30 SETS AND TYPES

However, you will note that the set operators introduced in this chapter have CHAPTER 4
been described in English. We could have given precise definitions using logic. % <
For example, the following is a definition of set union. For a given type T' The StrUCture Of a Z SPEC!ffcathn

Vx:T:A,B:PTexc AUB& xe AVxeB

s

In other words A

g o yh,a"
VA,B:PTe AUB={x:T|x€ AVx¢€ B} gl

Exercises 3.6
Aims
1. Give logic expressions to define formally the meaning of: ' . :
To apply the material of the previous two chapters to the development of
7 specifications, to introduce mechanisms for structuring Z specifications,
and to illustrate the above with a simple example.

(i) set intersection;
(il) set difference;
(ili) generalised union.

2. Describe the following situation using the notation covered in this chapter.

Assume that you have the type [PERSON], the set of all people. Learnlng ob]ecﬂvss

(i) People are either women or men, but not both.

(i) A company employs people in three departments: marketing,
personnel and production. Each employee is in precisely one of these
departments.

(iii) Each department has a maximum of 10 staff.

(iv) All the staff in marketing are women.

(v) The company employs more men than women.

When you have completed tius chapter, you should be able to:

e represent the state of simple systems using sets and logic;

e specify the effect of eperauons which change or interrogate the state of
a system; ;

e structure your specﬂicanons using schemas

e introduce appropriate exception handhng to totalise your operatlons '
using the schema calculus;

e determine the conditions necessary for an operation to take place
successfully.

3. Now assume that each employee in the previous question can be in
more than one department. Write down expressions for:

(i) The number of women who work in all three departments.
(i) The number of men who work in marketing and personnel but not
in production.

4.1 Introduction

In this chapter, we will develop an example to illustrate the “flavour’ of writing
specifications with Z. We will introduce most of the notation for structuring Z
specifications that will be used for the rest of the book. The specification is for
the student badminton club mentioned in Chapter 3, and could be implemented
as a computer system or paper records, to keep track of the whereabouts of the
club members, add or remove members from the club, etc.

To write a specification in Z, we create a model of the required system. The
structure, or state, of the system is represented using sets, and the relationships

31

between the elements of the state are expressed using the language of logic.
We then use logic to specify operations to change or make queries about the
state of the system.

A
&

Suppose that the student badminton club has the sole use of a hall with a single
badminton court. To use the hall, one must be a member of the club. To ensure

that everyone gets enough games, there is a imit of 20 people allowed in the

hall at any one time. We will construct a model of this system. We begin by

identifying the basic types required in our specification; here there is only one:

[STUDENT] the set of all students

We can represent the limit on the number of people allowed in the hall by an
axiomatic description which is a Z construct for defining a global variable,

which is in scope (may be referred to) throughout the specification.

[maxPlayers : N

‘ maxPlayers =20

The top half is a declaration, and the bottom half is an optional predicate

(Nﬁ-’ﬂ-\-“’\) r\u'\’ awn D\S'S\-C)nmﬁg\)\

specifying a constraint on the values of the variable declared. The constraint

chosen here effectively makes maxPlayers a global constant.

We are interested in the whereabouts of the members of the badminton club.

We can represent this information using two sets of students: badminton, the set
of all members of the club, and hall, the set of all those who are in the hall. The

things which must always be true for any values of these sets are:

@ A person in the hall must be a member of the club.
hall C badminton

@ The number of people in the hall must not exceed maxls'layers.

hall < maxPlayers 2 i 'w?___m,‘ XS5

Lke s

These predicates are called the state invariants of the system. If the sets hall and

badminton are to represent a valid state for the system, then the values which
they take must be such that they make the state invariant predicates true.
In Z, we combine the declaration of the sets with the predicates constraining

their values using a box called a schema. The state schema for our system is

as follows:

ClubState .
badminton:P STUDENT st yamabler
hall: P STUDENT

hall C badminton .QFFJ“* cott § &\’ﬂi'\ \né bV A a».f{“
LTl = sensens Diaviawe 4 il e L:f r nlD L-'{, (?J_J-J
‘ﬁtﬂ]{:;!ukll)fﬂf.) rrf-—Jl'\J (IS =] a1 L

The state variables are declared in the top half of the schema box, above the
line. badminton and hall are variables which take values which are sets of
students, so their type is the powerset of the type STUDENT. The predicates
defining the invariant properties of the state are defined in the bottom half.
Note that predicates on separate lines are implicitly conjoined to make one

predicate; the above could be rewritten as

(hall C badminton) A\ (# hall < maxPlayers)

4.3 Operations

The above state schema defines the set of valid states which our system may
assume. The system may move from one valid state to another by operations
which change the values of one or more of the state variables. For this example,

~ we might be interested in operations to add or remove a member to/from the

club, or to add or remove a member to/from the hall. Such operations will
involve adding or removing elements to/from the two sets which constitute the
state variables. However, before we specify any operations, we must learn some
new notation.

Inputs and outputs

Operations often require inputs and outputs, and the convention for naming

these is that an input identifier is terminated by a ? and an output identifier is

terminated by a |.

‘Before’ and ‘after’ states

To specify the effect of an operation on the state of the system, we must be able
to refer to the state variables both ‘before’ and ‘after’ an operation. The
convention is that ‘before’ variables are undecorated, whereas the names of

‘after’ variables are decorated with primes (dashes). If x is a variable before a

given operation, then x’ will be the same variable after the operation. For
example, the set badminton would represent the variable before an operation,
and the set badminton' would represent the same variable after the operation.

We define the effect of a state-changing operation using:

1. Predicates which state what must be true about the ‘before’ state of the

system and the inputs, if any, in order for the operation to take place,
“These are known as preconditions.

2. Predicates which relate the *before’ state and the inputs, if any, to the
‘after’ state and the outputs, if any. These are known as postconditions, and
define the effect of the operation. Note that we specify what the result

of the operation must be; how the operation works is not stated. This is

a consideration for those who must implement the specification as a

computer program or other system.

Note that the preconditions may be explicitly stated, or they may be implicit,

occurring as a consequence of the postconditions and/or the state invariant, in

which case we may have to calculate them. See Section 4.13 for more on this.

4.4 Adding a new member

We will now use the above ideas to specify an operation to add a new member
to the badminton club. To join the club, a potential member must register with
the club secretary, after which the member may go to the hall to play. The
potential new member will be an input for the operation, declared as

newMember?: STUDENT

For this operation, it is important that new Member? is not already a member of
the club. This leads to the precondition

newMember? & badminton

Note that the state invariant implies that newMember? is also not in the hall.

The required behaviour for the operation is that newMember? be added to the
set badminton but not to the set hall. We can achieve this by placing
newMember? in a set by itself (a singleton set), and taking the union of this set
with the set badminton. This leads to the following postconditions:

badminton' = badminton U {new Member?}
hall' = hall

Note that we have explicitly specified that the set hall does not change. If we
didn’t include this condition, we would be underspecifying the operation, that
is we would not be stating whether or not newMember? is to become an element
of hall. A person implementing this operation could then make either choice.
It is important in general to specify our operations fully; that is, to state what is
to happen to all of the state variables.

To complete the definition of the operation in Z, we gather the above
declarations and predicates into an _operation schema which we will call
AddMember. The declarations part (top half) of the schema must contain the
declaration of any input and output variables. As things stand, AddMember

would also have to contain the ‘before’ and ‘after’ versions of the state schema

{ dendimeme and invariant nredicates Thig ig hecauge all declarations and
declarations and invanant proGlCales. fals Is DClallsl anf brbiglaliols ouby

predicates are local to the schema in which they appear, and are therefore not

" implicitly available in any other schema. Any object referred to in the predicate

part (bottom half) of a schema must either be declared in the top half of that

schema or be globally defined.

" We could simply copy all the required ‘before’ and “after’ state declarations

and predicates into our AddMember schema, as follows:

AddMember
badminton:P STUDENT

badminton' : P STUDENT ¢
hall:P STUDENT o
hall':P STUDENT 3
newMember?: STUDENT X2

hall C badminton

hall < maxPlayers
hall’ C badminton'

hall' < maxPlayers

newMember? & badminton
badminton' = badminton U {new Member?}
hall’ = hall

However, this could get very tedious, and Z provides the following mechanisms
for simplifying the process, thereby making specifications clearer and more
succinct.

Schema decoration

Given a schema S, the notation S’ stands for S with all of its variables

decorated with primes throughout the schema. For example,

IR Ty L
badminton' : P STUDENT
hall': STUDENT

hall’ C badminton'
hall' < maxPlayers

Schema inclusion

All declarations and predicates from a schema S may be included in a schema

T by simply placing the name of § in the declaration part of T*

e T

S
(declarations for T')

(predicates for T')

If the same variable name occurs in both S and 7, then it must have the same
type in both.

The delta convention

For a given schema S, the notation AS represents the schema obtained by
including S and S’ in an otherwise empty schema. The A symbol is not an

operator, but simply part of a schema name. However, the convention is uni-

g AddMember

versally used.

A
S
S.f

We can therefore rewrite the AddMember schema as follows:

A ClubState
newMember?: STUDENT \,}
newMember? & badminton <,

badminton' = badminton U {new Member?}
hall' = hall

,In general, for a state schema S, the inclusion of AS in an operation schema

indicates that the operation potentially changes the state, because it brings

into scope the ‘before’ and ‘after” versions of the state variables and invariant

predicates.

Note that by including the ‘before’ and ‘after’ versions of the state invari-
ants, we implicitly introduce further pre- and postconditions which must not be
violated by the operation.

Exercise 4.1

Write a schema for the operation RemoveMember, which removes a member
from the club. Hint: To remove an element from a set, place the element in a
singleton set and use the set difference operator \.

4.5 Entering the hall

We will now specify an operation for a student to enter the hall. The student
will be an input to the operation.

enterer?: STUDENT

For the student to enter the hall, s/he must be a member of the club.
enterer? € badminton

and must not already be in the hall!
enterer? & hall

Additionally, to ensure that the operation will not violate the state invariant,
the number of members already in the hall must be less than maxPlayers.
To improve clarity, it is often better to make such implicit preconditions,
which are consequences of the state invariant, explicit in the operation schema.

hall < maxPlayers

This will also make it easier later on to identify and handle exceptions, that is
to specify what action is to be taken when the preconditions of the operation
are not satisfied.

The above properties constitute the preconditions for the EnterHall
operation. The effect of the operation, captured by the postconditions, is
to add the person to the set hall. The set badminton is not changed by the
operation.

hall' = hall U {enterer?}
badminton' = badminton

The required schema is
. PnterHgit. L.

A ClubState
enterer?: STUDENT

enterer? € badminton
enterer? & hall

hall < maxPlayers
hall' = hall U {enterer?}
badminton' = badminton

" Exercise 4.2

Write a schema for the operation LeaveHall, which removes a member from
the hall.

4.6 The xi convention

For a given state schema S, the notation =S represents the schema obtained by

declared in S, the predicate

XxX=Xx

In other words, including =S in an operation schema makes visible the ‘before’

and ‘after’ versions of the declarations and predicates of S, together with the

assertion that these variables are not changed by the operation. Again, the £

symbol is simply part of a schema name, but the convention is universally used.
For the badminton club example, we have

— — 2 ClubState
A ClubState

badminton' = badminton
hall’ = hall

4.7 Query operations

Sometimes we wish to specify operations which do not change the state, but
output some information about it, For example an operation to output the set

of all club members not in the hall:

NotinHall e wmSse m«_Jq:m-\ U al ey L
= ClubState 3) i
outside!: P STUDENT =ty V] & sy

outside! = badminton \ hall

Note that the inclusion of Z ClubState specifies that the operation does not
change the state, and the suffix ! in the variable name outside! indicates that this is
an output. There is no precondition; this operation may be applied to any state.

Exercise 4.3
Specify an operation which inputs a student and outputs a message stating
whether s/he is:

(i) in the hall;
(i) a member but not in the hall;
(il) not a member.

You may assume the existence of the free type

MESSAGE ::=inHall | notInHall | not Member

4.8 Combining schemas with propositional operators

Two schemas S and T can be combined using any of the following proposi-

tional operators:

SAT
SvT
S= Tor
SexT

Each of these defines a schema which merges the declarations from S and T,

_and whose predicate is

Py op P,

_where P, is the predicate of S, op is the appropriate propositional operator,

and P, is the predicate of 7.

Any variable name occurring in both § and T must have the same type

in each.
For example, consider the following schemas:

o Ve Hemal MY o, Sk
a:zZ a,b:Z b:PZ
a=42 a=b+2 42¢b

b<10

AandB= A A B is the schema

AandB
ab:Z

(@=4)A(@a=b+2)Ab < 10))

= is the schema definition symbol, which is used to associate a name with a

schema.

AimpliesC = A => C is the schema

— AimpliesC
a:Z
b:PZ

(a=42) = (42 €b)

The use of propositional operators with schemas enables us to give more
structure to complex specifications by breaking them down into simpler
units. For example, the AddMember schema requires that the new mem-

LOCATION ::= inside | outside

AddMemberinHall

A ClubState

newMember?: STUDENT -)
where?: LOCATION LOCATION

where? = inside Wb b (‘,UL, te (xald)
new Member? & badminton

hall <maxPlayers

badminton' = badmintonJ {newMember?}

hall’ = hall U {newMember?} -

AddMemberOutHall
A ClubState

newMember?: STUDENT
where?l : LOCATION

where? = outside

newMember? & badminton

badminton' = badminton U {new Member?}

hall’ = hall %

We can now define a schema which represents the operation of adding a new

member either outside or inside the hall using schema disjunction as follows:

1ASide [oy fride

AddMember Anywhere = AddMemberInHall v AddMemberOutHall

Where an operation schema has explicit preconditions, we can specify separate

schemas for handling the exception situations where the preconditions of the

operation are not satisfied, and use the schema calculus to combine these sche-

mas to define a robust, so-called rotal version of the operation which does

ber joins the club whilst outside the hall, and the only people allowed in the hall

are members of the badminton club. Let us picture a different scenario, where _

_the hall has other activities going on, and people other than members of the
badminton club may be present in the hall. The set hall is still the set of

all members of the badminton club who are in the hall, but it is possible for

a new member to join either outside or inside the hall. We can represent

the joining location as a free type, and define two operation schemas,

AddMemberInHall and AddMemberOutHall, to specify the two possible cases

as follows:
Eta{?l\ﬂ Lu-L:s O J')"A e \,JA/vlr l;-&
v\ﬂ/-tm H,.u/‘g JA/a_

__something meaningful for any combination of the values of its ‘before’ state

and inputs. An example of this is presented in the next section.

Exercise 4.4

1. Given the above definitions of 4, B and C, write down the expansion of
~ the following schema expressions:

(i) P=A<B

(i) Og=A=(4AVC)

(ili) R=AV(BAC)

(

;:2) What do you notice about the predicate of the schema 4 A B?
3., Give a definition of A ClubState using a propositional schema
R operator.

4.9 Totalising operations

When specifying an operation, it is important to state the action to be taken

for all possible values of the state variables and inputs. Such an operation is

system to decide what to do in the cases not specified.
In the AddMember operation, for example, we have only specified what is to
happen if the precondition

newMember? & badminton

is satisfied. If the precondition is not satisfied, the successful case of the opera-
tion must not happen, the state must not change, and we will want the system
to produce an appropriate exception message stating the reason for not doing
the operation. A common way of dealing with this in Z is to represent the set of
‘outcome’ messages as a free type.

MESSAGE ::= success | isMember

We can now write a schema to specify the action for each possible outcome.
The situation where a potential new member is already a member gives the
following schema. Note the inclusion of = ClubState to indicate that this
schema does not change the state.

IsMember ‘&
= ClubState \I\’W n
newMember?: STUDENT N

outcome!: MESSAGE

newMember?e badminton
outcome! = isMember

For consistency, we may also wish to produce a message when the operation
executes successfully. This message can be represented by the schema

_sometimes referred to as fotal. If the operation specification is not total, then
the specification is not complete; we are leaving it up to the implementor of the

SuccessMessage
outcome!: MESSAGE

outcome! = success

Schemas may also be written in an equivalent horizontal form, where declara-

“tions and predicates are enclosed in square brackets and separated by |. If there

is more than one declaration or predicate, they are separated by semicolons,

“The horizontal form is appropriate for small schemas such as SuccessMessage:

SuccessMessage = [outcome! : MESSAGE | outcome! = success]

The complete specification of the AddMember operation can now be defined
by combining the various schemas using the propositional operators of the
schema calculus encountered above.

Total AddMember = (AddMember N\ SuccessMessage) | IsMember

This is a schema which specifies the outcome for any possible values of the
‘before’ state and inputs, and outputs the appropriate message. Note that some

operations have no preconditions and therefore such exception handling is

“unnecessary. For example, the NotInHall operation in Section 4.7 above may

be applied to any state and 1s therefore already a total operation,

“For operations with more than one precondition, the neatest way of defining
the total operation is to write separate schemas to handle each of the precondi-
tion exceptions, and then combine the schemas using schema disjunction as
above. However,_if more than one error occurs simultaneously, the operation

may be non-deterministic in that it does not specify which of the errors are to

be reported. This could be overcome by including error messages not just for
every individual error condition, but also for all combinations of error condi-
tions. However, this would become extremely tedious and lead to unnccessanly
large specifications. A better solution is to document the non-determinism in

the specification document, leaving it up to the implementor of the specifica-

tion to decide how to handle multlple error conditions.

The use of the delta and xi conventions, and the notation for combining
schemas using propositional operators, allow us to produce modular specifica-
tions which are clearer and more succinct. To demonstrate this, you might try
expanding the TotalAddMember operation as a single schema!

Exercise 4.5

Extend the specification to totalise the EnterHall operation. Note that in
this case there are three preconditions to consider, the exception to each of
which should be handled by a separate schema.

4.10 The initial state

We have created a model of a system by defining a set of valid states and a set of
valid operations, some of which cause the system to move from one state to
another. However, we have not specified in which valid state the system must
start. An appropriate initiai state for this system woulid be one in which there are
no members in the club; that is, in which the sets badminton and hall are empty.

__ InitClubState
ClubState’

badminton’ ={ }
hall' = {}

Note the inclusion of ClubState’; the convention is for initial state variables to

be decorated. The initial state is effectively a special ‘after’ state, without a cor-

responding ‘before’ state. We may think of it as the result of an operation
“to create our system from nothing, or to reset the system from any state.
We are obliged to verify that the proposed initial state is indeed a valid state;
that is, the state invariant property is not violated. A brief inspection in this
case confirms that this is so, because

0. %3 o Law
el L) € "’“\ff;wﬁw
i :}-4‘ IV\w A

Vn:Ne#{}l <n

However, for some specifications, the proof that the proposed initial state is
valid is not so straightforward.

4.11 Renaming

Schema variables may be renamed to produce a new schema, by writing the

For example, given the badminton club state schema as before

ClubState
badminton: P STUDENT
hall: P STUDENT

hall C badminton
hall < maxPlayers

the schema

FootyClub = ClubState [football | badminton, pitch [hall]

is the schema

FootyClub
football :P STUDENT
pitch:P STUDENT

pitch C football
pitch < maxPlayers

4.12 Hiding

The schema hiding operator | takes a schema and a list of variables declared in

the schema, and hides the variables in the schema by removing them from the

schema declarations and existentially quantifying them in the schema pre-
dicates. In general, for a schema S, the expression

necessary changes in square brackets after the schema name. In general, for a

schema S, the expression

S[x/a,y/b,z/c]

represents S with all instances of the name a replaced by x, b by y and ¢ by z.

S\(x,¥,2)

represents S with the declarations of variables x, y and z removed and existen-
tially quantified.
Given the schemas 4 and B from Section 4.8,

- . sad (KR Ao iy
a:Z a,b:Z
a=42 a=b+2
— - b< 10

the schema 4\ () would be a schema with an empty signature and a predicate
which is always true! e

-

Vs

},
%,.

The schema HideB= B\ (b) would be as follows:
 HideB __
a:Z

b:Ze
a=b+2
Ab <10

In fact, the predicate now simply states that there is a number less than 12
which equals @, so the schema simplifies to

_ HideB _
a:z

a<l12

Given the AddMember schema as before,

AddMember
A ClubState
newMember?: STUDENT

newMember? & badminton
badminton' = badminton U {new Member?}
hall' = hall

the definition

AddWho = AddMember \ (newMember?)

is the schema q‘;j &
. AddWho A\ 4
A ClubState 1 ok \g °
AL
V'f\‘ S\ fL
InewMember?: STUDENT o Pt A7

newMember? & badminton
A badminton' = badminton U {new Member?}
Ahall' = hall

Hiding may also be achieved using projection. See Spivey (1992) for further
information.

e, Ia: Ze O\':Q-:-

4.13 Operation schema preconditions

schema by hiding all ‘after’ state variable and outputs.

When we specify an operation, it is important to know the combinations of the
‘before’ state and input variables for which the operation may be applied.
In other words, the combinations of ‘before’ state and input variables for
which there are values of the ‘after’ state and output variables which satisfy the
operation’s predicates. These combinations may be defined from the operation

The schema precondition operator, denoted by pre, is used to calculate

the precondition of an operation schema. For an operation schema S, the

‘expression
X

pre §

e

is the precondition schema of S, which is S with all ‘after’ state variables and

ber specifying the successful addition of a member:

SuccessAddMember = AddMember A SuccessMessage

explicit, we get the following:

SuccessAddMember
ClubState

badminton' : P STUDENT
hall':P STUDENT
newMember?: STUDENT
outcome! : MESSAGE

hall ' C badminton'
hall ' < maxPlayers

newMember? & badminton
badminton' = badminton U {new Member?}
hall' = hall

outcome! = success

the difference between this and A ClubState or = ClubState.
The precondition schema pre SuccessAddMember is the schema

output variables hidden. For example, consider the schema SuccessAddMem-

If we expand this schema, making all ‘after’ state declarations and predicates

ClubState has been included instead of explicitly writing all the ‘before’ state
declarations and predicates, to make the schema a little more succinct. Note

SuccessAddMember \ (badminton’, hall’, outcome!)

defined as follows:

pre SuccessAddMember
ClubState
newMember? : STUDENT

3 badminton’, hall’ :P STUDENT: outcome! - MESSAGE o
hall’ C badminton’
A# hall” < maxPlayers
A newMember? & badminton
A badminton' = badminton U {newMember?}
Nhall' = hall

LA outcome! = success

This can be simplified as follows:

hall' = hall

implies that we can remove the quantification of /all’ and replace all references

to hall’ with hall. Furthermore

3 outcome! : MESSAGE e outcome! = success

is trivially true, and so can be removed, to give the following;

pre SuccessAddMember
ClubState
newMember?: STUDENT

dbadminton’ : P STUDENT e
hall C badminton’
A# hall < maxPlayers
AnewMember? & badminton
A badminton' = badminton U {newM. ember?}
A hall = hall
e all = ha

hall = hall

is trivially true, and can be removed.

_# hall < -maxPlayers

is simply repeating the ‘before’ state invariant which we already have included

with ClubS late.

Now

badminton' = badminton U {new Member?}
and

hall C badminton (from ClubState)
implies

hall C badminton’
Therefore the latter is unnecessary.

3 badminton’ : I STUDENT e badminton' = badminton U {new Member?}

is also trivially true, so the schema simplifies to

__ pre SuccessAddMember

ClubState
newMember?: STUDENT

new Member? & badminton

We have arrived at the original precondition specified in the operation schema.

‘This seems like a lot of work for no gain, but the preconditions of an operation
are not always obvious from first inspection of the operation sche'm_a. The'above
precondition was explicitly stated in the operation schema, but it is possible to

specify preconditions implicitly, in which case the abo‘ve process would m:ilke
them explicit. For example, if we are not interested in producing Fxcapt:on
m?sgegés for the AddMember operation, we could leave out the predicate

newMember? & badminton

altogether.

AddMember
A ClubState
newMember?: STUDENT

badminton' = badminton U {new Member?}
hall" = hall

The operation has no effect when newMember? & badminton, and therefore does
not violate the state invariant. However,

newMember? & badminton

is still implicitly the precondition for successfully adding a new member, Relying
on implicit preconditions, which are implied by the operation’s postconditions,
or which arise as a consequence of the state invariant, is not necessarily wrong.
You should always try to write specifications using whatever style is appro-
priate to make the specification clear, precise and understandable. However,
it is still important to establish the conditions in which each operation is appli-
cable, and that it has been correctly specified, and this often means explicitly
calculating preconditions.

Exercise 4.6

For the EnterHall schema

EnterHall
A ClubState
enterer?: STUDENT

enterer? € badminton
enterer? & hall
hall < maxPlayers \,

hall’ = hall U {enterer?} qu\

badminton' = badminton Q\

which of the explicitly stated preconditions could be made implicit? Write
down the precondition schema for EnterHall.

Calculating preconditions can also reveal whether an operation is under-
specified. For example, there may be combinations of ‘before’ state and inputs
for which the operation does not specify anything. Take the TotalAddMember
schema, for example.

TotalAddMember = (AddMember N\ SuccessMessage) V IsMember
= SuccessAddMember \ IsMember

We can take advantage of the fact that pre distributes through disjunction,
that is

pre TotalAddMember = pre SuccessAddMember \ pre IsMember

We have already calculated the pre SuccessAddMember schema above,

Expanding the IsMember schema, making all ‘after’ state declarations and
predicates explicit, we get the following:

IsMember
ClubState
padminton' : P STUDENT
hall' : P STUDENT
newMember?: STUDENT
outcome! : MESSAGE

hall' C badminton'
hall' < maxPlayers

newMember? € badminion
outcome! = isMember
badminton' = badminton
hall' = hall

Again, ClubState has been included instead of explicitly writing all the *before’
state declarations and predicates.
The precondition schema pre IsMember is the schema

IsMember\ (badminton', hall', outcome!)

defined as follows:

pre IsMember
ClubState
newMember?: STUDENT

3 badminton’, hall' : P STUDENT; outcome!: MESSAGE
hall' C badminton'
A# hall' < maxPlayers
A newMember? € badminton
A outcome! = isMember
A badminton' = badminton
Ahall' = hall

By a similar process to that used for pre SuccessAddMember, this schema
simplifies to

pre IsMember
ClubState :
newMember?: STUDENT

newMember? € badminton

which means that pre TotalAddMember is the schema

pre TotalAddMember
ClubState
newMember?: STUDENT

newMember? & badminton
V newMember? € badminton

Clearly, the predicate simplifies to frue, indicating that the operation is
applicable for any combination of ‘before’ state and inputs. This confirms that
the operation is indeed total.

4.14 In conclusion

In this chapter, we have met many of the fundamental techniques and nota-
tions used in writing Z specifications. In the rest of the book, we will introduce
further mathematical structures and associated operators required to construct
more sophisticated specifications, but the basic principles introduced here of
modelling state and operations, and of structuring by means of the schema
calculus, apply to most Z specifications.

~ Exercises 4.7

A simple computer game is to be based on the following description;

The system consists of a pond which may contain any number of fish up
to and including a given maximum. Conceptually, the user is fishing in the
pond with a rod and line. The user has a net suspended in the pond into
which s/he must place any fish which s/he catches,

For a Z specification of this system, we require the following basic type:

[FISH] the set of all fish

and the following global description:
maxFish:N the maximum number of fish which the pond can contain.

Write a schema to describe the state of this system. Hint: At this level
of abstraction, we are interested only in the pond, the net and the
relationship between them.

Write a schema for an operation whereby the user catches a fish and places
it in the net.

Write a schema for an operation whereby the user returns one or more
fish to freedom in the pond.

Write a schema for an operation whereby a number of new fish are
added to the pond.

Write a schema for an operation which outputs the number of fish
which are currently free in the pond.

