92 A SECOND SPECIFICATION

Exercises 8.1

1.

2.

Write schemas for operations to add and réemove @ memoer (o of
the video shop.

Write a schema for the operation whereby a member returns a video to
the shop.

How could you modify the state schema to allow a maximum of » videos
to be rented by any given member?

Write a schema for an operation to output the set of all people who have
a given title on rental.

Write a schema Similar Tastes to output the set of all people who have on
rental at least one of the titles currently rented out to a given person.
Write exception handling schemas to totalise (make robust) the above
operations.

Given the schema AddTitle, which adds a new title to the stock,

_ AddTitle
A VideoShop
t?: TITLE
level?: N

stockLevel' = stock Level U {t7— level?}
members' = members
rented’ =rented

what implicit precondition is present in this schema?

8. How could you modify the state schema VideoShop to allow any given

member to rent more than one copy of a given title at the same time?

CHAPTER 9

Sequences

To mtroduﬁc thc eoneept of the sequenee asa specmhsed sort of funcuon to
introduce some sequence operators and to demonstrate the apphcatmn of
sequenees in vmtmg spemﬁcatlons iJ .

o ugsiersfan& the kmds ni‘ system wmc :
sequeneps, anfi thg styies Df _ icati

i ion, fu:uctaon and sequeuce eperamrs L
ed t"-‘; sﬂquem. aud how m construct sequenoe‘valuad i

_ > Z anguage may be exbended bjf addmg getwnc ’
. amgmauc deﬁmﬁons to specifications, and appreczate whenitis
_ appropnate to doso."

9.1 Introduction

Sequences embody the idea of the members of a set being arranged in a partic-

ular order. Examples from everyday life are situations such as a supermarket

checkout queue (a sequence of people), a phone directory (a sequence of names
arranged alphabetically, each paired up with the corresponding phone number)
or a queue at traffic lights (a sequence of vehicles).

Sequences allow us to model the common linear abstract data types of
computer science, for example lists, stacks and queues. As artefacts in a speci-
fication for a computer program, sequences may naturally be implemented in
the target language as arrays, arrangements of pointers and records/structures,

93

94 SEQUENCES

or object-oriented container classes. The translation for functional program-
ming languages, where lists are built in and other recursive data types are easily
defined, is even more straightforward.

9.2 Sequences in Z J

A sequence is a restricted sort of function. The restriction is that the domain of

a sequence must be a prefix subset of Ny, the natural numbers excluding zero.

In other words, if the sequence contains n maplets, its domain will be the set

[..n. For example, given the type

[PERSON] the set of all people

the function

§:N; - PERSON where s = {1~ tom, 2+ dick,3 — harry}

is a sequence, whereas the function

t:N, - PERSON where t = {1+ tom, 2+ dick,6 — harry}

is not a sequence.

We would refer to s as a sequence of people. In other words, a sequence

SEQUENCES IN Z 95

This declaration allows s to be empty. To specify that s has at least one element,

we can use the declaration

s:seq; PERSON

In general, sequences may have repeated elements, for example

(tom, dick, dick)

Clearly, a sequence with repeating elements is not injective (one-to-one), and

vice versa. Therefore, to specify that, for a sequence f, repeating elements are

not allowed, we may use the declaration for an injective sequence:

defines an ordering of the items in its range. In the sequence s, tom is the first

element, dick the second and harry the third. This sequence may be written
using the shorthand notation

5= (tom, dick, harry)

The length of a sequence is simply its cardinality, that is the number of pairs it

contains. Thus the length of s 1s 3.

The empty sequence is represented by (). Its length is 0.
We would declare s as a sequence-valued variable as follows:

s:seq PERSON

This declaration is a shorthand for

s:N - PERSON

together with the restriction

| | \)’,L{
doms=1..#s (s SW\JNJ he I

\
E‘N\#\f"} C)ﬂ/‘l‘ 3

t:iseq PERSON

This is useful when we wish to model systems such as supermarket queues, where
a person cannot be in two different places within a queue at the same time.
Here are some more examples of sequences:

s=((1,2), (3,2,7), (), (1,6))

is a sequence of sequences of integers, and would be declared as

s:seq(seqZ) or perhaps s:iseq(iseqZ)

and

1=({3,6}, {}, {6,8}, {6,3})

is a sequence of sets of integers, and would be declared as

t:seq(PZ)

and

u=({5— 6,84}, {2 10,4 9})

1s a sequence of homogeneous functions on the integers, and would be declared as

u:seq(Z—+7Z)

Now‘, because a sequence is a restricted sort of function, which in turn is a
res_mctcd so;t of relation, which is a restricted sort of set, we already have
a rich collection of operators which can be used with sequences, provided the

96 SEQUENCES

Z type rules are not violated. However, the expressions resulting from applying

_such operators to sequences are not necessarily sequence-valued. For example,

tha 1
the expression

{1,2} {1 — tom, 2 — dick, 3+ harry}

is the sequence

{1+ tom, 2 — dick}

whereas the expression

{1,3} {1 s tom, 2 — dick, 3 — harry}

HEfliul

{1+ tom, 3 — harry}

which is a function but is not a sequence, because its domain is not a prefix
subset of Nj. o
s extremely important when writing specifications to be very clear about
the types of the structures you are using, and the validity of expressions which
you are associating with variables of those types in your predicates. Each
declaration of a variable of a given type introduces implicit invariants into the
schema in which it is used, and one of the most common sources of error in
specifications is inconsistencies in the types of expressions. Software tools are
available to help to identify these errors, but there is no substitute for clarity
and depth of thought about the problem, and care in putting together your
formal model of it. Here is another example.
The expression

{1 — tom, 2 — dick,3 — harry} U {1+ carol, 2 janet}

simplifies to

{1 tom, 1+ carol,2— dick, 2 — janet, 3 — harry}

which is a relation that is neither a sequence nor a function. However, the

expression

({1 — tom, 2 — dick,3 v harry} U {1 carol, 2 — janet}) B> {tom, dick}

simplifies to

{1 carol,2— janet, 3~ harry}

which is a sequence.

SEQUENCE OPERATORS 97

" Exercises 9.1

1. Simplify and comment on the types of the following expressions
i) (abc)Udef)
(i) (ab,c)U(a,b)
(i) (a,b,c) N {a,b)

(iv) (a,b,c)\ (c)

(v) (a,b,c)>{a,b}

(vi) {1} <€{a,b,c)

(vii) (a,b,c) @ (d,e, f)

(vii) (a,b,¢)”'; (de, f)

(ix) (1,2,3) > (dom(l,2,3))

2. Given the sequence s = (tom, dick, harry), what is the value of the
following?

(i) s1 (sapplied to 1)
(i) s(#s)

3. Given the types

[PERSON] the set of all people
[CAR] the set of all cars

write down possible values for the following variables and draw the
corresponding pictures:

(i) p:seq(P PERSON)

(i) ¢:seq(PERSON - CAR)

(iii) r:seq(seq PERSON)

(iv) s:seq((P PERSON)+« CAR)

(v) t:P(seq CAR)

9.3 Sequence operators

We will now introduce some additional operators for use with sequences.

example,

head(tom, dick, harry) = tom

Note that head returns tom, not the maplet 1 — tom.

98 SEQUENCES

The function tail returns the sequence formed by ' removing lihe first maplet in
a non-empty sequence (and, if necessary, modifying the domain of the result to

s

21

Q
o’

Gk
n._,.-”"‘-

N4

fr
i

make it a sequence). For example, (\F ™r oM NS TR g g

tail(tom, dick, harry) = (dick, harry)

The function /st returns the last element in a non-empty sequence. For example,

last(tom, dick, harry) = harry

Note that last returns harry, not the maplet 3 — harry. :
The function front returns the sequence formed by removing the last maplet

_in a non-empty sequence. For example, PN il u—l ;,DAL 1

front(tom, dick, harry) = (tom, dick)

The function rev returns the sequence formed by reversing the order of the
elements in a given sequence. For example,

'« I~ The filter operator | takes a sequence and a set of the same type as the

rev(tom, dick, harry) = (harry, dick, tom)

The concatenation operator ~ takes two sequences and returns the sequence
formed by ‘joining them together’. For example,

(tom, dick, harry) ~ (andy, sandy, randy)
= (tom, dick, harry, andy, sandy, randy)

sequence’s range set and returns the sequence formed by removing all map-
lets which do not contain, as their second element, members of the set. For

example,

(tom, dick, harry) | {dick, harry, sandy} = (dick, harry)

The squash function takes any function f such that

dom fC N,

and returns the sequence formed by modifying the d_oglain of f, maintaining
the original order which it defines. For example,

{(squash{2— dick, 3~ tom, 7— harry} = {1~ dick,2+— tom, 3 — harry}

GENERIC CONSTANTS 99

9.4 Generic constants

The above functions have been introduced informally, with English descrip-

tions and examples. However, such functions may be formally defined as

generic constants. They must be generic, because they must be able to operate

.M_ —~

on sequences of any given base type; that is, they must be capable of being
applied to sequences of integers, sequences of people, sequences of sequences
of integers, etc. For example,_tlere is the definition from Spivey (1992) of
sequence concatenation: 2|

(] s /
_:seq X xseq X —seq X AuacTT™ J"\,‘f‘g :

-

Vs, t:seq X e " { /
sTt=sU{n:domten+#s— t(n)} M oreat dimban ')/F
=5

A generic constant has one or more generic formal parameters. In the above

example, the formal parameter is X, which stands for any actual parameter set
supplied implicitly when the ~ operator is used. The declaration

T _iseqX xseq X —seq X

states that ~ is an infix function (indicated by the position of the underscores
which shows where the parameters should go) which may be applied to any
pair of sequences of the same type, to return another sequence of that type.
There is a notation for explicitly supplying actual generic parameters when the
operator is used, but this may be left implicit. For example, in the expression

(1,2,3) (4, 5)
the formal parameter X has clearly been instantiated as Z. The predicate
Vs,t:seq Xes ™ t=sU{n:dom ten+#s— t(n)}

defines the sequence returned by the operator to consist of the pairs from the
first operand, together with the pairs from the second one after making an
appropriate shift to its domain.

As a further example, here is a generic constant definition for the head
function:

[X]
head:seq; X — X ﬂ/\ml\u_ Sﬂ_ﬂ {

Vs:seq; Xehead s=s1

“

o
Uy

NA

100 SEQUENCES

The declaration states that head is a prefix function (no underscores) which may

o+
N

be applied to any non-empty sequence to return the first element of that sequence.

The predicate states that the element returned by head is precisely that which
would result from applying the sequence to the number 1. The type seq is

required because head is not defined for the empty sequence. It is also a require-

ment when defining generic constants that the definition must uniquely determine

the value of the constant for all possible values of the formal parameters.

Similar generic constant definitions are used to define many other standard Z
operators, and we can use them to define new operators for our own speci-
fications. However, this should not be done to excess. New operators should
only be introduced if they improve the clarity of the specification. Examples
would be if the operator was required in several places in the specification, or if
the expressions required as an alternative to the operator were very complex
and opaque. It should be mentioned that it is also possible to define generic
schemas in Z; see Spivey (1992) for further details.

Exercises 9.2

1. Simplify the following expressions:

G L2320

(i) dom{a,b,c)

(i) ran(l,1,2)

(iv) {a—2,b—3,c— L

) dom((1,2)" (3,4))

(vi) {1} Qtail({a,b,c))

(vii) dom((front(1,3,5,7))7")

(vii) head(tail(tail((1,7,9,2,2) " (2,4.5))))
(x) lastCtail ({(), (1(1,2),(1,2.3),(1,2,3,4))) " (1,2)
(x) squash(3..5<{a,b,c,d,e.f))

(xi) rev((2,3,4,6,8) | (dom(a,b,)

2. Given the declaration s: iseq Z, write a predicate to specify that the
numbers in the range of s are in non-descending order.

3. Give a generic constant definition for the function tail.

4. Give a generic constant definition for the function for which returns the
prefix subsequence of a given sequence from its beginning up to a given
position. If the given position is greater than or equal to the length of the
sequence, the operation should return the whole sequence. For example,

(tom, dick, harry) for 2= (tom, dick)
(tom, dick, harry) for 7= (tom, dick, harry)

I

THE UNIVERSITY BADMINTON CLUB REVISITED 101

9.5 disjoint, partition

We can specify that a sequence of sets

(AlyAzs- --1Aﬂ>

is pairwise disjoint, that is none of the sets intersect with each other, using the

expression

disjoint(A4, A2,..., 4,)

For example, the following is true

disjoint({1,2, 3}, {7,8}, {12,13,6})

A sequence of sets

(AI’A.?,"--AR)

partitions a set S iff the union of all the sets in the sequence is S, and the sets in
the sequence are pairwise disjoint. This is captured by the expression

(A1, 43,...,4,) partition S

For example, the following is true

({1,2}, {3,4}, {5}) partition {1,2,3,4, 5}

We will use this concept in the next section.

9.6 The university badminton club revisited

This spef:iﬁcation was introduced in Chapters 4 and 5. We will now refine
part of it to describe the activity in the hall, which contains one badmin-
ton court, where members of the club come to play. People in the hall are

either P_]‘aying a game on the court, or effectively in a queue, waiting to play.
We will model this queue as an injective sequence called waiting, and

represent those playing a game by the set onCourt. The specification could be

implemented as a computer program to run on a portable machine kept by
the club secretary, or more likely, as a system of paper records of club

membersh‘ip, together with a wooden name board to indicate who is queuing
and who is playing a game.

102 SEQUENCES

Recall that the state in the original example was described by the schema

ClubState

bt ta s s T OTTIDENT
\ OAQIFHAION (L O ULsizivia

hall:? STUDENT

hall C badminton
hall < maxPlayers

We will reuse and extend this description, by including it in a new state schema,
ClubState2:

_ ClubState2
ClubState }_ “

onCourt:IP STUDENT oA L‘_) woX- o O
| waiting :iseq STUDENT ~— </ La kv 3y ehgman

P

\ (onCourt, ran waiting) partition hall

The predicate
(onCourt, ran waiting) partition hall

states that everyone in the hall is either playing a game or waiting to do so, and
that nobody is both waiting and playing at the same time!
The initial state, as before, is a club with no members:

__ InitClubState2 __
ClubState2’

badminton’ = { }

Note that if badminton’ is empty, the state invariant implies that all of the sets
in the state are empty. We will now specify three operations.

Beginning a new game
For a new game to begin, there must not be a game currently in progress
onCourt = &

and there must be at least two people in the queue (one cannot play badminton
by oneself!)

waiting = 2

THE UNIVERSITY BADMINTON CLUB REVISITED 103

y If there are four or more people in the queue, then four people will play in the
new game.

ing

Haly PR g R L)
L&

AR =4
o= UfiVUHIE — %

W

Al wivade
H Wil

If there are less than four people in the hall, then either two people or three
people will play in the new game.

waiting <4 = (# onCourt' =2) V (# onCourt’ =3)

The rules of the club state that the people to play the next game will comprise
the person at the front of the queue s~

e
A
{

ok 2

head waiting € onCourt' N

__together with the appropriate number of people as defined above, selected by
him/her from up to the next five positions in the queue

onCourt' C ran(l .. 6 <] waiting)

Note that this predicate is non-deterministic in that it simply states that all the

people in the new game must have come from the first six places in the queue.

We can specify the rules for choosing the players, but our Z specification cannot

capture the vindictiveness and favouritism involved in making the decision!
Finally, the predicate

waiting' = waiting | ((ran waiting) \ onCourt")

_states that the new queue is equal to the old queue with those chosen for the
game removed. We subtract the players chosen for the new game from the range

of waiting, and then filter the sequence with this set. e _ 5
The operation schema is as follows: ARITSE o
NewGame g
A ClubState2 e al e

onCourt= &

waiting = 2

waiting = 4= # onCourt' =4

waiting <4 = (# onCourt' =2) V (# onCourt' =3)
head waiting € onCourt’

onCourt’ Cran(l .. 6 < waiting)

waiting' = waiting | ((ran waiting) \ onCourt")

hall' = hall

badminton' = badminton

104 SEQUENCES

Ending a game

To end a game, there must be one taking place!
onCourt # { }
The players come off the court
onCourt' ={ }
and join the back of the queue in an unspecified order.
Js:iseq STUDENT e (ran s = onCourt A waiting' = waiting —)

Again, this predicate is non-deterministic in that it describes the rela}tion_ship
required between the sets without actually stating how the f}l.aeratlon is to
achieve this. This may seem a little strange to those used to writing programs,
where one must state specifically how a task is to be done, but at t.he
specification level we are free to think at a higher level of abstraction: to write
an expression which characterises the relationship between a ‘before? state and
an ‘after’ state, without necessarily indicating how this is to be achieved. The
specification task is not about writing recipes for achieving results, but s.impiy
stating what those results should be. (Some clubs have a policy that the winners

of the game get to go ahead of the losers in the waiting list, but in a doubles
game, there is still uncertainty about which of the winners and which of the
losers goes ahead of the other!)

The operation schema is as follows:

~ _ FinishGame
A ClubState?

onCourt # { }
onCourt' = { }
3s:iseq STUDENT o S
(ran s = onCourt A waiting' = waiting ~ s) pud ‘HM’ w whe b
hall’ = hall (j\m,a\ AS ‘3& e iw
badminton' = badminton o

oA <SP Ca P\-M’
J\’IL‘U

A person leaving the hall

We assume that our person p? does not leave in the middle of a game!

pl € ran waiting

THE UNIVERSITY BADMINTON CLUB REVISITED 105

» We use B> to remove our person from the queue, and squash to restore the
result to be a valid sequence.

waiting' = squash(waiting & { p?})
The person is removed from the hall by the predicate
hall' = hall \ {p?}

The operation schema is as follows:

=0 Feavellall
A ClubState2
pl:STUDENT

plEran waiting

waiting' = squash(waiting B { p?})
hall’ = hall \ { p?}

badminton' = badminton

Note that we have not explicitly stated that onCourt is not changed. This is
implicitly specified by the state invariant. However, it is sometimes considered
to be good practice, in the interests of clarity, to make such properties explicit
in the operation schema.

This is a new version of the LeaveHall schema, which was first written for the
simplified system state described in Chapters 4 and 5. We could have reused and
modified the original version, but this would not have improved the readability
of the specification. To complete the specification, we would have to modify the
other operation schemas from Chapters 4 and 5 to operate on the new state, and
we would have to totalise all operations using the schema calculus. You may
wish to try this as an additional exercise.

Exercises 9.3

1. Write a schema to specify an operation for a person to enter the hall and
join the back of the waiting queue.

2. Write a Z predicate which states that a given sequence of characters s is
a substring of a given sequence of characters 1.

3. Write a Z expression for the number of occurrences of a natural number n
in a sequence of natural numbers s.

106 SEQUENCES

4. What characteristics must a sequence possess if its inverse is also a y CHAPTER 10

? - - - - -
mﬁu:ez predicate which states that a given sequence of characters is A third specification:
a palmdrome that is, it spells the same backwards as it does forwards. Pro ie ct allocation

10.1 Introduction

In the previous chapter, we developed a specification which used a sequence to
model a queue of people. In this chapter, we will take this a stage further by
using sequences in combination with functions to model a more complex
situation, namely the allocation of undergraduate projects on a university
degree course.

10.2 Allocation of undergraduate projects: the problem

A university requires a computerised system to manage the allocation of the
individual projects undertaken by its final-year degree students. Each student

107

