in our specification as

|

CHAPTER 8
A second specification:
The video shop

Aims

To apply the concepts of the previous chapter to the
simple specification. g

Learning objectives e
When you have completed this chapter, you should &
e use functions in combination with other structures

8.1 Introduction and basic types

A video rental shop keeps one or more copies of each of a set of video titles.

“To rent a copy, a person must be registered with ‘the shop as one of its
hembers. For simplicity, we will say that a given member can only hz?ve one
copy of any given title on rental at any given timi We 1dentify the basic types

[PERSON] the set of all people
[TITLE] the set of all video titles

Note that a title is an abstract idea; each physical video cassette is not a title,
but a copy of a title.

8.2 The system state

The state of the system must contain all information relevant to our (albeit
simplified) video shop: who the members are, which titles are stocked and

82

THE SYSTEM STATE 83

how many copies of each, and which titles are currently rented out to
which members.

We can capture this information in the following state schema:

VideoShop
members: P PERSON
rented: PERSON «— TITLE
stockLevel: TITLE — N,

\ iRl “‘_l\ art J—] s T
dom rented C members Waet ofS KW, o e L
ran rented C dom stock Level \n A O WTYN, § R
Yt :ran rented e # rented [> {1} < stockLevel 1 —_ |]
N 1““3"‘ 7 W bl A

b e @ ot f‘)'*"-} rwv"?- oo

Here: . .
Y 2A hoant OFa N

members is the set of all registered members.

p+— t € rented iff person p currently has a copy of title ¢ out on loan. rented is
a relation, which captures the fact that each member can have copies of
many video titles on loan (but only one copy of each title), and copies of each
video title can be on loan to many people.

stockLevel t is the number of copies of title 7 stocked by the shop. stock Level
is a function because each title in dom stockLevel is associated with
precisely one stock-level figure, and stock Level is a partial function, because
the shop does not necessarily stock all the titles in the world! The target
of stockLevel is Ny, which states that the stock level for any title in stock
cannot be zero.

dom stock Level is the set of titles stocked by the shop.

The predicate

dom rented C members

captures the requirement that only members may rent videos.
The predicate

ran rented C dom stockLevel

captures the requirement that a video can be rented iff it is in stock.
The predicate

_ Vt:ran rented e rented [> {t} < stockLevel t

_ captures the requirement that the shop cannot rent out more copies of a_
given title than 1t has in stock.

84 A SECOND SPECIFICATION
8.3 The initial state

In the initial state, there are no members and no stock.

InitVideoShop —
VideoShop'

members' ={}
stockLevel’ ={ }

The only possible value of rented' is therefore the empty set, and the invariant
Vi:ran rented’ o # rented’ > {1} < stockLevel t

is trivially true, as ran rented’ is the empty set. The initial state is therefore a
valid state for the system. '

8.4 Operations

We now specify the successful cases for operations to rent out a video, change
the stock level of a given title, and remove a given title from stock. Each of
these successful cases will cause a change in the system state. We then specify
the successful cases of some query operations which interrogate but do not
change the state. These comprise an operation to return the set of all titles
rented by a given person, an operation to return the number of copies of a
given title which are out on rental, and an operation to return the number of
copies of a given title which are in the shop.

Renting out a video

This operation will change the state, and therefore includes A VideoShop. The
inputs required are a person to rent the video and the title to be rented.
There are no explicit outputs, only a change of state. The preconditions are
as follows:

1. The person p? is a member, and the title t? is in stock.

p? € members
t? € dom stock Level

2. At least one copy of title ¢? is available for renting.

stock Level t?># rented > {17}

OPERATIONS 85
3. The person does not already have a copy of title 1? on rental.
p?— 17 & rented

The postcondition simply adds the required maplet to the relation rented.

rented' = rented U { p?— 17}

The operation schema is as follows:

__ RentVideo
A VideoShop

pl: PERSON

t1: TITLE

p? € members M higusad. D{ 2 l\\ \e =

1?7 € dom stockLevel ck@

stock Level 17> # rented [> {11} e ke o we
pl— 17 & rented ' .

rented' = rentedU { p?+— 17} f e shat

stockLevel' = stockLevel
members' = members

Increasing or decreasing the stock level of a given title

This operalio_n requires the title and the required change in stock level (which
may be positive or negative) as inputs. The preconditions are as follows:

1. The title ? must be in stock.

t? e dom stock Level

2. The potential change must leave a positive number of copies of the title

in stock.

stockLevel 17+ change? >0

3. The number of copies of the title in stock after the operation must not

be less than the number of copies out on rental.

stockLevel t?+ change? = # rented [> {17}

86 A SECOND SPECIFICATION

The postcondition uses the overriding operator & to modify a single pair from
stockLevel using a singleton function.

stock Level' = stock Level & {t?— stock Level 1? + change?}

Title ¢? is mapped by stockLevel’ to the new value for its stock level. This is a
very common pattern of usage for @.

You should note that preconditions 2 and 3 are not strictly necessary. Pre-
condition 2 is implicit in the postcondition, as the target of stockLevel is N;.
Precondition 3 is implicit in the ‘after’ state invariant

¥t:ran rented’ o # rented' > {t} < stockLevel' t

together with the postcondition. However, we include them in order to con-
struct exception handling schemas for each of these conditions.
The operation schema is as follows:

___ ChangeStockLevel
A VideoShop

t?: TITLE

change? . Z

ek 7 4 o sl Hwtt)

1?7 € dom stockLevel

rented' = rented
members' = members

Removing a title from stock

The title ¢? must be in stock, and there must be no copies of the title out
on rental.

t? ¢ ran rented
1? € dom stockLevel

We must remove the pair containing this title from the stockLevel function.
stockLevel' = {17} < stock Level
This time, instead of using overriding to map ¢? to a new range element, we

have removed the pair from the function altogether, using the domain anti-
restriction operator <.

Cs"\'\:c.lﬂ
stockLevel t?+ change? >0 ved
stockLevel t?+ change? = # rented b {17} (N""‘““Jr &chiyfi; A
stockLevel' = stock Level & {17+ stockLevel t?+ change?} A)

OPERATIONS 87

The operation schema is as follows:

T DeleteTitle

A VideoShop
t?: TITLE

t? € ran rented

t? € dom stockLevel
stockLevel' = {7} < stockLevel
members' = members

rented' = rented

Note that the predicate

t? € dom stockLevel

is not strictly necessary, because if ¢? is not in the domain of stockLevel,
the predicate

stockLevel’ = {t7} < stockLevel

represents no change in stockLevel. However, in the implementation of the
system, we will want to pick this up as an exception to be reported to the user,
and it is therefore included in the specification with an appropriate exception
handling schema (see below) to specify the generation of a message when the
title is not in stock.

Finding out the titles currently rented out by a given person

This operation will not change the state, and therefore includes = VideoShop.
The person must be a member. The required set of titles is the relational image
in rented of the set containing only this person.

— TitlesOut
= VideoShop
p?: PERSON
titles!:P TITLE

Pl € members
titles! = rented({ p?})

88 A SECOND SPECIFICATION

The number of copies of a given title currently out on rental
The title must be one stocked by the shop. The required output is the number

carnmemd alameamt

of pairs in rented which have this title as their secona eieine

___ CopiesRentedOut
E VideoShop

11 TITLE

copiesOut! : N

t? € dom stockLevel
copiesOut! = # rented > {17}

The number of copies of a given title currently in the shop

The title must be one that is stocked by the shop. The required output is the
number of copies stocked by the shop minus the number of copies currently
out on rental. We can access the latter by including the CopiesRentedOut
schema with appropriate renaming of copiesOut! so that it is not an output
from the operation. Note that this also brings the declaration of the title 7 and

= VideoShop into scope. 0 Lo cak Wb},l,k

8.5 Error handling schemas

The following free type represents the set of output messages required to con-
struct total versions of the above operations:

MESSAGE ::= success | notMember | notInStock | allCopiesOut
| already Rented | nonPosStock Level | tooMany Rented

| still Rented

The success message is used to indicate that an operation has been success-
fully completed, using the following schema:

SuccessMessage = [outcome! : MESSAGE | outcome! = success)

CopiesInShop
CopiesRentedOut[copiesOut | copiesOut!] _ \—‘—J
copiesin!: N ! O
I}\ ~ s)‘") by GM\-"-\h v
£ clomlockovel et e i LT s
copiesn! = stock Level t? — copiesOut £y WP
)

ERROR HANDLING SCHEMAS 89

Renting out a video
The precondition exceptions and the schemas to handle them are as follows:

1. The person p? is not a member.

NotMember
E VideoShop
) pl: PERSON
) outcome! : MESSAGE

(p? & members
outcome! = not Member

2. The title t? is not in stock.

____ NotInStock
= VideoShop

t?: TITLE
outcome! : MESSAGE

t?7¢ dom stock Level
outcome! = notInStock

3. No copy of title ¢? is available.

AllCopiesOut

E VideoShop

{12 TFTLE

outcome!: MESSAGE

stockLevel 17 =# rented [> {17} (o O LS remied W*]

outcome! = allCopiesOut

e

+

The person already has a copy on rental.

— Already Rented
E VideoShop

\ p?: PERSON

4 t?: TITLE

1 outcome! : MESSAGE

pl—t? € rented
outcome! = already Rented

90 A SECOND SPECIFICATION

Increasing or decreasing the stock level of a given title
The precondition exceptions and the schemas to handle them are as follows:

1. The title ¢? is not in stock. This is handled by the NotInStock schema
above.

2. The potential change would not leave a positive number of copies of the
title in stock.

NonPosStockLevel
! = VideoShop

\ t?: TITLE

) change?: Z

5 outcome! : MESSAGE

(stockLevel 7+ change? < 0
\ outcome! = nonPosStock Level

3. The number of copies of the title in stock after the operation would be less
than the number of copies out on rental.

TooMany Rented
E VideoShop

t1: TITLE

change? . Z

outcome! : MESSAGE

e

stock Level t7+ change? < # rented [> {17}
outcome! = tooMany Rented

Removing a title from stock
The precondition exceptions and the schemas to handle them are as follows:

1. The title £? is not in stock. This is handled by the NotInStock schema

above.
2. There is at least one copy of the title out on rental.

___ StillRented
= VideoShop

t?: TITLE
outcome! : MESSAGE

f t? € ran rented
outcome! = still Rented

TOTAL OPERATION SCHEMAS 91

Finding out the titles currently rented out by a given person

The precondition exception occurs when the person is not a member. This is
al o

e RTC T

Lo o B iy A SN S az
ndnailed Dy LOe /NoLviemper sCOeind dooy

m

The number of copies of a given title currently out on rental

The precondition exception occurs when the title ¢? is not in stock. This is
handled by the NotInStock schema above.

The number of copies of a given title currently in the shop

The precondition exception occurs when the title ¢? is not in stock. This is
handled by the NotInStock schema above.

8.6 Total operation schemas

The total versions of the operation schemas are now defined using the above
exception handling schemas.

TotalRentVideo = (RentVideo N\ SuccessMessage)
Vv NotMember
V NotInStock
V' AllCopiesOut
\ Already Rented

TotalChangeStock Level = (ChangeStock Level A SuccessMessage)
\/ NonPosStock Level
V TooMany Rented

TotalDeleteTitle = (DeleteTitle N\ SuccessMessage)
V NotInStock
\ StillRented

TotalTitlesOut = (TitlesOut N\ SuccessMessage)
V NotMember

TotalCopiesRentedOut = (Copies RentedOut N SuccessMessage)
V NotInStock

TotalCopiesInShop = (CopiesInShop N\ SuccessMessage)
V NotInStock

92 A SECOND SPECIFICATION

Exercises 8.1

i. Write schemas
the video shop.

2. Write a schema for the operation whereby a member returns a video to
the shop.

3. How could you modify the state schema to allow a maximum of n videos
to be rented by any given member?

4, Write a schema for an operation to output the set of all people who have
a given title on rental.

5. Write a schema SimilarTastes to output the set of all people who have on
rental at least one of the titles currently rented out to a given person.

6. Write exception handling schemas to totalise (make robust) the above
operations.

7. Given the schema AddTitle, which adds a new title to the stock,

Lo mamnmnbsmmn bo add awd e o
Ul Upl;ld-liullb {0 add ana remove 4 mcm

_ AddTitle
A VideoShop
t?: TITLE
level?: N,

stockLevel' = stockLevel U {t?— level?}
members' = members
rented' = rented

what implicit precondition is present in this schema?
8. How could you modify the state schema VideoShop to allow any given
member to rent more than one copy of a given title at the same time?

CHAPTER 9

Sequences

Alms o 0

To introduce the concept of the sequence as a specialised sort of function, to
introduce some sequence operators and to demonstrate the application of
sequences in writing specifications.

i

Leatnlng objecilves

When you have cempletéd this chapter, you should be able to:

' understand the kinds of system which may be modelled using
~sequences, and the styles of specification commonly used
with sequences;
 understand the effect of relation, function and sequence operators
when applied to sequenees, and how to construct sequence-valued
- expressions using them;
e understand how the Z language may be extended by adding genenc :
- axiomatic definitions to speclﬁcatlons, and appreciate when it is
approprlate to do $0. '

9.1 Introduction

Sequences embody the idea of the members of a set being arranged in a partic-
ular order. Examples from everyday life are situations such as a supermarket
checkout queue (a sequence of people), a phone directory (a sequence of names
arranged alphabetically, each paired up with the corresponding phone number)
or a queue at traffic lights (a sequence of vehicles).

Sequences allow us to model the common linear abstract data types of
t.:omputer science, for example lists, stacks and queues. As artefacts in a speci-
fication for a computer program, sequences may naturally be implemented in
the target language as arrays, arrangements of pointers and records/structures,

93

