A

444 =T TmTmm
o e 0 1 M W R 1 i 5
mdTm-dm=n
== FIrn-"nmnm
44T mT T
e e e B e B R B

(i) PV(QAR)

(i) -PVQ

(i) (P==0)=(Q=P)
(iv) —~(PVQ)

V) ~(PA-Q)

(vi) falseV true

(vil) false A-(PV Q)

2. Read the following paragraph and write a logic expression to determine
whether or not to cycle to work, with R standing for the proposition ‘it is
raining’, S standing for the proposition ‘the car starts’, and P standing for
the proposition ‘a push start is available’,

I either cycle to work, or I use my car. If it isn’t raining, I cycle to
work. If it is raining, I use my car, unless the car doesn’t start, in which
case I have to cycle in the rain, unless I can get a push start from

my neighbour.

2.6 Laws of boolean algebra

Propositional logic (and set theory; see Chapter 3) are examples of boolean

algebras. There are five basic laws, or postulates, of boolean algebra. For
propositional logic, the laws are as follows, with P, 0 and R standing for
any propositions:

Commutative laws:
PAQ& QAP
PVQ& QVP
Associative laws:
/“(PANQ)ARS PA(QAR)
((PVQ)VR& PV(QVR)

Distributive laws:

PA(QVR)& (PAQ)V(PAR)
PV(QAR)& (PVQO)A(PVR)

Complement laws:
/" PV-P & true
k P A —P & false

Identity laws:

/ PV false < P

'\ PAtrue < P

Note that all laws come in pairs. Given one valid law, we can derive another

one, its dual, by replacing all instances of A with V and vice versa, and similarly

with all instances of false and true.

2.7 Proof of theorems

Other laws, or theorems, can be defined, the validity of which may be proved by
“using the above basic laws and other, previously proven, t theorems
Proving laws by repeated application of previously derived laws is called

AT

Prove PV (PAQ) & P.

Proof:
PV(PAQ)
& (PAtrue)V (PAQ) identity law
& PA(trueV Q) distributive law
< P A true theorem above and commutative law
&P identity law

Note that we have used the operator <> in the above. This is a part of

)

the language of propositional logic, and, strictly, this means that the above

are not laws, but propositions. We should really have used the meta symbol
=, which does not construct a proposition, but denotes logical equivalence

“of its operands. However, we will not require this symbol in the rest of

deduction. Alternatively, we can prove laws by using truth tables. We write
down the truth tables for each side of the law, and check that they are identical.
This is called perfect induction. It can be tedious, but is often easier than proof
by deduction.

Example Pl N"‘ “\.

Prove PV P & P,

pveye P
Proof: —_— Y
PVP B |
< (PV P) A true identity law =
&S (PVPYA(PV—P) complement law F
< PV(PA-P) distributive law
< PV false complement law
&P identity law
Example

Prove PV true < true.

wparte inducha’

Proof:
PV true
& PV(PV-P) complement law
S (PVP)V-P associative law
& PV-P theorem above
& true complement law

this book.

Exercise 2.4

Prove the dual of each of the above laws, both by perfect induction and
by deduction.

2.8 Variables and types

Z is a typed language. To introduce a variable (i.e. a name which denotes a

value) into a specification, we write a declaration associating the name with

a type, which is the set of all the values which may be associated with the name.

The set of all whole numbers (integers), denoted by Z, is a type which is built
into the language:

Z=:.;—3,-2,-1,0,1,2]3, ...

The set of all natural numbers

N=0,1,2 33

although actually a subset of the type Z rather than a type itself, may also be
used in declaring variables. For example,

x:.Z

declares a variani€ X WILCH 1Ay SLAlu 1UL aily 1HugEet, wass
x:N
declares a variable x which may stand for any natural number.
x, y:N
declares two such variables. There are also mechanisms for defining additional
types. We will say a lot more about sets and types in the next chapter, but this

is sufficient for our present purpose, which is to extend the notation introduced
so far by introducing the concepts of predicates and quantification.

2.9 Predicates

A predicate is an expression containing one or more free variables which act as

s IV WUuCIIMIINIGI 9

To construct a proposition from a predicate, we must remove all the free

variables. We can remove a free variable either by replacing it with a particular

value as above, or by binding it by quantification.

place holders for values drawn from specified sets. Substituting values for all
the free variables in the expression yields a proposition. For example, given

x, y:N
the expression

x=y+3
is a predicate with two free variables x and y. Replacing x with the value 4
and y with the value 3 yields a proposition with the value F. Replacing x with

5 and y with 2 yields a proposition with the value T. Thus, a predicate may be
viewed as a template for constructing propositions by ‘plugging in’ values.

Exercises 2.5

1. Given x, y, z: N, which of the following expressions are predicates?

i) (x+2»-17 X
(i) x+10=x v’
(i) @x+yAz ¥

(V) (x+»<DA(z=y) V4

2. If we substitute the values x=3, y=4 and z=35 in the above predicates,
what are the truth values of the resulting propositions?

The universal quantifier

Consider the expression Same &S 1
4 N 2IOB t WAl
Vx:N|x<10ex+9> 12 YasN @

Which may be explained as follows:

¥ is the symbol for the universal quantifier, read as ‘for all’.

x:Nis the declaration of the variable which is bound by the quantifier. A bound
variable is not free, and cannot be replaced with particular values. In the
above expression, x stands for any, value from N.

| is read as ‘such that’.

x < 10 is an optional constraint. If we choose to omit it, then we also omit
the symbol |.

e may be read as ‘it is true that’.

x +9 > 12 is the predicate being quantified.

Thus the expression may be read as ‘For all natural numbers x such that x
is less than 10, it is true that x+ 9 > 12’. The expression contains no free

variables, and is a proposition with the value F.
The general form of a proposition constructed using the universal quantifier is

V(name) : (type)|(optional constraint) e (predicate)

which is read as ‘for all (name) of type (type) such that (optional constraint) is

true, (predicate) is true’.

The existential quantifier 5
Consider the expression 3 vl G

Jx:N|x<10ex+9> 12 L N o 2)10 N ’RH?“

Here:

3 is the symbol for the existential quantifier, read as ‘there exists at least one’,

18 LOGIC

The other parts of the expression are as before. The expression may be read as
“There exists at least one natural number x such that x is less than 10, for which
Tt is true that x + 9 > 12". The expression contains no free variables, and is @
proposition with the value i i3

Note that there may be many natural numbers which make the predicate
true: if we want to state that there is precisely one such number, we may use the
unique quantifier 3. The expression

3x:N|x<10ex+9> 12

may be read as ‘There exists precisely one natural number x such that x is less
than 10, for which it is true that x + 9= 12, Clearly, the value of this expres- i
sion is F.

The general form of a proposition constructed using the existential quanti-
fier is

J(name) : (type)|(optional constraint) e (predicte)

which is read as ‘There exists a (name) of type (type) for which (optional
constraint) is true, such that (predicate) is true".

o (5]

Exercise 2.6 s (Rl

LAS“‘\
Which of the following are predicates, and which are propositions? For those
which are propositions, what are their truth values?

@) Vx:N|x=4ex>5 F

(i) Vx:Ne(x>42)V(x<42) I

(iii)) Vx:Ne(3Fy:Ney=2x) 7

(iv) 3x:Ne2=3 1
&) Vx:N|@:Nex=2)ex#42 F (for @) X, "i p

(vi) 31)_‘:N.x=42 '_'r‘ 15 evew | Hon l}f' iJ ’L)

(vi) Vx:Nex=y Pfu! M\ ap A 4 .

2.11 A note about proof

Z is a formal language based on logic and set theory. There are proof theories
associated with both propositional and predicate logic, which can be used to
prove that Z specifications have various desirable properties and thus to gain
more confidence in them. Proof is also useful in refining a more abstract
specification into a more concrete one, usually closer in nature to the pro-
gramming language in which the specification is to be implemented. Proof can

give us more confidence that such a refinement retains the properties of
the original specification. The use of proof in specifications is important to
an advanced study of Z, but is beyond the scope of this book. See Diller
(1994) and Woodcock and Davies (1996) for further reading on this impor-
tant topic.

