CHAPTER 5

A first specification:
The student badminton club

Aims

To describe the process of specification development, to outline a format for
presenting specifications, and to present a complete simple specification.

Learning objectives

When you have completed this chapter, you should be able to:

. develop simple Z specifications in a methodical way;
e produce a well-organised specification document.

5.1 Introduction

In the previous chapter, we introduced many of the concepts necessary for
writing Z specifications, illustrating them by reference to a simple specification.
However, we did not fully describe a method to be used when developing a
Z specification. Such a method must embrace both mechanisms for structur-
ing a specification, as described in the previous chapter, and a process to be
followed in the development of the specification.

5.2 The process of specification development

A methodical approach to the development of Z specifications has evolved from
the work of the Programming Research Group at Oxford University, and others.
This was referred to as ‘The Established Strategy’ by Barden et al. (1994), and a
summary of some of the steps they suggest is given below. The structure of the
specification document should also be based on this sequence. The document

should contain both the formal Z text and accompanying informal text which

54

THE STUDENT BADMINTON CLUB SPECIFICATION 55

,rovides explanations of the formal text and describes any aspects of the

specification not amenable to formal description.

Firstly, requirements analysis is carried out, in which the sets and constants

ocessary to describe the important parts of the problem are identified.
“Then the basie types of the specification are identified and recorded, together

with any global variables required.

—Nexl, the state schema 1s developed. For a complex state, several schemas

may be used for its constituent parts, and combined using the schema calculus.
~The initial state is then described, and a proof that this initial state exists.

This is followed by schemas describing the operations, without taking into
consideration the error cases for each operation.
~Next, the preconditions of the operations are calculated, and each operation

schema is checked and, if necessary, modified to ensure that it explicitly con-

tains its precondition predicate. This facilitates the construction of error

handling schemas, usually one for each possible exception to the operation’s

preconditions.
“For each operation, the successful case schema and the error schemaf(s) are

now combined using schema disjunction to produce total specifications for each
operation. However, if more than one error occurs simultaneously, the opera-
tion may be non-deterministic in that it does not specify which of the errors
are to be reported. This could be overcome by including error messages not

just for every individual error condition, but also for all combinations of error

conditions. However, this would become extremely tedious and lead to
unnecessarily large specifications. A better solution is to leave the non-
determinism in the formal text and document it in the accompanying informal
text, leaving it up to the implementor of the specification to decide how to
handle multiple error conditions.

The above is a ‘standalone’ strategy for developing Z specifications. Various
schemes have also been developed for integrating Z into the process of non-
formal structured analysis methods such as SSADM and Yourdon, and several
object-oriented versions of Z (Stepney et al. 1992) have been produced, but
these topics are beyond the scope of this book.

5.3 The student badminton club specification

This specification is for a system to manage a student badminton club. The
specification could be implemented as a computer system or paper records.
The system will keep track of the whereabouts of the club members and add or
remove members from the club.

Basic type and global variable

The student badminton club has the sole use of a hall with a single badmin-
ton court. To use the hall, one must be a member of the club. To ensure that




(
1

56 A FIRST SPECIFICATION

everyone gets enough games, there is a limit of 20 people allowed in the hall at

any one time.
The basic type required is as follows:

[STUDENT] the set of all students

4
'

" The limit on the number of people allowed in the hall is maxPlayers.

‘ maxPlayers: N

\ | maxPlayers =20

The state schema

ClubState
badminton:P STUDENT
hall: P STUDENT

hall C badminton
# hall < maxPlayers

We are interested in the whereabouts of the members of the badminton club.
We represent this information using two sets of students: badminton, the set of
all members of the club, and hall, the set of all those who are in the hall. The

invariant properties are:

1. A person in the hall must be a member of the club.
hall C badminton
2. The number of people in the hall must not exceed maxPlayers.

# hall < maxPlayers

The initial state
For the initial state, there are no members in the club; that is, the sets badminton
and hall are empty.

_ InitClubState
ClubState'

badminton' = { }
hall’ = { }

THE STUDENT BADMINTON CLUB SPECIFICATION 57

We are obliged to verify that this is a valid state; that is, the state invariant
property is not violated. A brief inspection in this case confirms that this is

50, because )
pold S badmiakon

# h é V"““XE’W’S

{(yec{}
and

vn:Neg{}<n

The operations

We now define the successful cases of operations to add or remove a member
to/from the club, and to add or remove a member to/from the hall.

Adding a new member

To join the club, a potential member newMember? must register with the club
secretary, after which the member may go to the hall to play. newMember?
must not already be a member of the club, and joins the club outside the hall.

AddMember
A ClubState
newMember?: STUDENT

newMember? & badminton
badminton' = badminton U {new Member?}
hall' = hall

Removing a member

This operation removes a member from the club. The operation is non-
deterministic in that the member may or may not be inside the hall prior to the
operation.

Remove Member
A ClubState
member?: STUDENT

member? € badminton
badminton' = badminton\ {member?}
hall' = hall\ {member?}




58 A FIRST SPECIFICATION

Entering the hall

We now specify an operation for a student, enterer?, to enter the hall. The stu-

dent must be a member of the club and must not already be in the hall, and the
number of members already in the hall must be less than maxPlayers.

EnterHall
A ClubState
enterer?: STUDENT

enterer? € badminton
enterer? & hall

# hall < maxPlayers
hall' = hall\J {enterer?}
badminton' = badminton

Leaving the hall

We now specify an operation which removes a member from the hall. The
member must be in the hall prior to the operation.

LeaveHall
A ClubState
leaver?: STUDENT

leaver” € hall
hall' = hall\ {leaver?}
badminton’ = badminton

f;,“-"J

Error handling schemas  ,.*

The following free type represents the set of output messages required to

construct total versions of the above operations, and for reports from the query

operations which are defined below.

MESSAGE ::= success | isMember | notMember | hallFull | inHall | notInHall

The success message is used to indicate that an operation has been successfully
completed, using the following schema:

( SuccessMessage = [outcome! : MESSAGE | outcome! = success)

THE STUDENT BADMINTON CLUB SPECIFICATION 59

The precondition for the AddMember operation is

The exception to this operation occurs if newMember? is already a member of
the club. In this case, the state does not change and the message isMember is
produced. This is specified by the following schema:

IsMember

= ClubState
newMember?: STUDENT
outcome! : MESSAGE

n
o L.)f o A
ey Sl

newMember? € badminton
outcome! = isMember

The precondition for the Remove Member operation is
member? € badminton

The exception to this operation occurs if member? is not a member of the club.
In this case, the state does not change and the message not Member is produced.
This is specified by the following schema:

NotMember
E ClubState

member?: STUDENT
outcome!: MESSAGE

E)(cep'h'w '(:vv
'QQ»"V\ W0 MEMID—U

member? & badminton
outcome! = not Member

There are three preconditions for the EnterHall operation: (p, ¢ 4)

N enterer? € badminton

) enterer? & hall

# hall < maxPlayers
There are therefore three corresponding exceptions for this operation, namely
% The person is not a member of the club

. The person is already in the hall
{f- The hall is already full to its designated capacity




60 A FIRST SPEGIFICATION THE STUDENT BADMINTON CLUB SPECIFICATION 61

For the first of these, we can use the NotMember schema defined above, with / TotalAddMember = (AddMember N\ SuccessMessage)
the appropriate ret}a{ming of the input: . | v IsMember

NotMembarZ 2 e of 1

[ e
G, Wil Tl

NotMember [enterer? | member?) Nnow A 3 )
(e¥ee™

The two other exceptions are specified by the following schemas:

_ AlreadyInHall
= ClubState
enterer?: STUDENT
outcome! : MESSAGE

enterer? € hall
outcome! = inHall

el
= ClubState
outcome!: MESSAGE

# hall = maxPlayers
outcome! = hallFull

The exception to the LeaveHall schema occurs when the person is not in the
hall. This is handled by the following schema. Note that we have chosen not to
report the error condition where the person is not only not in the hall, but also
not in the club. The corresponding precondition

o

leaver? € badminton L {}J“j\ :
is implicit in the operation schema.—
NotInHall : x9
= ClubState Lo ey St ALY
leaver?: STUDENT e L;,:».J‘

outcome!: MESSAGE

leaver? & hall
outcome! = notlnHall

The total versions of the operation schemas are now defined using the above
exception handling schemas.

TotalRemove Member = (Remove Member A Succ
V NotMember

TotalEnter Hall = (Enter Hall \ SuccessMessage)
vV NotMember [enterer? | member?)
V AlreadyInHall
V HallFull

TotalLeaveHall = (LeaveHall N\ SuccessMessage)
V NotInHall

ssMessaeoe)
ssMessage)

( :JW;J g .J,Q'wdl J\WF yé"a-#t )

Query operations

The following schema specifies an operation to output the set of all club

members not in the hall:

— P —
—

_ OutsideHall
= ClubState .
outside! :P STUDENT

outside! = badminton\ hall

There is no precondition; this operation may be applied to any state, and there-
fore no exception handling is necessary.
The following schema specifies an operation which inputs a student and

outputs a message stating whether s/he is:

/N Location

"‘-a.._,_‘______-__,__,—.

1. in the hall;
2. a member but not in the hall;
3. not a member.

E ClubState
5?: STUDENT
report!: MESSAGE

/
s? € hall = report! = inHall Lw\-{ ,.__‘> .
5?7 € badminton A s? & hall = report! = notInHall

5?7 & badminton => report! = not Member

Again, there is no precondition, and therefore no exception handling is necessary.




