CHAPTER 6

Relations

R s ww mE =

Aims
To introduce relations, to describe the operators associated w1th r_e,l_af’tiqg_s-’,‘_\\
and to iltustrate the use of relations in constructing specifications.
Learning objectives

When you have completed this chapter, you should be able to:

e appreciate the importance of relations as a central feature of most
Z specifications; g

e recognise those parts of an informally described system which are
appropriate for modelling with relations;

‘e select appropriate Z operators for specifying state invariant prope
and operation pre- and postconditions involving relations;

e read and understand Z specifications involving relations, and - il
provide informed criticism of them in respect of clarity and fitness f
purpose. 3 j i M .

6.1 Introduction

We have seen that the state of many simple systems can be represented by one or
more sets of atomic items, with appropriate constraints. However, the speci-
fication of most systems of interest requires more sophisticated mathematic§l
structures. In particular, we may wish to represent the information that thet_'e is
a connection, or relationship, between some of the objects in our specification;
for example, that two people are siblings or that one or more students are
studying one or more modules. We can represent this sort of information using
a new type of set called a relation. Let’s look at some of the fundamental
mathematical ideas that we need.
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6.2 Ordered pairs, Cartesian product and relations

An ordcired pair (a, @_ consists of two elements: a is the first element and b is the

second element. In Z, ordered pairs are represented by the maplet notation
4= b. The Cartesian produci A x B of sets A and B is the set of all the ordered

“pairs which can be formed such that the first element in each pair is a member
of A and the second element in each pair is a member of B.

AxB={a:A,b:Bea— b}

For example, given

Lol
\ = '".L-\‘ﬂ L
A=01.28 pnar gl E
B={a,b,¢} ) beth
X USQ NJ\MLX’J‘
We have that . mr)(f f.‘ o™ L‘\'I‘“Gh.
AxB={l—al—bl—c2—a2—b2c} Ma\ PANAY o
Note that #(A x B) =#A = #B. 5

The operator x is another means of constructing new types from existing

“ones; that is, if 4 and B are types, then 4 x Bis a type, the elements of which

_are maE]eLs.

A binary relation between two sets 4 and B is any subset of 4 x B. Thus the

declaration of a variable R which is a binary relation between sets 4 and B is

given by

R:P(A x B)
In other words, R is a member of the powerset of the Cartesian product of 4
and B. The Z shorthand for this declaration is ‘:
Sph gg.)"

R:4A— B \\Q_Q,\‘)}(\ o

In the special case in which 4 and B are the same set, the relation is said to be

: {Lomogeneous.

Note that if 4 and B are not types, then the type of R must be inferred from
the types of 4 and B, as before.
_Given the types |

[PERSON, CAT] the set of all people and the set of all cats respectively

the relation

owns = {cathy — tiddles, susan— puss, harry — tiger}
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E\Y

is a relation of type

O\?‘
PERSON « CAT 365’
N~
The relation (¢
a O

R={1—54—4,1—87—2

is a homogeneous relation of type Z « Z.

To indicate that a maplet a— b is a_member of a binary relation R we can
either use the conventional set membership operator, that is

a—beR

or use the name of the relation as an infix operator, that is

aRb

In either case, the meaning is that a is related to b by R. For example, for the
above relation R the following are both true:

=5 R
1RS

Note that the concept of Cartesian product may be generalised to more than

two sets. Thus
AxBxC
defines the set of all triples (a.b.c) such thata€ A, b€ B.c € C. In general, if

there are # sets in the product, then the product set is a set of n-tuples (a 2- tugle
is a pair, a 3-tuple is a triple, a 4-tuple is a quadruple).

Exercise 6.1

Given A= {1}, B={2,3}, write down the sets:

() AxB
(i) P(4)x B
(iii) P(4 x B)

(iv) (4 x B)x(A4xB)
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6.3 The university modular degree scheme [\ 3W -

(Quert =
A university operates a modular degree scheme, wherein students choose a
selection of moduies from a iarge menu. (There are certain restrictions on their
choices, discussion of which we will defer until later.) One function of the
administration system for the scheme is to keep track of which students are
doing which modules. We define the basic types

[PERSON, MODULE] the set of all people and the set of all modules
respectively

Then the type
PERSON x MODULE={p: PERSON, m: MODULE e p— m}

is the set of all ordered pairs (maplets) such that the first thing in each pair is a
person and the second thing in each pair is a module. We will consider the

™

maplet p+— m to represent the information that person p is taking module m.
The information for the entire modular degree scheme would therefore be
represented by a ser of maplets, that is by a relation which is a subset of
PERSON x MODULE. We will call this relation

taking : PERSON — MODULE

Exercises 6.2

1. What relation would represent a degree scheme where none of the
people are taking any of the modules?

2. What relation would represent a degree scheme where every person in the
world is taking every possible module?

3. Given the set

firstYear:P PERSON

the set of all first-year students, define the set of all first-year students who
are taking the module programming.

6.4 Source, target, domain and range of a relation
Suppose the relation taking has the value
{Alice — C4-+, Chris— C++, Chris— Z, Sandra— Z, Sandrar— Database}

We can represent this relation as a picture as shown in Figure 6.1.
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[PERSON] [MODULE)
(source) /\ /\ (target)
~
v
Alice

L
L
Chris M Z
Sandra S

dom taking ran taking

Figure 6.1 The relation taking

The types (maximal sets) PERSON and MODULE named in the declaration

of the relation faking are sometimes called the source and target sets respec-

tively. The source is the set from which the first element of each maplet in a
given relation must be drawn, and the target is the set from which the second
element in each maplet in a given relation must be drawn. Each maplet in the
relation taking is represented by an arrow in Figure 6.1.

The domain of the relation taking, referred to in Z as dom taking, is that

subset of the source set whose members have at least one arrow coming out of

them. In other words, the set of all people who occur as the first element of at

Jeast one of the maplets in taking.

dom taking={p: PERSON, m: MODULE | pr m € taking e p}

For the above example

dom taking = {Alice, Chris, Sandra} i

The range of taking, referred to as ran taking. is that subset of the target set

whose members have at least one arrow entering them; in other words the set of

all modules which occur as the second element of at least one of the maplets _

in taking.

ran taking={p: PERSON, m: MODULE ) p— m€ taking e m}

For the above example

ran taking={C++, Z, Database}
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6.5 Module registration

Clearly, taking will be an important part of the representation of the state of
our administration system. However, we are only interested in the set of people
who are registered as students at the university, and the set of modules which
are part of the modular degree scheme.

students:IP PERSON
'Ef;gModules :P MODULE

This pla_lces a restriction on the maplets allowed in the relation raking. The
Qcople doing modules must be regjstered as students, and the modules they are
doing must be bona fide degree modules at our university.

dom taking C students
ran (aking C degModules

One of the good things about Z is that using it makes us focus on the
problem — to concentrate on precisely what we are trying to specify. A good
notation cannot make us write correct specifications, but it does make it more
likely that we will. We write something down in the Z notation; it only has one
meaning, and in considering what we have written down we must confront the
question of what it was that we were trying to say, or should have been trying
to say, in the first place. At this stage, we might consider issues such as:

e is every student taking one or more modules? ol UM 1‘
e does every module have students taking it? St

e can a student be registered for more than one course (different named

degrees within the modular scheme, or HND and HNC courses)? g -\a¢

e are the sets of modules for each course disjoint? 7 = 9)"(: O
For simplicity, we choose not to consider other courses within the universit;\,
but we do allow the possibility that a student registered on the degree scheme
may not be doing any modules (the student may be intermitting, that is taking
a break from the course, or may be on a sandwich placement), and that a Dr\é‘\'

‘module within the scheme may not have any students. The schema describing w\w"

the state of the module registration part of the administration system is thus 4
‘J\UV(’ V
Module Reg X
students:IP PERSON
degModules: P MODULE ' =72 (1)
taking : PERSON — MODULE (relahim 8 ot {-Jt)fzj b
.+ wnd M OHULE,
dom taking C students — SS9 cadants
Lran taking C degModules — __\-'\V\Mj Le 41,\\5,;_\5 Teivo m‘l“h;

|
S M&MU’J Ir“v\Mj g\p\”—e
wo sk dents
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Note that because relations are sets, all the set operations that we have met so
far (union, intersection, membership, etc.) may be applied to them. In fact, in
this and the following chapters, we will be considering a hierarchy of different
types of sets, each of which is a more restricted form of its predecessor, and each
of which is associated with successively richer sets of operations, comprising
those operations ‘inherited’ from the predecessors together with new operations

specific to that structure. Thus relations are a special type of set, functions

(Chapter 7) are a special type of relation, and sequences (Chapter 9) are a special

type of function.

Exercises 6.3

1. Give a Z expression for the set of all students who are not taking any
modules.

2. Give a Z expression for the set of all degree modules which have no
students.

3. Suppose that there is a maximum of n people allowed to study a module.
Give a Z expression for the set of all modules which are full; that is, which
have precisely n people taking them.

4. Write down the additional predicate required in the schema ModuleReg,
to incorporate the maximum limit of n people described at 3 above.

5. Give an appropriate type for a variable matches, which represents the
draw for a round in a tennis tournament, What invariant predicates would
have to be associated with matches to ensure that each person in the draw
is only in one match, and is not playing against themselves?

]

6.6 Relational image

Given a relation R: A « B and a set S C A, the relational image of S in R is

defined as follows:

L
[

R(S)={b:B|Jda:Aeac SNhar—be R}

In other words, the set of all those members of ran R that are related by R to

members of S.

For example, the set of all modules being studied by student p is

taking ({ p})
For the value of taking shown in Figure 6.1

taking ({Alice, Chris})={C++, Z}
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6.7 Inverse of a relation

Given a rel_;ltion | R: A4 < B, the inverse of R is defined as

“'={a:4.b:Bla—be Reb—a}

In other words, R~ is the relation obtained by reversing the order of each of

the maplets in R, or to put it another way, by reversing the direction of all the

;i]’iﬁ\ﬁ in the picture of R. The type of the inverse relation is therefore
R':B— A

For example, for the value of raking shown in Figure 6.1 we have

taking™' = {C++w Alice, C++ s Chris, Z — Chris, Z — Sandra,
Database — Sandra}

Exercises 6.4

1. Write a Z expression for the set of all students taking module m.

2. Write a Z expression for the set of all students who are taking at least
one module which student s is taking.

3. Write an alternative answer to question 4 of Exercises 6.3, using relational
image and inverse.

6.8 Operations

We will now consider the successful cases of some of the operations which the
university’s administration staff will wish to perform on this part of the system
state. As before, some of these will cause the state to change and some will
simply interrogate the state for information.

Adding a new student to the university

F_Or a person p? to become a student at the university, the precondition is that
s/he is not one already!

AddStudent
A ModuleReg
p?: PERSON

P? & students

students' = students U { p?}
deg Modules' = degModules
taking' = taking
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Registering a student for a module

In order that a person p? may become registered for a module m? we require

? RegFor Module

i
LodtL.

1. p?is a student at the university.
2. m?is a valid module in the degree scheme.
3. p?is not already registered for m?.

We can add the maplet p?— m? to the relation taking by placing it in a
singleton set and taking the union of this set with taking. This technique is very
commonly used when writing operation specifications using relations. The
schema is as follows:

A ModuleReg
p?: PERSON
m?: MODULE

p’ € students

m? € deg Modules

pl— m? ¢ taking

taking' = taking U { p? — m?}
students' = students
degModules' = degModules

Exercises 6.5

1. Write Z schemas for operations to:

(i) remove a student from the university;

(i) withdraw a student from a module (Hint: Use the set difference
operator \.);

(iii) add a new module to the degree scheme;

(iv) remove a module from the degree scheme.

2. Let there be a limit of n students who may be registered for any single
module. Modify the RegForModule schema to take account of this extra
constraint, and use the schema calculus to define a total version of this
operation, that is one which deals appropriately with all possible
exceptions to the schema preconditions.
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6.9 Domain and range restriction and anti-restriction

Given a relation R: 4« B and a set S C 4, R domain restricted to § may be

defined as follows:
defined a8 O

S<lR={a—b:Ax Bla—beRNae S}

In other words, S <] R defines a relation which is the result of removing from R

;1|'I'i-'r_1_ap_lets with first elements that are not members of S. For example, suppose
we have the set first Year C students, the set of all students in the first year of
their degree course. The subset of taking which relates just first-year students to
the modules they are taking is given by

firstYear < taking

The operation of domain restriction is complemented by that of domain anti-

res_ti'i_ction. R domain anti-restricted to S may be defined as follows:

S<dR={a—b:AxBla—be RNag S}

In other words, S < R defines a relation which is the result of removing from R

u!'l__m'aplets with first elements that are members of S. For example, the subset
of taking which relates all degree students that are not in their first year to the
modules they are taking is

first Year < taking

The above operators restrict a relation to those maplets whose first element is
or is not a member of a given set. We can also define similar operators which
restrict a relation to those maplets whose second element is or is not a member
of a given set, namely range restriction and anti-restriction respectively. Given

the relation R as above and the set T C B, then R range restricted to T may be

dgﬁned as follows:

R>T={a—b:Ax Bla—be RAbE T}

In other words, R [> T defines a relation which is the result of removing from R

anti-restricted to T may be defined as follows:

RBT={a—b:Ax Bla—be RAD&T)}

In other words, R B> T defines a relation which is the result of removing from R

all maplets with second elements which are members of 7. For example,
Suppose we have the set

progMods C deg Modules
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the set of all modules which involve programming. The subset of taking which
relates students to just their modules which involve programming is

L g

iaking &> prog Mods

and the subset of taking which relates students to just their modules which
don’t involve programming is

taking B progMods

As a further example, suppose the relation taking has the value given in Section
6.4 above.

taking = { Alice — C++, Chris+— C++, Chris— Z, Sandra— Z,
Sandra— Database}

Then the following are all true:

{Alice, Chris} <] taking = {Alice — C++, Chris+s C++, Chris— Z}
{Alice, Chris} < taking = {Sandra— Z, Sandra— Database}

taking > {Z } ={Chris— Z, Sandra\— Z }

taking & {Z, C++} = {Sandra — Database}

Exercises 6.6
1. Given the relation
R={1—~1,2—4,3—9,4— 16,5— 25}

and the set S=/{1,4, 5}, simplify the value of each of the following
expressions:

i S<R

(i) RBS

(iii) S<IRD>S

(iv) (Redom R)'pS

2. Given the set first Year as above, write down two ways to describe in Z the
set of all modules which first-year students are taking. (Note that for
many problems there is more than one reasonable way to specify a
solution. Trying to think of alternative solutions to any given problem will
improve your familiarity with the notation and its application.)

3. Given the set progMods as above, write down a Z expression for the set of
all students who aren’t studying any programming.
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4. Look back through the other exercises in this chapter and see whether they
could have been answered using the restriction and anti-restriction
operators.

6.10 Composition and transitive closure

The forward composition of relations R: 4« B and S: B C is denoted by

R;S

and is the relation of type 4 « C defined as follows:

_R;S={a‘:A;c:C|{3b:Boar—»b€ RAb—ce S)earc}

"

The important point is that the target set of R is a subset of the source set of S. [~ )
For example, let

A={1,2,3,4}

B={a,b,c,d}

C‘.: {pBQ!r!S}
and

R={l—a,l—b2—b4—d)}
S={a—pb—g,c—q,c—r}

Then
R;S={lp,1—¢,2— g}

This is illustrated in Figure 6.2
_Informally, a maplet x— y is a member of R; S iff you can get from x to y in
the picture by following two consecutive arrows.

If a relation is homogeneous, it can be composed with itself. For example,
when someone writes an academic paper, they include a list of references, citing
other papers, the content of which they have referred to in their own paper. Let
the set of all academic papers be

[PAPER)

——

and let cites: PAPER — PAPER be the relation such that x cites y (where x and
JV are papers) has the obvious meaning. Then

X cites; cites y
\ o

Covwamg o | JT‘ Mmool wls MH‘ C{}J' 9]
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Figure 6.2 Composition of relations R and S

would mean that paper x cites a paper which cites paper y and

X cites ; cites; cites y

would mean that x cites a paper which cites a paper which cites y, and so on.
There is a shorthand notation to express such multiple composition, as follows.
The identity relation on a set X is

idX={x:Xex— x}

that is, the relation which maps every element of X to itself. For a relation
R: X=X

RO=idX
R‘=R
R2=R:R
R*=R:R;R

The transitive closure of R, denoted by R*, is the relation obtained by taking

the union of all of these relations except R", that is

3
Rt = J{n:N|n>0eR"} = gtk

The reflexive transitive closure of R, denoted by R*, is obtained by including R°

in the union:

R*=|J{n:N|n=0eR"} =R"UR’

So x cites™ y means that x cites y either directly or indirectly via one or more

other papers. In other words, there exists at least one sequence of papers,
beginning with x and ending with p, in which each successive paper (except the
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last one) cites the next in the sequence. Here we are using the term ‘sequence’ in
its informal sense. In Chapter 9 we will give a formal description of sequences,
which are a pcwerful tool in writing Z spmlﬁcanons Note that the relation

r{;g\'* W{}LIIU d.th rﬁldLﬁ: l:\ft:i'y' Pd.])t:r Lo Il.bcl.l d.l[l'l()ugl'l bubl’l da Ll[dlan IS not
normal practice in the academic community!

Exercises 6.7

1. Write a Z expression for the set of all papers cited directly or indirectly
by paper x.

2. Write a Z expression for the set of all papers which cite other papers
(directly or indirectly) but are not themselves cited (directly or indirectly).

3. Write a Z expression which states that if any paper cites another (directly
or indirectly), then the second one may not cite the first (directly or
indirectly).

4. The university also wishes to keep track of which modules each student has
completed. Extend the state schema of the module registration system
specification to incorporate this feature. You might also like to think about
any new operations which would be necessary.

5. A student may not retake a module which s/he has already completed.
Modify the schema which registers a student for a module to allow for this
restriction.

6. In a modular degree scheme such as the one described above, some
modules may only be taken if one or more prerequisite modules have been
passed. Extend the state schema to incorporate a prerequisite structure.
You may also wish to specify some operations for the new state, for
example an operation to enquire which modules are prerequisite for a
given module.




