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Foreword

Formal methods require a soundly based specification language. Until now the
emphasis in the Z literature has been on the use of Z as a specification language.
In this arena, use of Z is extensive and has been fostered by its many positive
aspects, including the importance that has been placed on the careful merging
of text and formal material.

The construction of a clear specification is the cornerstone of any formal
development and—as the authors of the current book make clear—sometimes
there is little incentive to go further with formalism than to provide such a
specification.

But formal methods should also include a precise notion of correctness: a
formal method should pin down exactly what it means for a design to satisfy a
specification and provide tractable proof obligations for use in a development
which requires formal justification. This book addresses notions of develop-
ment based on Z specifications.

The authors’ emphasis on proof should be applauded. Although some-
times seen as a difficult undertaking, formal proofs are justified for systems
on which major reliance is to be placed. There are also strong reasons for
understanding notions of proof even where their use in full formality is not
anticipated.

Pedagogically, experience with proof is the best route to a thorough under-
standing of many of the logical and data operators in a specification language.
Furthermore, attempting even outline proofs about specifications and designs
will inculcate good taste in the construction of specifications.

For practical purposes, perhaps the most important reason for studying
proof notions is that proof obligations can be used as mental checks during
reviews or inspections of stages of design even where formal proofs are not
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presented. It is important to remember that errors made early in the develop-
ment process are extremely expensive to correct if detected late. One of the
key messages then is that proof investment in the early development phases of
a project can pay a dividend in terms of productivity.

I therefore find myself in full agreement with the authors of this book when
they tackle the issue of data refinement proofs before methods of refining to
executable code. If one intends to use proofs only on some aspects of a project,
it is the early decisions on data representation which will repay the investment
most clearly.

In addition to set and logic notation, Z offers a ‘schema notation’ whose use
gives rise to some delicate issues (calculation of pre-conditions etc.) in working
out an appropriate development method for Z. The reader of this book is in the
hands of experts who carefully motivate their refinement rules and tackle the
question of why they are correct. The authors’ depth of experience is also clear
from the warnings throughout the text of potential pitfalls of which the reader
should be aware.

To derive maximum benefit from this book the reader should be prepared
to study the material in detail. This is made easier by the careful progression of
ideas and the well-chosen examples. The reader should also follow the larger
case studies towards the end of the book. Such an investment will be hand-
somely repaid by a thorough understanding of a development method from Z
specifications to code.

Cliff B Jones



Using this Book

This book contains enough material for three courses of study: a course on
mathematics for software engineering, a course on formal specification, and a
course on refinement. This material can be adapted in a number of ways, to
support other courses or as part of a programme of self-paced learning. To
make the book easier to use, we have divided it into six parts:

Introduction Chapter 1 explains the use of formal methods, and introduces
the Z notation. We discuss the importance of proof and explain what
makes a good specification.

Logic Chapters 2 to 4 are an introduction to mathematical logic. We explain
both propositional and predicate calculus, and introduce the concepts of
equality and definite description.

Relations Chapters 5 to 10 cover sets and relations. We show how to specify
objects, and relationships between them, using pieces of mathematics.
We show also how the mathematical logic of Chapters 2 to 4 can be used
to reason about specifications.

Schemas Chapters 11 to 14 introduce the schema language. We explain how
schemas can be used to structure a specification, using logical
combinators, sequential composition, and promotion. We present
techniques for checking for logical consistency.

Refinement Chapters 16 to 19 are concerned with refinement. We formulate
a theory of refinement within the relational calculus, and extend it to
cover specifications involving schemas. We then show how a concrete
design may be refined to produce executable code.
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Case Studies Chapter 15 and Chapters 20 to 23 contain case studies in
specification and refinement. These case studies show how the Z
notation can be used to produce an abstract specification, a concrete
design, and a programming language implementation.

These parts can be combined to provide an appropriate introduction to using
Z, whatever the background of the reader.

The material in the book has already been used in a number of taught
courses, at both graduate and undergraduate levels. Examples include:

Full-time MSc in Computation (1 year)
Logic and Relations are taught as a core course; Schemas and Case
Studies are taught as an optional course.

Part-time Postgraduate Diploma/MSc in Software Engineering (2 years)
Logic and Relations are taught as a single core course, Schemas as
another core course, and Refinement as an optional course. Each course
is delivered in a week of intensive teaching.

BA in Computer Science (3 years)
Logic and Relations are taught as part of a discrete mathematics course
in the first year. Schemas are taught as part of a software engineering
course in the second year.

Notice that, by omitting the development of each specification, Case Studies
can be used in courses that do not cover Refinement.
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Chapter 1

Introduction

Today’s software comes with extensive documentation: user guides, reference
manuals, and design documents. There are on-line help systems, interactive
tutorials, and friendly ‘introductions for dummies’. Yet the behaviour of soft-
ware is often a surprise to users and designers alike. Components interact
and interfere, undesirable properties emerge, and systems fail to meet their
requirements.

The more spectacular consequences make the headlines: aircraft crash,
trains collide, people receive fatal doses of radiation, and emergency telephone
services are withdrawn. The less spectacular we face every day: time is wasted,
effort is expended to no avail, important projects are scrapped, and our health
is damaged by sheer frustration. All of this, and more, because software fails
to live up to our expectations.

There are many explanations for this: the requirements upon a piece of
software are hard to define, the ways in which a system may be used are hard to
anticipate, and there is always a demand for additional functionality. Indeed,
the fact that many pieces of software actually work, and work well, is some
indication of the skill of those whose job it is to develop them.

1.1 Formal methods

One way to improve the quality of software is to change the way in which soft-
ware is documented: at the design stage, during development, and after release.
Existing methods of documentation offer large amounts of text, pictures, and
diagrams, but these are often imprecise and ambiguous. Important informa-
tion is hidden amongst irrelevant detail, and design flaws are discovered too
late, making them expensive or impossible to correct.
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There is an alternative. Formal methods, based upon elementary mathem-
atics, can be used to produce precise, unambiguous documentation, in which
information is structured and presented at an appropriate level of abstraction.
This documentation can be used to support the design process, and as a guide
to subsequent development, testing, and maintenance.

It seems likely that the use of formal methods will become standard prac-
tice in software engineering. The mathematical basis is different from that of
civil or mechanical engineering, but it has the same purpose: to add precision,
to aid understanding, and to reason about properties of a design. Whatever the
discipline, the use of mathematics can be expensive, but it is our experience
that it can actually reduce costs.

Existing applications of formal methods include: the use of probability
theory in performance modelling; the use of context-free grammars in compiler
design; the use of the relational calculus in database theory. The formal method
described in this book has been used in the specification and design of large
software systems. It is intended for the description of state and state-based
properties, and includes a theory of refinement that allows mathematics to be
used at every stage of program development.

1.2 The CICS experience

CICS is one of the most successful pieces of software in the world: there are
over 30 000 licences, and most of the world’s top companies use it. CICS stands
for Customer Information Control System, a family of transaction processing
products produced by IBM UK Laboratories at Hursley Park. CICS provides
data access, communications, integrity, and security services. Put simply, CICS
manages information.

When we use an automated teller machine in San Francisco, an account at
our local branch in Oxford is debited, even though the machine is thousands
of miles away. During the busiest times, there may be many thousands of
customers of the bank using the service all over the world, and we all expect to
be served within a reasonable time. CICS offers a way of achieving this.

There have been regular releases of CICS since the mid-1970s. Each release
has introduced additional features and extended the structure of the existing
code. In the early 1980s, the complexity of the system started to become a
serious problem for the company. A decision was made to re-design some of
the CICS modules with the aim of making extensions easier. An important
part of the proposed solution involved finding a more precise way to specify
functionality.
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Such precision requires the use of mathematical techniques that were,
at that time, little known outside academia. A happy coincidence brought the
CICS manager, Tony Kenny, and the Oxford professor, Tony Hoare, together at a
conference. They hatched a plan to apply Oxford’s ideas to Hursley’s problems.
Oxford advised on how formal methods could be used for the specification
and design of new CICS modules. Hursley showed how the methods could be
adapted to problems on an industrial scale.

A particular formal method, the Z notation, was used to specify the new
CICS functionality. Hursley’s programmers were used to writing specifications
in English, and the rigorous, mathematical notation was seen as a challenge.
In practice, the notation proved easy to learn and to apply, even for program-
mers with no previous experience of mathematics. The result was a perceived
improvement in the quality and reliability of delivered code.

The first CICS product to be designed using Z was CICS/ESA version 3,
announced in June 1989. In April 1992, the Queen’s Award for Technological
Achievement was conferred upon IBM United Kingdom Laboratories Limited
and Oxford University Computing Laboratory for ‘the development and use of
an advanced programming method that reduces development costs and signi-
ficantly enhances quality and reliability’: namely, Z.

1.3 The Z notation

The Z notation is based upon set theory and mathematical logic. The set theory
used includes standard set operators, set comprehensions, Cartesian products,
and power sets. The mathematical logic is a first-order predicate calculus. To-
gether, they make up a mathematical language that is easy to learn and to apply.
However, this language is only one aspect of Z.

Another aspect is the way in which the mathematics can be structured.
Mathematical objects and their properties can be collected together in schemas:
patterns of declaration and constraint. The schema language can be used to
describe the state of a system, and the ways in which that state may change. It
can also be used to describe system properties, and to reason about possible
refinements of a design.

A characteristic feature of Z is the use of types. Every object in the math-
ematical language has a unique type, represented as a maximal set in the current
specification. As well as providing a useful link to programming practice, this
notion of types means that an algorithm can be written to check the type of
every object in a specification; several type-checking tools exist to support the
practical use of Z.
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A third aspect is the use of natural language. We use mathematics to state
the problem, to discover solutions, and to prove that the chosen design meets
the specification. We use natural language to relate the mathematics to objects
in the real world; this job is often partly achieved by the judicious naming
of variables, but additional commentary is vital. A well-written specification
should be perfectly obvious to the reader.

A fourth aspect is refinement. We may develop a system by constructing a
model of a design, using simple mathematical data types to identify the desired
behaviour. We may then refine this description by constructing another model
which respects the design decisions made, and yet is closer to implementation.
Where appropriate, this process of refinement can be continued until executable
code is produced.

The Z notation, then, is a mathematical language with a powerful struc-
turing mechanism. In combination with natural language, it can be used to
produce formal specifications. We may reason about these specifications using
the proof techniques of mathematical logic. We may also refine a specification,
yielding another description that is closer to executable code.

Z is not intended for the description of non-functional properties, such
as usability, performance, size, and reliability. Neither is it intended for the
description of timed or concurrent behaviour. However, there are other formal
methods that are well suited for these purposes. We may use these methods
in combination with Z to relate state and state-change information to comple-
mentary aspects of design.

1.4 The importance of proof

In this book, we place considerable emphasis upon proof. When we introduce
the language of mathematical logic, we explain the use of a proof system. When
we introduce the language of sets and relations, we explain how formal proofs
may be constructed about such objects. When we introduce the language of
schemas, we show how to prove that a specification is consistent, and how to
prove that one specification refines another. Our intentions are two-fold: first,
to show that proof adds quality to software development; second, to show that
proof is a feasible part of the industrial use of formal methods.

If we reason about a specification, if we attempt to construct proofs about
its properties, then we are more likely to detect problems at an early stage
of system development. The process of constructing proofs can help us to
understand the requirements upon a system, and can assist us in identifying
any hidden assumptions. Proof at the specification stage can make a significant
contribution to the quality of software.
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At the design stage, a proof can show us not only that a design is correct,
but also why it is correct. The additional insight that this affords can be in-
valuable: as requirements evolve and the design is modified, the consequences
are easier to investigate. At the implementation stage, a proof can help us to
ensure that a piece of code behaves according to the specification. Again, a
significant contribution to quality can be made.

The construction of proofs is an essential part of writing a specification,
just as proof-reading is an essential part of writing a book. A specification
without proofs is untested: it may be inconsistent; it may describe properties
that were not intended, or omit those that were; it may make inappropriate
assumptions. The practice of proof makes for better specifications.

It seems to be part of software engineering folklore that proof is im-
possible on an industrial scale; however, our experience has been different. We
have been involved in many large-scale applications of formal methods; some
involved proof, others did not. We have seen that techniques involving proof
are successful where formal methods are used with a light touch, and where
proofs are conducted at an appropriate level of formality.

In many situations, a rigorous argument, or a semi-formal justification,
will be sufficient to bring about the desired improvement in quality. In other,
more critical situations, it may be necessary to increase the level of formal-
ity until the correctness of the design is beyond doubt. In some situations, a
completely formal proof may be required. The trick of using formal methods
effectively is to know when proofs are worth doing and when they are not.

1.5 Abstraction

An essential property of a good specification is an appropriate choice of abstrac-
tion. A good example of this is provided by the various maps of the London
Underground. When the first map was published in 1908, it was faithful to the
geography of the lines: all the twists and turns of the tracks and the relative
distances between stations were recorded faithfully and to scale. However, the
purpose of the map was to show travellers the order of stations on each line,
and the various interchanges between lines; the fidelity of the map made it
difficult to extract this information.

In 1933, the map was changed to a more abstract representation, called
the Diagram. Here, the connectivity of stations on the network was preserved,
and at last, passengers could see at a glance the route to their destination.
Abstraction from superfluous detail—in this case the physical layout of the
lines—was the key to the usefulness of the Diagram. Figures 1.1 and 1.2 show
published versions before and after the change.
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Figure 1.1 A faithful geographical representation

The Diagram was, and still is, a good specification of the London Under-
ground network. It is

• Abstract. Since it records only the logical layout, not the physical reality
in all its detail.

• Concise. Since it is printed on a single A5 sheet of card that is folded twice
so that it fits into the pocket.

• Complete. Since every station on the London Underground network is
represented.

• Unambiguous. Since the meaning of the symbols used is explained, and
the Diagram is expressed in simple geometrical terms. It is a precise and
accurate description of the Underground network.

• Cost-effective. Since it cost only five guineas to commission the specifica-
tion from the engineering draughtsman Harry Beck.

• Maintainable. Since it has been successfully maintained over the last 60
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Figure 1.2 A more abstract description

years, reflecting the changes in the network as stations have opened and
closed, and new lines have been added.

• Comprehensible. Since it has been regarded fondly by its users from its
first issue in January 1933, the Diagram must be readily understood by
the general public.

The Diagram gives its users a good conceptual model; it is how Londoners and
visitors see the Underground network. It embodies a specification structure
that enables users to make sense out of a rather complex implementation. To
do this, it uses abstract shapes, colours, and compression. All lines have been
reduced to 90◦ or 45◦ angles. The various lines are coloured differently. The
central area, where there are more stations, is shown in greater detail than the
outlying parts, as if the Diagram were being viewed through a convex lens.

Furthermore, the Diagram may be used to predict the result of travelling
on the Underground network. We might observe that if we start at Oxford
Circus, travel eastbound on the Central Line and change trains at Tottenham
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Court Road, then take the Northern Line, we may arrive at Mornington Crescent.
In mathematical terms, this property is a theorem of the system; in practical
terms, it describes a possible route.

The Diagram has served its purpose well; if only every specification were
as good as this. Interestingly, the first sketch of the Diagram was rejected by
the Publicity Department of the Underground. They thought that the idea of a
90◦ and 45◦ schematic treatment was too ‘revolutionary’. The abstract notation
was thought to be too strange and incomprehensible for the ordinary user of
the Underground network.



Chapter 2

Propositional Logic

In this chapter we introduce a logical language based upon traditional propos-
itional calculus. This language is part of the logical language of Z; other parts
appear in subsequent chapters. Our presentation is based upon inference and
proof: each component of the language is presented alongside rules that ex-
plain when it may be introduced or eliminated.

Collected together, these rules form a system of natural deduction: they
state what may be deduced from a proposition, and under what conditions that
proposition may be concluded. This provides a framework for reasoning about
statements in our language, proving properties and establishing results.

2.1 Propositional logic

Propositional logic deals with the statement of alleged facts which must be
either true or false, but not both.

Example 2.1 The following statements are propositions:

• A tomato is a fruit.

• An orange is a fruit.

• Oranges are not the only fruit.

�

In our logical language, propositions may be connected in various ways. The
following table describes five propositional connectives, arranged in descend-
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ing order of operator precedence:

¬ negation not

∧ conjunction and

∨ disjunction or

⇒ implication implies

a equivalence if and only if

The table gives the connective’s symbol, its name, and how it is pronounced.
Using the notion of precedence, we can see that the proposition

¬p ∧ q ∨ r a q ⇒ p ∧ r

is equivalent to the parenthesised version

(((¬p) ∧ q) ∨ r) a (q ⇒ (p ∧ r))

Using these connectives, we can build up compound propositions.

Example 2.2

• ¬(jaffa cakes are biscuits)

• your cat is rich ∧ your dog is good looking

• the economic recovery has started ∨ the minister is lying

• Jim is thirty-something ⇒ Jim is under forty

• Jim is thirty-something a Jim is under forty

�

The truth of a compound proposition is uniquely determined by the truth of
its constituent parts.

2.2 Conjunction

In the semantics of Z, a formal meaning is given to propositions; we don’t
propose to reproduce this here, but rather to give an informal understanding.
For example, the conjunction p ∧ q is true exactly when p is true and q is true.
In case the reader thinks that this might be a sleight of hand—defining ∧ in
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terms of ‘and’—we can explain it by using a truth table:

p q p ∧ q

t t t

t f f

f t f

f f f

In the first column we describe all the situations that we are interested in: all
the combinations of the possible truth values of p and q (abbreviating truth
and falsity to t and f ). In the second we have written down the truth value of
p ∧ q in each of these situations. Thus, p ∧ q is true just in the case that p is
true and q is true.

Now, suppose that we wanted to prove that p ∧ q is true: the truth table
tells us when that is so. If we follow the row that has the entry t for p ∧ q, we
see that we must prove that both p and q are true (have the entry t ). Thus, to
prove p ∧ q, we must prove both p and also q. Now, suppose that we know
that p ∧ q is true, then we certainly know that p must be true; we also know
that q must be true. We can summarise these observations with the following
rules of inference:

p q
p ∧ q

[∧−intro]
p ∧ q

p
[∧−elim1]

p ∧ q
q

[∧−elim2]

These inference rules form part of the natural deduction system that we use to
conduct our proofs.

Each inference rule is written in the following form:

premiss1 . . . premissn

conclusion
[name]

side condition

The list of premisses is sometimes empty; the role of the side condition will
become clear later. The meaning of such a rule is that the truth of the conclusion
follows from the truth of the premisses: whenever the premisses are true, then
so is the conclusion.

The rules come in two flavours. For an operator op, the op-elimination
rule describes what may be deduced from p op q; and the op-introduction
rule describes under what conditions p op q can be concluded. Using these
rules to introduce and eliminate different operators, we can start from a set
of propositions, or hypotheses, and derive another proposition. If the set of
hypotheses is empty, then we call the derived proposition a theorem.
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We now have two ways of proving things about a proposition. Consider
the conjecture that conjunction is commutative. This means that it doesn’t
matter which way round we present the operands to the conjunction operator:
p ∧ q is the same as q ∧ p. We prove this first by constructing a truth table,
and second by using the rules that we have for introducing and eliminating the
conjunction operator.

Example 2.3 First, consider the two truth tables:

p q p ∧ q

t t t

t f f

f t f

f f f

q p q ∧ p

t t t

f t f

t f f

f f f

We can abbreviate the two tables by displaying them in one:

p q p ∧ q q ∧ p

t t t t

t f f f

f t f f

f f f f

Notice that the columns for p ∧ q and q ∧ p are identical: in every situation
they take the same truth value; thus, we can conclude that they are the same
proposition, and so conjunction is commutative. �

Now, we shall prove that conjunction is commutative by using a natural deduc-
tion argument.

Example 2.4 We want to prove that p ∧ q is equivalent to q ∧ p, and this may
be deduced from the rule:

p ∧ q
q ∧ p

We prove this derived rule by exhibiting a proof tree, built from rules fitted
together jigsaw-wise. The leaves (at the top of the tree) are instances of the
premisses, and the root (at the bottom of the tree) is the conclusion.

p ∧ q
q

[∧−elim2]
p ∧ q

p
[∧−elim1]

q ∧ p
[∧−intro]
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In this tree, there are three rules which have been used. Where the conclu-
sion of one rule forms the premiss of the next, they match exactly. The tree
matches the rule that we were trying to prove, since, if we take all the leaves
and remove duplicates, we end up with the premiss of the rule; the root of the
tree corresponds to the conclusion. �

One more piece of terminology and its notation. Some premisses are in-
troduced during a proof: they are called assumptions. An assumption must be
discharged during a proof, and there are certain rules (discharge rules) which
do this. The assumption p is denoted by dpe[]. In the next section we see
examples of assumptions and discharge rules.

2.3 Disjunction

The disjunction p ∨ q is true if and only if p is true or q is true:

p q p ∨ q

t t t

t f t

f t t

f f f

This is inclusive or: the disjunction is true in any situation in which one of the
disjuncts is true, including the situation in which both are true. The disjunction
p ∨ q is true if and only if either p is true or q is true. Our three rules are:

p
p ∨ q

[∨−intro1]
q

p ∨ q
[∨−intro2]

p ∨ q

dpe[i]

r

dqe[i]

r

r
[∨−elim[i]]

Both introduction rules hold because, if p is true, then p ∨ q is true; similarly
for q. The elimination rule follows by supposing that p ∨ q is true; then, either
p or q holds (we don’t know which, and it might be both). Whatever follows
from this (say r ) must follow in both cases. Thus, the elimination rule is an
example of case analysis. In the premiss

dpe[i]

r

the notation dpe[i] indicates that p is an assumption which may be made in
order to prove r . The superscript i indicates that this assumption is justified
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by a step labelled i in the proof tree. It is discharged from the proof of r when
the rule is applied: given a proof of p ∨ q, a proof of r from the assumption p,
and a proof of r from the assumption q, the rule concludes r .

Example 2.5 Disjunction is commutative:

p q p ∨ q q ∨ p

t t t t

t f t t

f t t t

f f f f

The entries for p ∨ q and q ∨ p are identical. �

Example 2.6 Disjunction is commutative:

p ∨ q
q ∨ p

p ∨ q
dpe[1]

q ∨ p
[∨−intro2]

dqe[1]

q ∨ p
[∨−intro1]

q ∨ p
[∨−elim[1]]

�

2.4 Implication

The implication p ⇒ q may be viewed as expressing an ordering between the
antecedent p and the consequent q: it states that the antecedent is stronger
than (or equal to) the consequent. False is stronger than true; true is weaker
than false; anything is as strong as itself. This gives the truth table

p q p ⇒ q

t t t

t f f

f t t

f f t

Thus, the implication is true unless the antecedent is true and the consequent
is false.
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The implication p ⇒ q is true if and only if we can prove q by assuming
p. Thus, in order to prove that p ⇒ q, we may assume that p is true and then
prove that q is true also. If we know that p ⇒ q, then we can conclude that q
is true, providing that we show that the assumption p holds. This gives us the
two rules for implication:

dpe[i]

q

p ⇒ q
[⇒−intro[i]]

p ⇒ q p
q

[⇒−elim]

Example 2.7 We can replace a conjunction of antecedents in an implication by
separate antecedents:

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r))

We may prove this by constructing a truth table:

p q r (p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r))

t t t t t t t t

t t f t f t f f

t f t f t t t t

t f f f t t t t

f t t f t t t t

f t f f t t t f

f f t f t t t t

f f f f t t t t

Every entry in the column underneath the major connective in the proposition
is a t : thus the proposition is true in every situation. �

Example 2.8 We can replace a conjunction of antecedents in an implication by
separate antecedents:

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r))

To see how this might be established, consider the incomplete proof tree:

...
(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r))
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The major connective is an implication; we could consider how it got there, and
try to introduce it:

dp ∧ q ⇒ re[1]

...

(p ⇒ (q ⇒ r))
(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) [⇒−intro[1]]

This leaves us with a new goal, p ⇒ (q ⇒ r), in which the major connective
is again an implication. We follow the same procedure as before; we consider
how this operator may be introduced:

dp ∧ q ⇒ re[1]

dpe[2]

...

q ⇒ r
(p ⇒ (q ⇒ r)) [⇒−intro[2]]

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) [⇒−intro[1]]

Again the goal is an implication. Using the introduction rule a third time leaves
us in the following situation:

dp ∧ q ⇒ re[1]

dpe[2]

dqe[3]

...

r
q ⇒ r

[⇒−intro[3]]

(p ⇒ (q ⇒ r)) [⇒−intro[2]]

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) [⇒−intro[1]]

At this stage, the structure of the goal suggests nothing: there is no struc-
ture. Now is the time to start working forwards from the assumptions: one of
them has an implication, so we should try to eliminate that:
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dp ∧ q ⇒ re[1]

dp ∧ q ⇒ re[1]

dpe[2]

dqe[3]

...

p ∧ q
r

[⇒−elim]

q ⇒ r
[⇒−intro[3]]

(p ⇒ (q ⇒ r)) [⇒−intro[2]]

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) [⇒−intro[1]]

It is clear now how to finish this proof: the assumptions p and q can be con-
joined to discharge the conjunction p ∧ q:

dp ∧ q ⇒ re[1]
dpe[2] dqe[3]

p ∧ q
[∧−intro]

r
[⇒−elim]

q ⇒ r
[⇒−intro[3]]

(p ⇒ (q ⇒ r)) [⇒−intro[2]]

(p ∧ q ⇒ r) ⇒ (p ⇒ (q ⇒ r)) [⇒−intro[1]]

�

2.5 Equivalence

The equivalence p a q means that p and q are of the same strength; thus it
might also be called bi-implication: p a q means that both p ⇒ q and q ⇒ p.
Since p and q have the same strength, they must therefore have the same entries
in the truth table:

p q p a q

t t t

t f f

f t f

f f t

The rules for introducing and eliminating the equivalence connective follow
from the observation that p a q is equivalent to p ⇒ q and q ⇒ p.

p ⇒ q q ⇒ p
p a q

[a−intro]
p a q
p ⇒ q

[a−elim1]
p a q
q ⇒ p

[a−elim2]
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Example 2.9 If p is stronger than q, then p ∧ q and p have the same strength:

p ⇒ q
p ∧ q a p

To show that this is a derived rule of our system, consider the goal

...
p ∧ q a p

The major connective is the equivalence, so let’s try to introduce it:

...
p ∧ q ⇒ p

...
p ⇒ p ∧ q

p ∧ q a p
[a−intro]

In the left-hand subtree, the major connective is now an implication, so let’s try
to introduce that:

dp ∧ qe[1]

...

p
p ∧ q ⇒ p

[⇒−intro[1]]

...
p ⇒ p ∧ q

[⇒−intro]

p ∧ q a p
[a−intro]

The left-hand subtree may now be completed by conjunction elimination on the
assumption. Turning now to the right-hand subtree, we should immediately
introduce the implication:

dp ∧ qe[1]

p
[∧−elim1]

p ∧ q ⇒ p
[⇒−intro[1]]

dpe[2]

...

p ∧ q
p ⇒ p ∧ q

[⇒−intro[2]]

p ∧ q a p
[a−intro]
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Now, the major connective is a conjunction, so we introduce it:

dp ∧ qe[1]

p
[∧−elim1]

p ∧ q ⇒ p
[⇒−intro[1]]

dpe[2]

...

p

dpe[2]

...

q
p ∧ q

[∧−intro]

p ⇒ p ∧ q
[⇒−intro[2]]

p ∧ q a p
[a−intro]

The left-most unfinished subtree can be closed easily, since we have to prove
p from the assumption p: that is immediate. The right-most one cannot be
pushed further backwards, since there is no structure to exploit; instead, we
work from our premiss:

dp ∧ qe[1]

p
[∧−elim1]

p ∧ q ⇒ p
[⇒−intro[1]]

dpe[2]
p ⇒ q

dpe[2]

...

p
q

[⇒−elim]

p ∧ q
[∧−intro]

p ⇒ p ∧ q
[⇒−intro[2]]

p ∧ q a p
[a−intro]

Again, the closing of this subtree is trivial, thus completing the proof:

dp ∧ qe[1]

p
[∧−elim1]

p ∧ q ⇒ p
[⇒−intro[1]]

dpe[2]
p ⇒ q dpe[2]

q
[⇒−elim]

p ∧ q
[∧−intro]

p ⇒ p ∧ q
[⇒−intro[2]]

p ∧ q a p
[a−intro]

�

A derived rule may be used in the same way as any other inference rule;
the above example gives us

p ⇒ q
p ∧ q a p

[subsume]

This is just one of several similar inference rules involving conjunction, dis-
junction, and implication.
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2.6 Negation

The negation ¬p is true if and only if p is false. The truth table is simple:

p ¬p

t f

f t

Our rules for negation make use of a special proposition called false, which
stands for a contradiction: it is false in every situation. If ¬p is true, then p is
false; and if p is true, then ¬p is false. Notice that it is not possible for ¬p and
p both to be true. This gives us three rules:

dpe[i]

false

¬p
[¬−intro[i]]

p ¬p
false

[¬−elim]

d¬pe[j]

false

p
[false−elim[j]]

Our system requires three rules to deal with negation. At first sight, it might
seem that the two rules that we have called ¬−intro and false−elim would be
sufficient, but they would give us no way of concluding false.

Example 2.10 One of de Morgan’s Laws states that the negation of a disjunc-
tion is the conjunction of negations:

¬(p ∨ q)
¬p ∧ ¬q

[de Morgan1]

We start by considering the goal:

...
¬p ∧ ¬q

Clearly, we should break up the conjunction:

...
¬p

...
¬q

¬p ∧ ¬q
[∧−intro]
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Let’s focus on the left subtree. In order to prove the negation ¬p, we
should assume p and then force a contradiction:

dpe[1]

...

false
[¬−elim]

¬p
[¬−intro[1]]

...
¬q

¬p ∧ ¬q
[∧−intro]

Now, what should the contradiction be? We have the premiss ¬(p ∨ q), we
could try to contradict that:

dpe[1]

...

p ∨ q ¬(p ∨ q)
false

[¬−elim]

¬p
[¬−intro[1]]

...
¬q

¬p ∧ ¬q
[∧−intro]

We can close this subtree by noting that we can prove p ∨ q from p:

dpe[1]

p ∨ q
[∨−intro1] ¬(p ∨ q)

false
[¬−elim]

¬p
[¬−intro[1]]

...
¬q

¬p ∧ ¬q
[∧−intro]

The rest of the proof follows by symmetry:

dpe[1]

p ∨ q
[∨−intro1] ¬(p ∨ q)

false
[¬−elim]

¬p
[¬−intro[1]]

dqe[2]

p ∨ q
[∨−intro2] ¬(p ∨ q)

false
[¬−elim]

¬q
[¬−intro[2]]

¬p ∧ ¬q
[∧−intro]

�

Before a natural deduction system becomes really useful, it is necessary to prove
results about negation. In the next theorem we use the variant of de Morgan’s
law that we have just proved.
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Example 2.11 The Law of the Excluded Middle states that either a proposition
is true or it is false. That is,

p ∨ ¬p

The major connective is a disjunction, so let’s try to introduce it. Which
disjunct should we throw away? Let’s try ¬p:

...
p

p ∨ ¬p
[∨−intro1]

Now there is no structure to analyse, so we are lost, since there are no as-
sumptions or premisses either. We must admit defeat and backtrack to the last
choice that we made. Perhaps we should have thrown away p instead:

...
¬p

p ∨ ¬p
[∨−intro2]

Now we are in the same position: we still cannot complete the proof. Again, we
must backtrack to the last decision point. This time, we go right back to the
start of the proof. We have tried both varieties of disjunction introduction, and
there are neither assumptions nor premisses to work from. What now? One
possible way forward is to try to contradict our goal: assume ¬(p ∨ ¬p) and
force a contradiction:

d¬(p ∨ ¬p)e[1]

...

false
p ∨ ¬p

[false−elim[1]]

Our contradiction follows by Example 2.10:

d¬(p ∨ ¬p)e[1]

¬p ∧ ¬¬p
[de Morgan1]

...

false
[¬−elim]

p ∨ ¬p
[false−elim[1]]
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The proof tree isn’t quite closed, because of the technicality that we need two
separate propositions: ¬p and ¬¬p. We can get each from the conjunction, so
we need to duplicate our work from the assumption, and use both varieties of
conjunction elimination:

d¬(p ∨ ¬p)e[1]

¬p ∧ ¬¬p
[de Morgan1]

¬p
[∧−elim1]

d¬(p ∨ ¬p)e[1]

¬p ∧ ¬¬p
[de Morgan1]

¬¬p
[∧−elim2]

false
[¬−elim]

p ∨ ¬p
[false−elim[1]]

Now we have finished, and the proof tree is complete. �

The last example shows an important part of the proof process: the explora-
tion of possibilities. When we look at a proof, we see only a completed chain of
reasoning; we do not see the other attempts that may have been made. Further-
more, rules like negation elimination give us a problem in a backwards proof,
since p appears in the premiss, but not in the conclusion. Thus, when we match
the consequent to our current goal, we still have to find an instantiation of p.

2.7 Tautologies and contradictions

Propositions which evaluate to t in every combination of their propositional
variables are known as tautologies: they are always true. If, on the other hand,
they evaluate to f in every combination, then they are known as contradictions.
Of course, the negation of a contradiction is a tautology, and vice versa.

Example 2.12 The following propositions are tautologies:

p ∨ ¬p

p ⇒ p

p ⇒ (q ⇒ p)

while the following are contradictions:

p ∧ ¬p

p a ¬p

¬(p ⇒ (q ⇒ p))

�
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To prove that a proposition is a tautology, we have only to produce a truth
table and check that the major connective takes the value t for each combination
of propositional variables.

Example 2.13 We prove that ¬p ∨ q a p ⇒ q is a tautology by exhibiting the
following table:

p q ¬p ∨ q a p ⇒ q

t t f t t t

t f f f t f

f t t t t t

f f t t t t

�

Tautologies involving equivalences are particularly useful in proofs; they can
be used to rewrite goals and assumptions to facilitate the completion of an ar-
gument. For any pair of propositions a and b, the tautology a a b corresponds
to a pair of inference rules:

b
a

[a a b]
a
b

[a a b]

If either of these propositions appears in a proof, then we may replace it with
the other:

...

a

b
[a a b] ...

...

A logical equivalence may be used to justify rewriting even when the proposition
involved is only part of the goal or assumption:

...
(¬ p ∨ q) ⇒ r
(p ⇒ q) ⇒ r

[(¬a ∨ b) a (a ⇒ b)] ...

...
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Tautologies involving implications also correspond to inference rules: if
a ⇒ b is a tautology, then

a
b

is a valid derivation. The same derivation may be made, clearly, whenever a ⇒ b
is known to be true: whether it is a hypothesis, an assumption in scope, or a
result that we believe we can establish separately.

Example 2.14 The following tautology

¬(p ∧ q) ⇒ ¬p ∨ ¬q

corresponds to another of de Morgan’s laws:

¬(p ∧ q)
¬p ∨ ¬q

[de Morgan2]

�

An implication alone is not enough to justify rewriting part of a goal.

Example 2.15 The proposition (a ∧ b) ⇒ a is a tautology, but the proof step

(p ∧ q) ⇒ (r ∨ s)
p ⇒ (r ∨ s)

[(a ∧ b) ⇒ a]

is invalid. The statement p ⇒ (r ∨ s) does not follow from (p ∧ q) ⇒ r ∨ s: it
is possible for the former to be false when the latter is true. �

A proposition which is neither a tautology nor a contradiction is said to be a
contingency.





Chapter 3

Predicate Logic

In this chapter we introduce another part of our logical language. The language
of propositions introduced in the previous chapter allows us to make state-
ments about specific objects, but it does not allow us to make statements such
as ‘Every cloud has a silver lining’. These are known as universal statements,
since they describe properties that must be satisfied by every object in some
universe of discourse.

Example 3.1 The following are examples of universal statements:

• Each student must hand in course work.

• Nobody knows the trouble I seen.

• Jim doesn’t know anybody who can sign his bail application.

�

Sometimes we wish to state that at least one thing has a particular property,
without necessarily knowing which thing it is. This leads to an existential state-
ment.

Example 3.2 The following are examples of existential statements:

• I heard it from one of your friends.

• A mad dog has bitten Andy.

• Some people prefer logic.

�
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To formalise such statements, we require a language that reveals the internal
structure of our propositional statements, a language that allows us to take
them apart and apply them to objects without proper names. The language we
require is the language of predicate calculus.

3.1 Predicate calculus

A predicate is a statement with a place for an object. There may be many such
places within a single predicate; this is often the case when the objects con-
cerned are mathematical. When these places are filled, our predicates become
statements about the objects that fill them. We could say that a predicate is a
proposition with a gap for an object of some kind.

For example, the statement ‘ > 5’ is a predicate. As it stands, it is not a
proposition; we cannot say whether it is true or false until we have filled the
empty place. We could turn it into a proposition by putting 0 in this place; the
result would be ‘0 > 5’, a proposition that happens to be false. This is not the
only way to fill a gap, however. We could also choose to put an object variable
in the empty place above.

The predicate ‘x > 5’ is still not a proposition; we cannot say whether
it is true or false without knowing what x is. The use of object variables is a
powerful technique, and holds the key to expressing the universal and exist-
ential properties described above. We can make a proposition out of ‘x > 5’
by adding a quantifier to the front of the expression. For example, we could
state that ‘there is an x, which is a natural number, such that x > 5’. Here,
the quantifier is ‘there is an…’, and we have quantified the predicate ‘x > 5’ to
produce a true proposition.

In mathematics, the symbol ‘∃’ is used to denote the expression ‘there is
an …’; in Z, the natural numbers are denoted by the symbol ‘N’. Thus, we can
write down our quantified predicate in Z as:

∃ x : N • x > 5.

To see that the quantified predicate is true, consider the number 6: it is a natural
number, and it is greater than 5.

Existential quantification may be thought of as a generalised form of dis-
junction: for example,

∃ x : N • x > 5
a
0 > 5 ∨ 1 > 5 ∨ 2 > 5 ∨ 3 > 5 ∨ . . .
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The predicate is true for some natural number; it is true of 0 or it is true of 1
or it is true of 2 or it is true of 3, etcetera.

Example 3.3 The statements in Example 3.2 may be formalised as follows:

• Let Friends stand for the set of all your friends, and let x told y mean that
x has told y .

∃ f : Friends • f told me

• Let MadDog stand for the set of all mad dogs, and let x bit y mean that x
has bitten y .

∃ d : MadDog • d bit Andy

• Let Person stand for the set of all people, and let PL(x) mean that x prefers
logic.

∃ p : Person • PL(p)

�

Another way of quantifying a predicate is to say that it is true for every
value. We might take the predicate ‘x > 5’ and prepend a universal quantifier
to produce the statement ‘for every x which is a natural number, it is the case
that x > 5’. Here, the quantifier is ‘for every x …’, and we have quantified the
predicate to produce a false proposition.

In mathematics, the notation ‘∀’ is used to denote the universal quantifier.
We can write down our new predicate in Z as follows:

∀ x : N • x > 5.

Again, this is the same as

∀ y : N • y > 5.

This predicate is false because not every natural number x is greater than 5:
consider 3.

The universal quantifier may be thought of as a generalised conjunction:
for example,

∀ x : N • x > 5
a
0 > 5 ∧ 1 > 5 ∧ 2 > 5 ∧ 3 > 5 ∧ . . .
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The predicate > 5 would have to be true of every natural number; of 0 and
of 1 and of 2 and of 3, etcetera. It is not true of 0, for example, and thus the
whole quantified expression is false.

Example 3.4 The statements in Example 3.1 may be formalised as follows:

• Let Student stand for the set of all students, and let Submit(x) mean that
x must hand in course work.

∀ s : Student • Submit(s)

• Let Person be the set of all people, and let knows trouble(x) mean that x
knows the trouble I seen.

∀ p : Person • ¬knows trouble(p)

• Again, let Person be the set of all people. Let x Knows y means that x
knows y , and let x CanBail y mean that x can sign y ’s application for bail.

∀ p : Person • Jim Knows p ⇒ ¬(p CanBail Jim)

�

3.2 Quantifiers and declarations

In the Z notation, the two kinds of quantified expressions have a similar syntax:

Q x : a | p • q

where

• Q is the quantifier ;

• x is the bound variable;

• a is the range of x;

• p is the constraint ; and

• q is the predicate.

The optional constraint p restricts the set of objects under consideration; only
those objects in a that satisfy p are to be considered. The constraint takes
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on the role of a conjunction or an implication, depending upon the quantifier
concerned, as may be seen from the following equivalences:

(∃ x : a | p • q) a (∃ x : a • p ∧ q)

(∀ x : a | p • q) a (∀ x : a • p ⇒ q)

The existentially quantified predicate

∃ x : a | p • q

is pronounced ‘there exists an x in a satisfying p, such that q’. The universally
quantified predicate

∀ x : a | p • q

is pronounced ‘for all x in a satisfying p, q holds’.
Each quantifier introduces a ‘bound variable’, which is analogous to a local

variable in a block-structured programming language. In the quantified predic-
ate Q x : a | p • q the bound variable x has a scope that is exactly the constraint
p and predicate q. The quantifiers bind very loosely, so the scope of a quantified
variable extends to the next enclosing bracket.

Example 3.5 In the following expression, the scope of variable x is marked by
a brace:

(∀ x : a | p • q ∧ r︸ ︷︷ ︸
scope of x

) ∨ s ⇒ t

�

If a statement contains more than one quantifier, the scopes may overlap. This
poses no problems unless the same name is chosen for two variables bound by
different quantifiers; in this case, there would be a hole in one of the scopes.

Example 3.6 In the following expression, the scope of the first bound variable
has a hole corresponding to the scope of the second:

∀ y : a | p • q ∧ ( ∀ y : b |︸ ︷︷ ︸
scope of first y

scope of second y︷ ︸︸ ︷
r • s ⇒ t ) ∧ u ∨ v︸ ︷︷ ︸

scope of first y

�
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As the above example shows, there is scope for confusion whenever two differ-
ent variables have the same name.

Whenever such confusion can arise, we will choose another name for one
of the variables. We can change the name of a bound variable without changing
the meaning of the quantified expression, as long as we avoid the names of any
other variables that appear.

Example 3.7 Consider the following quantified expression, which states that
every natural number x is greater than or equal to zero:

∀ num : N • num ≥ 0

The choice of ‘num’ as the variable name is not important; the following ex-
pression has the same meaning:

∀ nat : N • nat ≥ 0

�

We must take care that the new name chosen for a bound variable has not
already been used for a different variable in the same expression.

Example 3.8 Consider the following quantified expression, which states that
there is some natural number max such that every natural number num must
be less than or equal to max:

∃ max : N • ∀ num : N • num ≤ max

This statement is false: there is no greatest natural number.
If we were to change the name of the universally-quantified variable from

num to max, then some confusion would result. The following expression
states that there is some natural number such that every natural number is
less than or equal to itself.

∃ max : N • ∀ max : N • max ≤ max

This statement is true; the meaning has changed. �

To avoid changing the meaning of a statement, we insist that a fresh variable
name is chosen whenever such a change of name occurs. This name should not
appear elsewhere in the logical expressions under consideration.

In the last example, we saw two variables quantified at the start of an
expression, one immediately after the other. In this case, the quantifiers were
different. Had they been the same, we could have quantified both variables at
the same time, separating their declarations with a semicolon.
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Example 3.9 The quantified predicate

∃ x : a • ∃ y : b • p

could also be written as

∃ x : a; y : b • p

�

There is a circumstance in which this is not possible: when the first quantified
variable appears in the range of the second.

Example 3.10 In the expression below, the first bound variable is used as the
range of the second:

∃ a : b • ∃ c : a • p

In this case, it would make no sense to merge the two quantifications. �

If a variable x appears in a predicate p but is not bound by any quantifier,
we say that x is free in p. Each occurrence of x that is outside the scope of a
declaration of the form ‘∀ x : a’ or ‘∃ x : a’ is said to be a free occurrence.

Example 3.11 In the expression below, there is a single free occurrence of vari-
able z:

∀ x : N • z ≤ x

This predicate states that every natural number x is greater than z, whatever z
may be. �

If we use the same name for two different variables, then we may find that a
variable appears both free and bound in the same expression.

Example 3.12 There are both free and bound occurrences of variable x in the
expression below:

x︸︷︷︸
free occurrence

= 3 ∧ ∀ x : N • 0 ≤ x︸︷︷︸
bound occurrence

The occurrence of x adjacent to the quantifier is neither free nor bound; it is a
binding occurrence. �



34 3 / Predicate Logic

3.3 Substitution

If a predicate p contains a free occurrence of variable x, then p may represent
a non-trivial statement about x. The choice of variable x is important: p does
not, in general, represent the same statement about any other variable y . If
we wish to change the subject of the statement from x to y , we must replace
each free occurrence of x in p with an occurrence of y . This process is called
substitution.

We write p[y / x] to denote the predicate that results from substituting
y for each free occurrence of x in predicate p; this new operator binds more
tightly than any other. The expression y need not be another variable; it can be
any expression whose possible values match those of x.

Example 3.13

1. (x ≤ y + 2)[0 / x] a (0 ≤ y + 2)

2. (∃ x : N • x ≤ y + 2)[0 / x] a (∃ x : N • x ≤ y + 2)

3. (∃ x : N • x ≤ y + 2)[5 / y] a (∃ x : N • x ≤ 5 + 2)

�

We write p[t / x][u / y] to denote the predicate p[t / x] with the expression u
systematically substituted for free occurrences of the variable y .

Example 3.14

1. (x ≤ y + 2)[0 / x][5 / y] a (0 ≤ y + 2)[5 / y] a (0 ≤ 5 + 2)

2. (x ≤ y + 2)[y / x][5 / y] a (y ≤ y + 2)[5 / y] a (5 ≤ 5 + 2)

�

We write p[t , u / x, y] to denote the result of simultaneously substituting t for
x and u for y in predicate p. In general, this is different from the multiple
substitution p[t / x][u / y].

Example 3.15

1. (x ≤ y + 2)[y , 5 / x, y] a (y ≤ 5 + 2)

2. (x ≤ y + 2)[y / x][5 / y] a (y ≤ y + 2)[5 / y] a 5 ≤ 5 + 2

�
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A potential problem with substitution is the unintentional capture of free
variables. If y is bound in p, then the substitution p[y / x] might include new
bound instances of y in place of free instances of x. This may change the
meaning of p in a way that is not intended.

Example 3.16 Let Person denote the set of all people, and let m LooksLike n
mean that person m looks like person n. The following predicate is a statement
about a person o; it states that there is some person who does not look like o:

∃ p : Person • ¬(p LooksLike o)

We may make the same statement about person m by substituting m for o:

∃ p : Person • ¬(p LooksLike m)

However, if we substitute p for o, we obtain a different statement entirely:

∃ p : Person • ¬(p LooksLike p)

The expression substituted for o contains a free occurrence of p, which is then
bound by the quantifier. The new predicate states that there is someone who
does not look like themself. The substitution has brought an unwanted change
of meaning. �

To avoid such confusion, we may rename bound variables prior to substitution,
choosing fresh variable names to avoid variable capture.

We can give equivalences to explain the effect of substitution into quan-
tified expressions. In the simplest case, the variable being substituted for has
the same name as the one being quantified:

(∀ x : a | p • q)[t / x] a (∀ x : a[t / x] | p • q)

(∃ x : a | p • q)[t / x] a (∃ x : a[t / x] | p • q)

In this case, the only part of the expression that may change is the range of the
quantified variable. In general, this substitution will have no effect; it is poor
practice to include a free variable in the declaration of a bound variable of the
same name.

If the quantifier is binding some variable other than x, then the substitu-
tion will have more of an effect. If y is not free in t , then

(∀ y : a | p • q)[t / x] a (∀ y : a[t / x] | p[t / x] • q[t / x])

(∃ y : a | p • q)[t / x] a (∃ y : a[t / x] | p[t / x] • q[t / x])
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If y is free in t , then we choose a fresh variable z, different from x and not
appearing in t :

(∀ y : a | p • q)[t / x]
a (∀ z : a[t / x] | p[z / y][t / x] • q[z / y][t / x])

(∃ y : a | p • q)[t / x]
a (∃ z : a[t / x] | p[z / y][t / x] • q[z / y][t / x])

By using z instead of y for the name of the quantified variable, we have avoided
any possibility of unintentional variable capture.

If the major operator in an expression is not a quantifier, then the effect
of substitution is easy to explain:

(¬p)[t / x] a ¬p[t / x]

(p ∧ q)[t / x] a p[t / x] ∧ q[t / x]

(p ∨ q)[t / x] a p[t / x] ∨ q[t / x]

(p ⇒ q)[t / x] a p[t / x] ⇒ q[t / x]

(p a q)[t / x] a p[t / x] a q[t / x]

In every case, substitution distributes through the propositional operators.

3.4 Universal introduction and elimination

In general, the truth-table technique for giving meaning to connectives and
reasoning about them is useless for the quantifiers, since the sets that bound
variables may range over are simply too large. However, we may build upon the
natural deduction system of the previous chapter by adding rules to introduce
and eliminate quantifiers.

If we view universal quantification as a generalised conjunction, then we
should be able to generalise the rules for conjunction to get the rules for the
universal quantifier. Consider first the introduction rule. In order to prove
p ∧ q, one needs to prove both p and q. In order to prove ∀ x : a • p, one must
prove that p is true for each value in a. This doesn’t sound terribly hopeful,
as it might involve an infinite number of premisses, and therefore an infinite
number of proofs.

A better approach might be to prove that p holds for an arbitrary mem-
ber of a: if we make no assumptions whatsoever about which member of a
we choose in order to prove p, then our proof generalises to all members. A
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simplified rule for introducing universal quantification is the following:

dx ∈ ae[i]

q

∀ x : a • q
[[i]] provided that x is not free

in the assumptions of q

where x ∈ a means that x is a member of set a.
Notice that we are required to check that x is not free in the assumptions

of q. This ensures that we are not constraining our choice of x from a. The
assumptions of q are those leaves of the proof tree above q that have not been
discharged: by implication-introduction, for example.

In the full form of the universal quantifier, there is also a constraint that
x must satisfy; we may treat the constraint as an additional assumption:

dx ∈ ae[1]

dpe[1]

q

∀ x : a | p • q
[∀−intro[1]] provided that x is not free

in the assumptions of q

This rule may be derived from the first ∀−intro rule:

dx ∈ ae[1]

dpe[2]

...

q

p ⇒ q
[⇒−intro[2]]

∀ x : a • p ⇒ q
[∀−intro[1]]

∀ x : a | p • q
[defn]

The constraint part of a universal quantification may be treated as the ante-
cedent of an implication.

From a conjunction, one may conclude either of the conjuncts; by analogy,
from a universally quantified predicate, one may conclude that the predicate
holds for any value in the range. Suppose that we have the universally quanti-
fied predicate ∀ x : a • p, and that the expression t denotes a value in a; then
p must be true of t .

t ∈ a ∀ x : a • p
p[t / x]

We systematically substitute t for x in p.
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The full form requires the equivalent of implication elimination, to demon-
strate that the expression chosen satisfies the constraint:

t ∈ a ∀ x : a | p • q p[t / x]
q[t / x]

[∀−elim]

A special case of the last rule takes t as x:

x ∈ a ∀ x : a | p • q p
q

[∀−elim]

Example 3.17 The universal quantifier distributes through conjunction. We
will prove this in one direction only:

(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q))

We begin the proof with the stated goal:

...
(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q))

The major connective here is the implication, so we assume the antecedent and
try to prove the consequent:

d∀ x : a • p ∧ qe[1]

...

(∀ x : a • p) ∧ (∀ x : a • q)
(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q)) [⇒−intro[1]]

In order to prove this conjunction, we should prove each conjunct separately:

d∀ x : a • p ∧ qe[1]

...

∀ x : a • p

d∀ x : a • p ∧ qe[1]

...

∀ x : a • q
(∀ x : a • p) ∧ (∀ x : a • q)

[∧−intro]

(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q)) [⇒−intro[1]]

We shall deal with the left-hand subtree. The major connective is the universal
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quantifier, so we introduce it.

d∀ x : a • p ∧ qe[1]

dx ∈ ae[2]

...

p
∀ x : a • p

[∀−intro[2]]

d∀ x : a • p ∧ qe[1]

...

∀ x : a • q
(∀ x : a • p) ∧ (∀ x : a • q)

[∧−intro]

(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q)) [⇒−intro[1]]

We cannot work backwards any further, so now we must take advantage of
our assumptions. If we eliminate the universal quantifier, we expose a useful
conjunction:

dx ∈ ae[2] d∀ x : a • p ∧ qe[1]

p ∧ q
[∀−elim]

...

p
∀ x : a • p

[∀−intro[2]]

d∀ x : a • p ∧ qe[1]

...

∀ x : a • q
(∀ x : a • p) ∧ (∀ x : a • q)

[∧−intro]

(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q)) [⇒−intro[1]]

Now this subtree is finished, since we can use conjunction elimination to con-
nect top and bottom. The right-hand subtree is symmetric with the left.

dx ∈ ae[2] d∀ x : a • p ∧ qe[1]

p ∧ q
[∀−elim]

p
[∧−elim1]

∀ x : a • p
[∀−intro[2]]

dx ∈ ae[3] d∀ x : a • p ∧ qe[1]

p ∧ q
[∀−elim]

q
[∧−elim2]

∀ x : a • q
[∀−intro[3]]

(∀ x : a • p) ∧ (∀ x : a • q)
[∧−intro]

(∀ x : a • p ∧ q) ⇒ ((∀ x : a • p) ∧ (∀ x : a • q)) [⇒−intro[1]]

�

Example 3.18 Provided that x does not occur free in the antecedent, then we
can move the universal quantifier through an implication

(∀ x : a • p ⇒ q) a (p ⇒ ∀ x : a • q) provided x is not free in p
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A suitable proof would be:

dx ∈ ae[3] d∀ x : a • p ⇒ qe[1]

p ⇒ q
[∀−elim] dpe[2]

q
[⇒−elim]

∀ x : a • q
[∀−intro[3]]

p ⇒ ∀ x : a • q
[⇒−intro[2]]

(∀ x : a • p ⇒ q) ⇒ (p ⇒ ∀ x : a • q) [⇒−intro[1]]

dx ∈ ae[5]
dp ⇒ ∀ x : a • qe[4] dpe[6]

∀ x : a • q
[⇒−elim]

q
[∀−elim]

p ⇒ q
[⇒−intro[6]]

∀ x : a • p ⇒ q
[∀−intro[5]]

(p ⇒ ∀ x : a • q) ⇒ (∀ x : a • p ⇒ q) [⇒−intro[4]]

(∀ x : a • p ⇒ q) a (p ⇒ ∀ x : a • q)
[a−intro]

�

3.5 Existential introduction and elimination

The existential quantification ∃ x : a | p • q is true if and only if there is some
x in set a such that p and q are true. Of course, this object does not have to be
called x; it can be any expression t such that t has a value in a and the following
predicate is true:

p[t / x] ∧ q[t / x]

That is, given that we are talking about t not x, both the constraint and the
quantified predicate should hold.

To introduce an existential quantifier, we must show that a suitable ex-
pression t exists: we must provide an example.

t ∈ a p[t / x] q[t / x]
∃ x : a | p • q

[∃−intro]

As before, the expression t ∈ a means that t is a member of set a.

Example 3.19 With suitable assumptions about N, +, and >, we can prove that
for any natural number x, there is some natural number y such that y is greater
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than x. We use existential introduction, choosing x + 1 as a specific value:

dx ∈ Ne[1]

x + 1 ∈ N
[arithmetic]

dx ∈ Ne[1]

x < x + 1
[arithmetic]

(x < y)[x + 1 / y]
[subst]

∃ y : N • x < y
[∃−intro]

∀ x : N • ∃ y : N • x < y
[∀−intro[1]]

Two of the steps in this proof cannot be made using the rules of our natural
deduction system. The validity of these steps depends upon our understanding
of the natural numbers N, and a conventional interpretation of > and +. �

A special case of the existential-introduction rule takes expression t to be the
variable x. If p and q are already true, then there is no reason to substitute
another expression for x:

x ∈ a p q
∃ x : a | p • q

[∃−intro]

Example 3.20 If, in the course of a proof, we have established that x ∈ N and
x ≥ 0, then we may apply the special case of existential-introduction and con-
clude that

∃ x : N • x ≥ 0

�

Elimination of the existential quantifier is a more difficult affair. The pre-
dicate ∃ x : a • s states that there is some object x in a for which s is true.
If x appears free in p then simply removing the quantifier leaves us with an
unjustified statement about a free variable x. We cannot, in general, conclude
p from ∃ x : a • p. To use the information contained in p, we must complete
any reasoning that involves x before eliminating the quantifier.

Suppose that we assume only that x ∈ a and that p holds of x. If we are
then able to derive a predicate r that does not involve x, and we know that there
is some x in a for which p is true, then we may safely conclude r .

∃ x : a • p

dx ∈ a ∧ pe[i]

r

r
[∃−elim[i]] provided x is not free in the

assumptions, and x is not free in r
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It is important that nothing is assumed about x during the derivation of r , apart
from the explicit assumption

dx ∈ a ∧ pe[i]

which states that x is in a and that p holds.
The full form of the existential-elimination rule includes the optional con-

straint part of the quantification:

∃ x : a | p • q

dx ∈ a ∧ p ∧ qe[i]

r

r
[∃−elim[i]]

provided x is not free

in the assumptions, and x is

not free in r

These rules are generalisations of the case analysis rule given in Chapter 2 for
the elimination of the ∨ operator. For each value of x, we must show that r
follows from p and q.

Example 3.21 Existential quantifiers commute. We will prove this in one dir-
ection only:

(∃ x : a • ∃ y : b • p) ⇒ (∃ y : b • ∃ x : a • p)

provided x is not free in b, and y is not free in a.

d∃ x : a • ∃ y : b • pe[1]

d∃ y : b • pe[2]
dy ∈ be[3]

dx ∈ ae[2] dpe[3]

∃ x : a • p
[∃−intro]

∃ y : b • ∃ x : a • p
[∃−intro]

∃ y : b • ∃ x : a • p
[∃−elim[3]]

∃ y : b • ∃ x : a • p
[∃−elim[2]]

(∃ x : a • ∃ y : b • p) ⇒ (∃ y : b • ∃ x : a • p) [⇒−intro[1]]

�

The two quantifiers are related in the same way as the propositional op-
erators they generalise. The statement ‘for some x in a, predicate p is true’ is
the negation of ‘for every x in a, predicate p is false’. In terms of equivalences:

∃ x : a • p a ¬ ∀ x : a • ¬p

∀ y : b • q a ¬ ∃ y : b • ¬q

These two equivalences are generalisations of the de Morgan laws for the ∧ and
∨ operators given in Chapter 2.
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3.6 Satisfaction and validity

A predicate with free variables or ‘spaces’ is neither true nor false; it cannot be
assigned a truth value until values are chosen for these variables or the spaces
are filled. Some predicates will become true whatever values are chosen: these
are said to be valid predicates.

Example 3.22 If n denotes a natural number, then the predicate

n ≥ 0

is valid: it will be true whichever value is chosen from the list 0, 1, 2, 3, . . . �

A predicate that is true for some, but not necessarily all, choices of values is
said to be satisfiable.

Example 3.23 If n denotes a natural number, then the predicate

n ≥ 5

is satisfiable. There are natural numbers greater than or equal to 5. �

A predicate that is false for all choices is said to be unsatisfiable. Valid, satis-
fiable, and unsatisfiable predicates are the analogues of tautologies, contingen-
cies, and contradictions in the language of propositions.





Chapter 4

Equality and Definite Description

In this chapter we extend our language of mathematics by adding a theory of
equality between expressions. The language of predicate calculus with equality
is strictly more expressive than without, since it allows us to assert the identity
of two objects, or to distinguish between them. We provide inference rules to
support the intuitive notion that expressions which are equal may be substi-
tuted one for the other, without affecting the truth of a statement, or the value
of a larger expression. These rules form the basis of our theory of equality, and
properties such as symmetry and transitivity can be derived from them.

The addition of equality allows us to formulate a simple rule for reasoning
with quantifications: the one-point rule. We show how this rule may be used to
introduce and eliminate the existential quantifier. We show also how equality
may be used in statements expressing uniqueness and numerical quantity. We
conclude the chapter by introducing a notation for identifying objects by using
a description of their properties, rather than by referring to them by name.

4.1 Equality

The notion of equality is a familiar one: in arithmetic we learn that 1+1 equals
2; in the Christian religion, the 25th of December equals Christmas Day. Such
statements are meant to indicate that the two expressions concerned have the
same value, or that they denote the same object. In a formal description, we
identify expressions using the equality symbol:

1 + 1 = 2, Christmas Day = 25th December

We write e = f when e is identical to f , in the sense that we cannot distinguish
between them.
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Example 4.1 In an identity parade, a witness may state that ‘the man on the
right is the man who stole my idea’, making the following identification:

the man on the right = the man who stole my idea

That is, the man on the right is identical to the man who stole the idea. �

The ‘=’ symbol is due to Robert Recorde, whose textbook on algebra The Whet-
stone of Witte, published in 1557, used the symbol for the first time. Recorde
argued that a pair of parallel lines of the same length were suitable as the sym-
bol for equality ‘bicause noe 2 thynges can be moare equalle’.

We do not use equality to state that two predicates are identical: the pro-
positional connective of equivalence is reserved for that purpose. Rather, we
use equality to state that two values (such as numbers) are identical. Thus,
we may write 5 + 3 = 3 + 5, since both sides of the equation are expressions
which denote values. These denoted values are the same, so the equality is true.
Equalities form the atomic propositions in our logical language; the only other
way of obtaining an atomic proposition is through set membership, described
in Chapter 5.

Everything is identical to itself: thus, if t is any expression, then t is equal
to t . This principle is known as the law of reflection:

t = t
[eq-ref]

It should be remarked that there are logics in which this principle does not
hold. It is, however, an axiom of standard Z.

Example 4.2 In basic arithmetic, everybody knows that

1 + 1 = 1 + 1

whatever the properties of numbers and addition. �

Another axiom involving equality is Leibniz’s law, or the substitution of
equals: if s = t , then whatever is true of s is also true of t .

s = t p[t / x]
p[s / x]

[eq-sub]

In fact, Leibniz (1646–1716) stated the following Principle of the Identity of
Indiscernibles: s = t if and only if every property of s is a property of t , and
conversely. The rule above follows from this principle.
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Example 4.3 If we know that Christmas Day = 25th December , and that

25th December falls on a Sunday this year

then we may apply the [eq-sub] rule and conclude that

Christmas Day falls on a Sunday this year

�

If two expressions e and f are not identical, then we write e ≠ f . This is simply
an abbreviation for ¬(e = f ).

Example 4.4 Expressions with different properties are themselves different:

p[s / x] ¬p[t / x]
s ≠ t

This may be proved by

p[s / x]

ds = te[1]
¬p[t / x]

(¬p)[t / x]
[subst]

(¬p)[s / x]
[eq-sub]

¬p[s / x]
[subst]

false
[¬−elim]

¬(s = t) [¬−intro[1]]

s ≠ t
[abbreviation]

�

Using the rules [eq-ref] and [eq-sub], we are able to establish that equality
is symmetric: for any expressions s and t , if s = t , then t = s. If we let x be a
fresh variable, so that x does not appear in either s or t , then we may construct
the following derivation:

s = t
t = t

[eq-ref]

(t = x)[t / x]
[subst]

(t = x)[s / x]
[eq-sub]

t = s
[subst]

Having derived this property, we may use it as a rule of inference in our natural
deduction system; we will refer to it as [eq-symm].



48 4 / Equality and Definite Description

Example 4.5 From the identification made in Example 4.1, we may apply the
[eq-symm] rule and conclude that:

the man who stole my idea = the man on the right

�

We are also able to establish that equality is transitive: for any expressions s, t
and u, if s = t and t = u then s = u. Again, let x be a fresh variable:

s = t
t = u

(x = u)[t / x]
[subst]

(x = u)[s / x]
[eq-sub]

s = u
[subst]

Example 4.6 After the identity parade, it is revealed that the man on the right
is Professor Plum, the prominent plagiarist:

the man on the right = Professor Plum

We may add this to the information in Example 4.5 and conclude that

the man who stole my idea = Professor Plum

�

4.2 The one-point rule

The notion of equality allows us to manipulate the existential quantifier. If
the identity of a bound variable is revealed within the quantified expression,
then we may replace all instances of that variable, and remove the existential
quantifier. Consider the following predicate:

∃ x : a • p ∧ x = t

This states that there is a value of x in a for which p ∧ x = t is true. If t is in a,
and p holds with t substituted for x, then t is a good candidate for this value.

This is the basis of the one-point rule for the existential quantifier, which
embodies the following equivalence:

(∃ x : a • p ∧ x = t) a t ∈ a ∧ p[t / x]
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For this to work, x must not be free in t . If it were, then x would be bound on
the left-hand side of the equivalence but free on the right. In this case, if we
were to replace the left-hand side of the equivalence by the right-hand side, x
would suddenly become a free variable.

The right-to-left implication is rather obvious: it relies on existential in-
troduction, and the equality suggests what the term should be:

dt ∈ a ∧ p[t / x]e[1]

t ∈ a
[∧−elim1]

dt ∈ a ∧ p[t / x]e[1]

p[t / x]
[∧−elim2]

t = t
[eq-ref]

p[t / x] ∧ t = t
[∧−intro]

(p ∧ x = t)[t / x]
[subst]

∃ x : a • p ∧ x = t
[∃−intro]

t ∈ a ∧ p[t / x] ⇒ (∃ x : a • p ∧ x = t) [⇒−intro[1]]

The left-to-right direction is more interesting, since it relies on the use of exist-
ential elimination. Notice that the use of this rule is sound, due to the proviso
that x is not free in t .

d∃ x : a • p ∧ x = te[1]

dx = te[2]

t = x
[eq-sym] dx ∈ ae[2]

t ∈ a
[eq-sub]

dx = te[2]

t = x
[eq-sym]

dpe[2]

p[x / x]
[subst]

p[t / x]
[eq-sub]

t ∈ a ∧ p[t / x]
[∧−intro]

t ∈ a ∧ p[t / x] [∃−elim[2]]

(∃ x : a • p ∧ x = t) ⇒ t ∈ a ∧ p[t / x] [⇒−intro[1]]

So, the existential one-point rule is a derived rule in our logic:

∃ x : a • p ∧ x = t

t ∈ a ∧ p[t / x]
[one-point]

provided that x is not free in t

It is particularly useful in specification: we know that some object x exists with
a particular property, and we have identified x as t ; this rule allows us to infer
immediately that p holds of t . The fact that we have an equivalence is also
very useful, in that it allows us to eliminate an existentially quantified variable
without changing the strength of the predicate.

Example 4.7 The predicate

∃ n : N • 4 + n = 6 ∧ n = 2



50 4 / Equality and Definite Description

is equivalent, by the one-point rule, and since n does not appear free in the
expression ‘2’, to the proposition

2 ∈ N ∧ 4 + 2 = 6

which is, of course, true. The predicate

∃ n : N • 6 + n = 4 ∧ n = −2

is equivalent, by the one-point rule, and since n does not appear free in the
expression ‘−2’, to the proposition

−2 ∈ N ∧ 6 − 2 = 4

which is, of course, false. The predicate

∃ n : N • (∀ m : N • n > m) ∧ n = n + 1

cannot be simplified using the one-point rule, since n is free in the expression
‘n + 1’. �

4.3 Uniqueness and quantity

Equality can be used to make our predicate calculus more expressive, by allow-
ing us to identify and distinguish objects.

Example 4.8 Let x loves y mean that x is in love with y , and let Person be the
set of all people. We may symbolise the proposition ‘only Romeo loves Juliet’
using a conjunction:

Romeo loves Juliet ∧
∀ p : Person • p loves Juliet ⇒ p = Romeo

That is, any person who loves Juliet must be Romeo. �

A similar technique can be used to formalise statements containing the English
phrases ‘at most’ and ‘no more than’.

Example 4.9 The statement ‘there is at most one person with whom Romeo is
in love’ may be formalised as

∀ p, q : Person • Romeo loves p ∧ Romeo loves q ⇒ p = q

That is, if p and q are two people that Romeo loves, then they must be the same
person. �
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Example 4.10 The statement ‘no more than two visitors are permitted’ can be
formalised as

∀ p, q, r : Visitors • p = q ∨ q = r ∨ r = p

�

The notion of ‘at least one’ can be formalised using the existential quantifier.

Example 4.11 The statement ‘at least one person has applied’ could be form-
alised as

∃ p : Person • p ∈ Applicants

�

However, to say ‘at least two’, we need equality.

Example 4.12 ‘There are at least two applicants’ may be formalised as

∃ p, q : Applicants • p ≠ q

�

With the notions of ‘at least’ and ‘at most’, we have a method for formalising
definite numerical propositions. This will be made easier later in the book when
we have introduced finite sets. Then we shall be able to say, for example, that
there are 29 distinct things with property p.

Example 4.13 The statement ‘there is exactly one book on my desk’ may be
formalised as

∃ b : Book • b ∈ Desk ∧ (∀ c : Book | c ∈ Desk • c = b)

where ‘Book’ denotes the set of all books, and ‘x ∈ Desk’ means that ‘x is on my
desk’. �

Specifying that there is exactly one object with a given property occurs so often
that there is a special notation for it: the unique quantifier. We write

∃1 x : a • p

when there exists exactly one element x of set a such that p holds. This new
quantifier can be defined in terms of the two forms of quantifier introduced in
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Chapter 3:

∃1 x : a | p • q a ∃ x : a | p •
q ∧ ∀ y : a • p[y / x] ∧ q[y / x] ⇒ y = x

The predicate ∃1 x : a | p • q is true under two conditions: there must be an
element x of a satisfying p and q and any element y of a that satisfies p and q
is identical to x.

4.4 Definite description

We often use a descriptive phrase to denote an object, rather than a name.
For example, when a crime has been committed, and the police have not yet
learned who committed it, the tabloids are not silenced for want of a name—
the individual in question is referred to as ‘the driver of the white car’ or ‘the
cat in the hat’. In both of these examples, it is the word ‘the’ that is important;
it is used to indicate existence and uniqueness.

Example 4.14 Each of the following phrases indicates that there is a unique
object with a certain property:

• The man who shot John Lennon

• The woman who discovered radium

• The oldest college in Oxford

�

In our mathematical language, there is a special notation for this definite de-
scription of objects: the µ-notation. We write

( µ x : a | p )

to denote the unique object x from a such that p.

Example 4.15 The phrases in Example 4.14 can be formalised as above:

• ( µ x : Person | x shot John Lennon )

• ( µ y : Person | y discovered radium )

• ( µ z : Colleges | z is the oldest college in Oxford )

�
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To say that y is equal to the expression ( µ x : a | p ) is to say that y is the
unique element of a such that p holds.

Example 4.16 The statement that Marie Curie is the person who discovered
radium could be formalised as

Marie Curie = ( µ y : Person | y discovered radium )

If it can be shown that there is exactly one element of Person with this property,
we may infer that

Marie Curie ∈ Person ∧ Marie Curie discovered radium

�

Such a statement makes sense only if there exists a unique object with the
specified property. This requirement is reflected in the proof rules for the µ
operator:

∃1 x : a • p t ∈ a ∧ p[t / x]
t = ( µ x : a | p )

[µ-intro] provided that x does not

appear free in t

and

∃1 x : a • p t = ( µ x : a | p )
t ∈ a ∧ p[t / x]

[µ-elim] provided that x does not

appear free in t

If there is a unique x from a such that p holds, and t is such an object, then we
may infer that t is equal to the µ-expression ( µ x : a | p ). Conversely, if t is
equal to this expression and uniqueness is guaranteed, then we may infer that
t is an element of a such that p holds.

Example 4.17 The following proposition states that 2 is the natural number
that yields a result of 6 when added to 4:

2 = ( µ n : N | 4 + n = 6 )

It may be proved by

∃1 n : N • 4 + n = 6
[arithmetic]

2 ∈ N ∧ 4 + 2 = 6
[arithmetic]

2 = ( µ n : N | 4 + n = 6 )
[defdesc]

In both left and right subtrees, the required result follows from the properties
of N and +. �
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To prove that an object is not equal to a given µ-expression we must show that
the µ-expression denotes a unique object, and that this isn’t it.

Example 4.18 The following proposition states that 3 is not the natural number
that yields a result of 6 when added to 4:

3 ≠ ( µ n : N | 4 + n = 6 )

It may be proved by

∃1 n : N • 4 + n = 6
[arithmetic] d3 = ( µ n : N | 4 + n = 6 )e[1]

∃ n : N | 4 + n = 6 • 3 = n
[µ-elim]

3 ∈ N ∧ 4 + 3 = 6
[one-point]

4 + 3 = 6
[∧−elim2]

false
[arithmetic]

3 ≠ ( µ n : N | 4 + n = 6 ) [¬−intro[1]]

�

If there is no unique object with the specified property, then our attempts at
proving equality may fail.

Example 4.19 The following proposition states that 1 is the unique natural
number that satisfies n = n + 0:

1 = ( µ n : N | n = n + 0 )

There is no unique number with this property—every number has it—so we
should not be surprised if we encounter problems during the proof.

An application of the µ-introduction rule leaves us with two subtrees to
investigate:

∃1 n : N • n = n + 0 1 ∈ N ∧ 1 = 1 + 0

1 = ( µ n : N | n = n + 0 )
[µ-intro]

The right-hand subtree seems quite easy to prove, but the left-hand one is im-
possible. At this point, we might decide that our proposition is false, and at-
tempt to prove its negation.

∃1 n : N • n = n + 0 d1 = ( µ n : N | n = n + 0 )e[1]

...

[µ-elim]

false
1 ≠ ( µ n : N | n = n + 0 ) [¬−intro[1]]
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This proof is also problematic: we must derive a contradiction, and the only
assumption that we have is that

1 = ( µ n : N | n = n + 0 )

We cannot use this assumption unless we prove that

∃1 n : N • n = n + 0

which is not true, and even if we could, it would be no use, since it does not
lead to a contradiction. In conclusion, we cannot prove that

1 = ( µ n : N | n = n + 0 )

nor can we prove its negation. In this respect, our proof system is incomplete,
and deliberately so.

There is no unique number n which has the property that n = n + 0, there
are many; we refer to the descriptive phrase

( µ n : N | n = n + 0 )

as being improper. We do not know what value it has, and we can prove very
little about it. �

Example 4.20 The following proposition states that 1 is the unique natural
number which is equal to its own successor:

1 = ( µ n : N | n = n + 1 )

No natural number has this property, and our attempts to prove this proposi-
tion or its negation will fail. �

Sometimes we wish to refer not to the unique object with some property,
but to some object or expression associated with it. A more general form of
µ-expression allows this: we write

( µ x : a | p • e )

to denote the expression e such that there is a unique x from a satisfying p.

Example 4.21 The date upon which University College, Oxford, was founded
might be given by the expression:

( µ z : Colleges | z is the oldest in Oxford • date of foundation(z) )

�
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The proof rules for this form of definite description are simple generalisations
of those given above:

∃1 x : a • p ∃ x : a | p • t = e

t = ( µ x : a | p • e )
[defdesc] provided that x does not

appear free in t

and

∃1 x : a • p t = ( µ x : a | p • e )
∃ x : a | p • t = e

[defdesc] provided that x does not

appear free in t

Notice that since the object x is unique, so too is the value of the expression e.



Chapter 5

Sets

Mathematical objects are often seen as collections of other objects: a square
is a collection of points in a plane; a function is a collection of pairs linking
arguments with values. These collections are called sets, and their theory is a
fundamental part of mathematics. As mathematics forms the basis of modern
software engineering, we should not be surprised to find that sets are important
to our understanding of formal specification and design.

The Z notation is based upon set theory; specifications in Z find their
meanings as operations upon sets. In this chapter, we present the foundations
of elementary set theory: the notions of set membership, extension, and com-
prehension; the power set and Cartesian product constructors. This will be all
the set theory we require for specification, refinement, and proof in Z.

At the end of the chapter we will introduce a system of types based upon
maximal sets, a system used throughout the rest of the book. This will help
us to ensure that expressions and variables are used consistently within a spe-
cification, and will also ensure that our formal language does not support the
definition of paradoxical sets such as those of Cantor and Russell.

5.1 Membership and extension

Intuitively, a set is any well-defined collection of objects; what we mean by ‘well-
defined’ will be explained later. The objects in a set can be anything—numbers,
people, letters, days—they may even be sets themselves.

Example 5.1 The following are all examples of sets:

• the four oceans of the world
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• the individuals who have been appointed to the post of secretary-general
of the United Nations

• the passwords that may be generated using eight lower-case letters

• the prime numbers

• the collection of programs written in C++ that halt if run for a sufficient
time on a computer with unlimited storage

�

We impose no restriction upon the number of elements that there may be in a
set. Neither do we insist upon an effective procedure for deciding whether an
arbitrary object is a member; the collection of programs in the last example is a
set, although no algorithm can determine whether or not an arbitrary program
will halt.

If a set is sufficiently small, we may define it by extension. To do this, we
produce a list of its elements; a set s containing three elements a, b, and c could
be defined by

s == {a, b, c}

Whenever we write out a set in such an explicit fashion, we use commas to
separate the elements of the list, and braces to mark the beginning and end.
The notation n == e means that n is by definition a name for, and hence equal
to, the expression e. We say that n is a syntactic abbreviation for e. This notation
is fully explained in Chapter 6.

Example 5.2 The first two sets in Example 5.1 can be defined by extension:

Oceans == {Atlantic, Arctic, Indian, Pacific}
Secretaries-General == { Trygve Lie, Dag Hammarskjöld, U Thant,

Kurt Waldheim, Javier Pérez de Cuéllar,
Boutros Boutros Ghali, Kofi Annan }

�

We write x ∈ s to indicate that object x is an element of set s. This is
pronounced ‘x belongs to s’, or ‘x is in s’. If x is not a member of s, then we
write x 6∈ s: clearly,

x 6∈ s a ¬(x ∈ s)
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Example 5.3 If Primes denotes the set of all prime numbers, then the following
propositions are true:

3 ∈ Primes

5 ∈ Primes

8 6∈ Primes

�

The idea of set membership allows us to characterise equality between
sets. Two sets s and t are equal if and only if they have the same elements:
that is, every member of s is also a member of t and every member of t is also
a member of s.

(∀ x : t • x ∈ u) ∧ (∀ x : u • x ∈ t)
t = u

[ext] provided that x is

free in neither u nor t

This rule expresses an equivalence known as the axiom of extension, one of the
axioms of Zermelo–Fraenkel set theory—the variety of set theory upon which
the Z notation is based.

An expression belongs to a set described in extension if and only if it is
equal to one of the set’s elements:

t = u1 ∨ . . . ∨ t = un

t ∈ {u1, . . . , un} [ext−mem]

Again, an inference can be made in both directions. Used in conjunction with
the axiom of extension, this rule allows us to discover an important property
of sets: that the order and multiplicity of listed elements is unimportant.

Example 5.4 If we define

s == {2, 2, 5, 5, 3}
t == {2, 3, 5}

then

s = t

That is, the list expressions used to define s and t denote the same set.
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This may be proved using the two inference rules given above:

dx ∈ se[1]

x ∈ {2, 2, 5, 5, 3} [eq−sub]

x = 2 ∨ x = 3 ∨ x = 5
[ext−mem]

x ∈ {2, 3, 5} [ext−mem]

x ∈ t
[eq−sub]

∀ x : s • x ∈ t
[∀−intro[1]]

dx ∈ te[2]

x ∈ {2, 3, 5} [eq−sub]

x = 2 ∨ x = 3 ∨ x = 5
[ext−mem]

x ∈ {2, 2, 5, 5, 3} [ext−mem]

x ∈ s
[eq−sub]

∀ x : t • x ∈ s
[∀−intro[2]]

(∀ x : s • x ∈ t) ∧ (∀ x : t • x ∈ s)
[∧−intro]

s = t
[ext]

Notice that, having defined s and t through syntactic abbreviations, we are able
to assume that they are equal and substitute accordingly. �

Some sets are so useful that they are given special names, and regarded
as permanent features of our formal language: one such set is N, the set of all
natural numbers:

N = {0, 1, 2, 3, 4, 5, . . .}

This is not a formal definition of the set N; such a definition is provided later
in the book: see Example 6.8.

Another useful set is the set with no elements: the empty set. We write ∅
to denote such a set.

Example 5.5 If we let Rockallers be the set of people who live and work on
Rockall, a small uninhabited island in the Atlantic Ocean, then

Rockallers = ∅

�

Another axiom of Zermelo–Fraenkel set theory states that the empty set
exists, and has no elements:

∀ x : a • x 6∈ ∅ [empty]

Whatever set a that we consider, none of the values x in a will appear in the
empty set.
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Example 5.6 Any universal quantification over the empty set is valid: that is,
∀ x : ∅ • p. This follows from the empty set axiom, with a as ∅:

dx ∈ ∅e[1]
dx ∈ ∅e[1] ∀ x : ∅ • x 6∈ ∅ [empty]

¬ (x ∈ ∅)
[∀−elim]

false
[¬−elim]

p
[false−elim]

∀ x : ∅ • p
[∀−intro[1]]

�

We may generalise our notion of set equality to allow us to compare two
sets containing the same kind of objects. If every element from set s is also
present in set t , we say that s is a subset of t , written s ⊆ t .

Example 5.7 Let Benelux denote the set of countries in the Benelux economic
union, and let Europe denote the set of all countries in the European Union.
Since the formation of the EU, it has been true that Benelux ⊆ Europe. There
were other partners when the EU (then the EEC) was formed in 1957, so it is
also true that ¬(Europe ⊆ Benelux). �

We may prove that one set is a subset of another by establishing a universal
quantification:

∀ x : s • x ∈ t

s ⊆ t
[subset] provided that x

is not free in t

This rule may be used in both directions; it is easy to establish that

s ⊆ t ∧ t ⊆ s a s = t

If s is a subset of t and t is a subset of s, then s and t are the same set.

5.2 Set comprehension

Given any non-empty set s, we can define a new set by considering only those
elements of s that satisfy some property p. This method of definition is called
comprehension. We write

{ x : s | p }

to denote the set of elements x in s that satisfy predicate p.
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Example 5.8 Suppose that a red car is seen driving away from the scene of a
crime. In this case, the authorities might wish to talk to anyone who owns such
a vehicle. If Person denotes the set of all people, then the set to consider is
given by

{ x : Person | x drives a red car }

�

A simple comprehension term { x : s | p } has two parts: a declaration part
x : s and a predicate part p. The declaration part may be seen as a generator,
providing a range s of possible values for x; the predicate part may be seen as
a filter, picking out only those values of x that satisfy p.

It may be that we are interested in some expression formed from the values
satisfying the predicate, and not in the values themselves. In this case, we add
a term part to our set comprehension: we write

{ x : s | p • e }

to denote the set of all expressions e such that x is drawn from s and satisfies
p. The expression e will usually involve one or more free occurrences of x.

Example 5.9 In order to pursue their investigation of the crime, the authorities
require a set of addresses to visit. This set is given by

{ x : Person | x drives a red car • address(x) }

�

If we have no restrictions upon the choice of values, we can still use a set
comprehension to generate a set of expressions: we write

{ x : s • e }

to denote the set of all expressions e such that x is drawn from s.

Example 5.10 Without the information that a red car was involved, the author-
ities would be left with the following set of addresses:

{ x : Person • address(x) }

This set contains every address associated with an element of Person. �
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We may treat the short forms of comprehension as abbreviations. A compre-
hension without a term part is equivalent to one in which the term is the same
as the bound variable:

{ x : s | p } = { x : s | p • x }

Similarly, a comprehension without a predicate part is equivalent to one with
the predicate true:

{ x : s • e } = { x : s | true • e }

as the predicate true places no restriction upon the choice of values.
The declaration part of a comprehension may introduce more than one

variable: we write

{ x : a; y : b | p • e }

to denote the set of expressions e formed as x and y range over a and b, re-
spectively, and satisfy predicate p.

Example 5.11 An eyewitness account has established that the driver of the red
car had an accomplice, and that this accomplice left a copy of the Daily Mail
at the scene. The authorities are now interested in tracing the following set of
potential criminals:

{ x : Person; y : Person | x is associated with y ∧
x drives a red car ∧
y reads the Daily Mail • x }

�

The variables declared in a set comprehension are bound in the same way
as variables declared in a quantified expression. We may change their names
provided that we choose names that are not already used in the comprehension.

Example 5.12 There is nothing special about the names chosen for the driver
and his or her accomplice. The set in Example 5.11 could equally well have
been written as

{ v : Person; w : Person | v is associated with w ∧
v drives a red car ∧
w reads the Daily Mail • v }

�
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If a set a has been defined by comprehension, then expression f is an
element of a if and only if there is some expression e in a such that e = f .

∃ x : s | p • e = f

f ∈ { x : s | p • e } [compre] provided that x

is not free in f

Our use of this inference rule is supported by two axioms of Zermelo–Fraenkel
set theory: the axiom of specification justifies the predicate part; the axiom of
replacement justifies the term.

The one-point rule of Chapter 4 leads to a pair of derived rules for set
comprehensions without a term part:

f ∈ s p[f / x]
f ∈ { x : s | p } [compre−s] provided that x

is not free in f

and

f ∈ { x : s | p }
f ∈ s ∧ p[f / x]

[compre−s] provided that x

is not free in f

Example 5.13 If we replace the predicate part of a set comprehension with a
weaker condition, then we obtain a larger set.

∀ x : a • p ⇒ q
{ x : a | p } ⊆ { x : a | q }

�

5.3 Power sets

If a is a set, then the set of all subsets of a is called the power set of a, and
written P a. For example, if a is the set {x, y} then

P a = { ∅, {x}, {y}, {x, y} }

This new set has four elements: the empty set, the set a itself, and the two
other subsets of a. In general, if a set a has n elements, then the power set P a
has 2n.

Example 5.14 Four friends have been invited to dinner: Alice, Bill, Claire, and
David. If their names are abbreviated to A, B, C , and D, then the set of people
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that actually arrive will be an element of the power set

P{A, B, C , D} = { ∅, {A}, {B}, {C}, {D}, {A, B}, {A, C}, {A, D},
{B, C}, {B, D}, {C , D}, {A, B, C}, {A, B, D},
{A, C , D}, {B, C , D}, {A, B, C , D} }

�

A set s belongs to the power set of a if and only if s is a subset of a:

s ⊆ a

s ∈ P a
[power]

This inference rule corresponds to the power set axiom of Zermelo-Fraenkel set
theory, which states that a power set exists for any set a.

Example 5.15 For any set a, the empty set is an element of P a:

∅ ∈ P a

This follows from the result of Example 5.6, that any universal quantification
over the empty set is valid:

∀ x : ∅ • x ∈ a
[Example 5.6]

∅ ⊆ a
[subset]

∅ ∈ P a
[power]

�

The Z notation has a second power set symbol; we write F a to denote the set
of finite subsets of a; this symbol is defined in Chapter 8.

5.4 Cartesian products

In a formal description of a software system, we may wish to associate objects
of different kinds: names; numbers; various forms of composite data. We may
also wish to associate two or more objects of the same kind, respecting order
and multiplicity. To support this structuring of information, the Z notation
includes Cartesian products. These are sets of tuples: ordered lists of elements,
one drawn from each of the component sets.

If a and b are sets, then the Cartesian product a × b consists of all tuples
of the form (x, y), where x is an element of a and y is an element of b. A
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tuple with exactly two elements is called an ordered pair ; a tuple with exactly
n elements, where n is greater than 2, is called an n-tuple.

Example 5.16 In the game of CluedoTM, it is assumed that a murder has been
committed. The players are then invited to guess the identity of the person
responsible, the room in which the crime was committed, and the weapon used.
If we define the set of guests, the set of locations, and the set of potential
weapons,

Guests == { Mrs Peacock, Miss Scarlett , Reverend Green,
Mrs White, Colonel Mustard, Professor Plum }

Rooms == { Library , Study , Lounge, Hall, Kitchen,
Billiard Room, Ballroom, Conservatory , Dining Room }

Weapons == { Rope, Dagger , Revolver , Candlestick,
Lead Pipe, Spanner }

then the set of possible solutions is given by the Cartesian product:

Guests × Rooms × Weapons

and a typical guess would be

(Colonel Mustard, Library , Revolver)

It was Colonel Mustard, in the library, with the revolver. �

An n-tuple (x1, . . . , xn) is present in the Cartesian product a1 × . . . × an if
and only if each element xi is an element of the corresponding set ai .

x1 ∈ a1 ∧ . . . ∧ xn ∈ an

(x1, . . . , xn) ∈ a1 × . . . × an
[cart − mem]

In the case where n = 2, this rule expresses the following equivalence:

(x, y) ∈ a × b a x ∈ a ∧ y ∈ b

The ordered pair (x, y) is an element of the product set a × b if and only if x is
in a and y is in b.

The order of components in a Cartesian product is important: if a and b
are different sets, then a × b ≠ b × a. A similar consideration applies to the
elements of a product set: two tuples are the same if and only if they agree in
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every component:

x1 = y1 ∧ . . . ∧ xn = yn

(x1, . . . , xn) = (y1, . . . , yn)
[cart−eq]

To refer to a particular component of a tuple t , we use a projection notation:
the first component of the tuple is written t .1; the second component t .2, and
so on.

t .1 = x1 ∧ . . . ∧ t .n = xn

t = (x1, . . . , xn)
[cart−proj]

Example 5.17 If guess is an element of Guests × Rooms × Weapons, then

• guess.1 is the name of the murderer

• guess.2 is the suggested location

• guess.3 is the weapon used

If guess is the tuple (Colonel Mustard, Library , Revolver) then these would be
Colonel Mustard , Library , and Revolver , respectively. �

The product set is so called because the size of the set a × b is the product of
the size of a and the size of b.

Example 5.18 There are 6 guests, 9 rooms, and 6 weapons in CluedoTM. There
are 6 × 9 × 6 = 324 elements in the set

Guests × Rooms × Weapons

There are 324 possible solutions to the mystery. �

5.5 Union, intersection, and difference

If a and b are sets, then we write a ∪ b to denote the union of a and b; this is
the smallest set that contains all of the elements of a and b.

x ∈ (a ∪ b)
x ∈ a ∨ x ∈ b

[union]

We may generalise the union operator as follows: if s is a set of sets {a, b, c, . . .}
then we write

⋃
s to denote the smallest set containing all of the elements that
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appear in at least one of a, b, c , …

x ∈
⋃

s

∃ a : s • x ∈ a
[Union]

The union axiom of Zermelo–Fraenkel set theory guarantees the existence of⋃
s for any set of sets s.

Example 5.19 Edward, Fleur, and Gareth have each been given an assignment
consisting of 7 questions. Edward has attempted the questions numbered 1,
2, and 4; Fleur has attempted all but questions 5 and 6; Gareth has attempted
only those questions with even numbers. We may record this information as
follows:

E == {1, 2, 4}
F == {1, 2, 3, 4, 7}
G == {2, 4, 6}

We may discover which questions have been attempted by examining the union
of these three sets:

⋃
{E , F , G} = {1, 2, 3, 4, 6, 7}

This is the set of numbers n such that question n was attempted by at least one
of the three. �

We write a ∩ b to denote the intersection of two sets a and b; this is the set that
contains only those elements that are common to a and b.

x ∈ (a ∩ b)
x ∈ a ∧ x ∈ b

[inter]

We may generalise the intersection operator as follows: if s is a set of sets
{a, b, c, . . .}, then

⋂
s denotes the set containing only those elements that appear

in every one of a, b, c , …

x ∈
⋂

s

∀ a : s • x ∈ a
[Inter]

If s is the empty set of sets, then the universal quantification above will be true
for any x; the set

⋂
∅ contains all of the elements of the appropriate type: see

Section 5.6.
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Example 5.20 Using the information of Example 5.19, we may discover which
questions were attempted by all three students by examining the intersection⋂

{E , F , G} = {2, 4}

This is the set of numbers n such that question n was attempted by every one
of the three. �

If a and b are sets, then we write a \ b to denote the set difference a minus b;
this is the set containing only those elements that appear in a but not in b.

x ∈ (a \ b)
x ∈ a ∧ x 6∈ b

[diff]

Example 5.21 The set of questions which have been attempted by both Edward
and Fleur, but have not been attempted by Gareth, is given by

(E ∩ F ) \ G = {1}

and the set of questions attempted by Fleur alone is given by

F \ (E ∪ G) = {3, 7}

�

5.6 Types

When people use set theory to specify software systems, they often include
some notion of types. In Z, this notion is a simple one: a type is a maximal set,
at least within the confines of the current specification. This has the effect of
ensuring that each value x in a specification is associated with exactly one type:
the largest set s present for which x ∈ s.

The Z notation has a single built-in type: the set of all integers Z. Any
other types will be constructed from Z, or from basic types of values. A basic
type is a set whose internal structure is invisible. We may introduce elements
of such a set, and associate properties with them, but we can assume nothing
about the set itself.

Example 5.22 A computer system used by the United States Immigration Ser-
vice might store information about foreign nationals presently in the United
States. In a specification of this system, the set of all people would be a good
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choice for a basic type. The set of all UK nationals would be a poor choice, as
we are likely to consider supersets of this set. �

Additional types can be created using the power set constructor P and the
Cartesian product ×. If T is a type, then the power set P T is the type of all
subsets of T . If T and U are types, then T × U is the type of all pairs formed
from elements of T and elements of U .

Example 5.23 The power set P Z is the type of all sets of integers,

{1, 2, 3} ∈ P Z

while the Cartesian product Z × Z is the type of all number pairs:

(1, 2) ∈ Z × Z

�

The fact that each value in a specification is associated with exactly one
type is most useful. We can apply type-checking algorithms to the mathematical
text of a Z document to reveal any inconsistencies in the use of variable names
and expressions. Such algorithms can verify neither the interpretation of these
names nor the inferences made using them, but they are a powerful means of
increasing confidence in a formal specification.

Our use of types imposes restrictions upon the ways in which we may
define and use sets. For example, the statement x ∈ s is valid only if the type
of s is the power set of the type of x; if this is not the case, then the statement
is meaningless. Such restrictions are welcome.

Example 5.24 Suppose that types were not important in the use of ∈. In this
case, we could define R, the set of sets of some type T that are not members of
themselves:

R == {s : T | ¬ s ∈ s}

We would then be faced with a paradox: R is an element of itself if it isn’t an
element of itself, and vice versa. �

5.7 Proofs

We will often wish to prove that two sets are equal, or that one set is a subset
of another. Such proofs are often presented as a series of equivalences or
implications, each step justified by one of the inference rules given above, or a
tautology of propositional logic: see Section 2.7.
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Example 5.25 To show that S ∩ (T ∪ U ) = (S ∩ T ) ∪ (S ∩ U ), we suppose that
the type of S , T , and U is P X , and that x ∈ X , then

x ∈ S ∩ (T ∪ U )
a x ∈ S ∧ x ∈ (T ∪ U ) [definition of ∩]

a x ∈ S ∧ (x ∈ T ∨ x ∈ U ) [definition of ∪]

a (x ∈ S ∧ x ∈ T ) ∨ (x ∈ S ∧ x ∈ U )
[P ∧ (Q ∨ R) a P ∧ Q ∨ P ∧ R)]

a (x ∈ S ∩ T ) ∨ (x ∈ S ∩ U ) [definition of ∩, twice]

a x ∈ (S ∩ T ) ∪ (S ∩ U ) [definition of ∪]

To complete the proof, we note that x is not mentioned in any assumptions—
there are none to be considered—and hence that

∀ x : X • x ∈ S ∩ (T ∪ U ) a x ∈ (S ∩ T ) ∪ (S ∩ U )

by universal introduction (∀−intro). By the axiom of extension (Page 59), we
may conclude that the two sets are equal. �

Of course, the justifications need not be tautologies: they could be con-
sequences of hypotheses or assumptions in scope.

Example 5.26 To prove that S ⊆ T ⇒ U \ T ⊆ U \ S , we assume S ⊆ T and
attempt to establish U \T ⊆ U \S—a step justified by the ⇒−intro rule. Suppose
that P X is the type of the sets concerned, and that x ∈ X ; we begin with a simple
observation:

S ⊆ T

⇒ ∀ x : X • x ∈ S ⇒ x ∈ T [definition of ⊆]

⇒ ∀ x : X • ¬ x ∈ T ⇒ ¬ x ∈ S [P ⇒ Q a ¬ Q ⇒ ¬ P ]

and then proceed with the main body of the proof:

x ∈ U \ T

⇒ x ∈ U ∧ ¬ (x ∈ T ) [definition of \]

⇒ x ∈ U ∧ ¬ (x ∈ S) [from the above observation]

⇒ x ∈ U \ S [definition of \]

There are no assumptions in which x appears free, so we may apply the univer-
sal introduction rule to obtain

∀ x : X • x ∈ U \ T ⇒ x ∈ U \ S
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and hence that U \ T ⊆ U \ S , by the definition of ⊆. The result follows by a
single application of ⇒−intro:

S ⊆ T ⇒ U \ T ⊆ U \ S

�

The inference rules presented in this chapter are quite terse: they capture the
essence, but do not mention the underlying type of the sets involved. Later, in
Chapter 6, we will see how to add scaffolding, presenting generic definitions
for symbols such as ∩ and ∪.



Chapter 6

Definitions

A formal specification should contain a significant amount of prose, relating the
statements about mathematical objects to features of the design: system states,
data structures, properties, and operations. Of course, if the statements are
to be meaningful, we must ensure that the mathematical objects are properly
defined.

In the Z notation, there are several ways of defining an object. We may
simply declare, we may define by abbreviation, or we may define by axiom. In
addition, there are special mechanisms for free types and schemas, discussed
later in the book. In this chapter, we explain the use of declarations, abbrevi-
ations, and axiomatic definitions. We also present rules for reasoning with the
information that they contain.

6.1 Declarations

The simplest way to define an object is to declare it. If the object is a given
set, or basic type, then we do this by writing its name between brackets: for
example, the declaration

[Type]

introduces a new basic type called Type. If the object is a variable, then we give
the name of a set that it comes from. The declaration

x : A

introduces a new variable x, drawn from the set A. If this set is not Z, the type
of integers, then it must be defined elsewhere in the specification.
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Example 6.1 A hotel switchboard uses a software package to maintain a record
of call charges to current guests. A formal specification of this system could
include the declaration

[Guest , Room]

introducing two basic types to represent the set of all guests and the set of all
rooms. A variable of the type Guest is introduced by the following declaration:

x : Guest

�

A declaration of the form x : t , where t is a type, is called a signature: it
makes explicit the underlying type of the object being introduced. Any other de-
claration may be replaced by a signature and a constraint, the constraint defin-
ing the subset of the underlying type that the object is drawn from. If the declar-
ation is local—part of a set comprehension, quantification, or µ-expression—
then the constraint follows a vertical bar:

x : t | x ∈ s

If the declaration is global—introducing a constant that may be used throughout
the specification—then an axiomatic definition is required: see Section 6.4.

6.2 Abbreviations

Another way to define an object is to exhibit an existing object and state that
the two are the same. The abbreviation definition

symbol == term

introduces a new name for term, a mathematical object that must be defined
elsewhere in the specification. The new name symbol is a global constant of the
specification, with the same type and value as the expression term.

Example 6.2 The abbreviation definition

Additive == {red, green, blue}

introduces a set Additive, as another name for the set described in enumeration
above. The names red , green, and blue must be defined elsewhere, they are
not introduced by the abbreviation. If they are declared as elements of a type
Colours, then Additive is a constant of type P Colours. �



6.3 / Generic abbreviations 75

Any symbol defined by abbreviation may be eliminated from a specification
by replacing each instance with the expression on the right of the definition.
Accordingly, the notation may not be used to make recursive definitions.

Example 6.3 The recursive acronym gnu could not be defined using the abbre-
viation notation:

gnu == gnu′s not unix

This is not a valid abbreviation, as gnu appears also on the right. �

An abbreviation definition is quite benign: it asserts nothing, it simply provides
a more convenient way of referring to something that is already defined.

Example 6.4 Given the basic type Person, representing the set of all people, we
may introduce abbreviations for the set of all people who take sugar in tea:

English == {p : Person | p drinks tea ∧ p takes sugar}

and the set of all people who put salt on their porridge:

Scots == {q : Person | q eats porridge ∧ q adds salt}

Provided that the constraining predicates are properly introduced, the two sets
above are bound to be well defined. �

6.3 Generic abbreviations

In the course of a formal specification, we may wish to define a family of sym-
bols, one for each value of a particular index or parameter. Rather than present
a series of similar definitions, we employ a generic form of abbreviation:

symbol parameters == term

This defines a global constant symbol parameterised by a list of sets, each of
which may appear in the expression term.

Example 6.5 The simplest example is the definition of the empty set symbol
∅. In a Z specification, there may be many empty sets, one for each type; we
distinguish between empty sets of different types. To define the empty set of
objects from a set S , we write

∅[S] == { x : S | false }

�
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The generic parameter S may be any set, although in the case of ∅, it is
likely to be a type. The parameter list may be enclosed in brackets, as above,
or omitted altogether where the values chosen are obvious from the context.

Example 6.6 For any set T , we may define the set of all non-empty subsets of
T as follows:

P1 T == { a : P T | a ≠ ∅ }

We are happy to omit the brackets from the parameter list in the definition and
in instantiations:

P1{0, 1} = {{0}, {1}, {0, 1}}

A second generic symbol appears in the definition above: the ∅ symbol. From
the context, it is clear that this denotes the empty set of elements from T . �

For the convenience of the reader, we allow the definition of infix generic
symbols. The abbreviation

parameters symbol parameters == term

defines a global constant symbol which may appear inside a list of parameters.

Example 6.7 We may define a generic symbol rel such that, for any sets s and
t , the set s rel t is the power set of s × t :

s rel t == P(s × t)

Each element of s rel t is a set of pairs; the first component of each pair is
an element of s; the second is an element of t . (In fact, this is exactly how we
define the ‘set of all relations’ symbol ↔: see Chapter 7). �

Once an abbreviation definition has been made, we may conclude that the
symbol on the left is equal to the term on the right. Each abbreviation adds an
inference rule to our specification:

s = e
[abbrev]

given the abbreviation s == e

A generic abbreviation adds a family of rules, one for each instantiation.
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6.4 Axiomatic definitions

A third form of definition includes a constraint upon the object being intro-
duced. Such definitions are said to be axiomatic, as the constraint is assumed
to hold whenever the symbol is used: it is an axiom for the object. In the Z
notation, an axiomatic definition takes the form

declaration

predicate

where the predicate expresses the constraints upon the object or objects intro-
duced in the declaration.

The definition

x : s

p

introduces a new symbol x, an element of s, satisfying predicate p. The pre-
dicate part of the definition may place constraints upon the values that x can
take; it may even constrain x to the point where there is only one object that x
can denote.

Example 6.8 We may use an axiomatic definition to define the set of natural
numbers:

N : P Z

∀ z : Z • z ∈ N a z ≥ 0

This introduces a new object N, a subset of Z, containing only those integers
that are greater than or equal to zero. There is exactly one subset of Z with this
property. �

If this is not the case, if there are several values of the underlying type that
meet the constraints, then we say that the definition is loose.

Example 6.9 We may define a constant maxsize as follows:

maxsize : N

maxsize > 0

That is, maxsize is a natural number, and it is strictly greater than zero. �
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The declaration and predicate parts of an axiomatic definition may be
used to support reasoning about the symbol they define. If the symbol x is
introduced as above, then we are free to apply the following inference rule in
the remainder of the specification:

x ∈ s ∧ p
[axdef]

There will be a rule like this for each axiomatic declaration.

Example 6.10 The definition of maxsize can be used to establish the truth of
the following predicate:

∃ n : N • n = maxsize − 1

The proof is as follows:

maxsize ∈ N ∧ maxsize > 0

⇒ maxsize > 0 [∧−elim2]

⇒ maxsize ≥ 1 [arithmetic]

⇒ maxsize − 1 ≥ 0 [arithmetic]

⇒ maxsize − 1 ∈ N [arithmetic]

⇒ ∃ n : N • n = maxsize − 1 [one-point rule]

�

We must take care that our axiomatic definitions do not introduce incon-
sistencies into a specification. Such a definition asserts that some object exists
with the stated property; this may contradict other parts of the specification,
or even well-known mathematical results.

Example 6.11 If Primes has been defined as the set of all prime numbers, then
we may define maxprime, the largest prime number, as follows:

maxprime : N

∀ p : Primes • maxprime ≥ p

This would be an unfortunate definition, as it can be shown that such a number
cannot exist. �

In some cases—if we wish to be sure that our specification contains no con-
tradictions or inconsistencies—we may wish to precede an axiomatic definition
with a proof of existence: a proof of ∃ x : s • p.
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If the predicate part of an axiomatic definition is true, then it may be
omitted, leaving a definition of the form

x : s

This is a declaration of a global constant x; it introduces a corresponding in-
ference rule into the current specification:

x ∈ s
[axdef]

Such a definition may still be contradictory: the set s may be empty.

6.5 Generic definitions

A generic form of axiomatic definition may be used to define a family of global
constants, parameterised by some set X . The definition

[X ]
x : X

p

introduces a generic constant x of type X , satisfying predicate p. The set X is
a formal parameter; it can be regarded as a basic type whose scope is the body
of the definition.

Any value given to this parameter when the definition is used must be of
set type. As in the case of generic abbreviations, the actual parameter list may
be enclosed in brackets, or omitted altogether when the instantiation is obvious
from the context.

Example 6.12 The generic non-empty power set constructor defined using an
abbreviation in Example 6.6 may also be defined using a generic definition:

[X ]
P1 : P(P X )

P1 = { s : P X | s ≠ ∅ }

In applications, the brackets around the generic parameter are optional: the
forms P1[s] and P1 s are equally acceptable. �
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Example 6.13 We can use a generic definition to define the subset symbol:

[X ]
⊆ : P X ↔ P X

∀ s, t : P X •
s ⊆ t a ∀ x : X • x ∈ s ⇒ x ∈ t

The ⊆ symbol denotes a relation between two sets of the same type P X (re-
lations are mathematical objects discussed in Chapter 7). In applications, we
omit the parameter list altogether:

{2, 3} ⊆ {1, 2, 3, 4}

�

The rule for introducing facts about a generic definition is similar to that for
axiomatic ones, with the obvious addition of a mechanism for instantiating
parameters. In the general case, if S is an expression including X —P X , for
example—and the specification contains the declaration

[X ]
x : S

p

then we may apply the following rule:

(x ∈ S ∧ p)[t / X ]
[gendef]

where t is the value being given to the formal generic parameter X . Again, this
is a family of inference rules, for each definition in the specification, and for
each possible instantiation of X .

Example 6.14 The definition of P1 in Example 6.12 gives us the constraint in-
formation of its declaration and its axiom; we can use the latter to prove that

∅[N] ∉ P1[N]

A suitable proof of this result might be
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∅[N] = ∅[N]
[eq-ref]

P1[N] ∈ P(P N) ∧ P1[N] = { s : P N | s ≠ ∅[N] } [gendef]

P1[N] = { s : P N | s ≠ ∅[N] } [∧−elim2]

{ s : P N | s ≠ ∅[N] } = P1[N]
[eq-symm] d∅[N] ∈ P1[N]e[1]

∅[N] ∈ { s : P N | s ≠ ∅[N] } [eq-sub]

∅[N] ∈ P N ∧ ∅[N] ≠ ∅[N]
[compre-s]

∅[N] ≠ ∅[N]
[∧−elim2]

false
[¬−elim]

∅[N] ∉ P1[N] [¬−intro[1]]

�

6.6 Sets and predicates

All of the objects that we define in Z are sets of one kind or another. A reader
with some experience of mathematical logic might be excused for asking: how
do we define a predicate symbol? How do we introduce a symbol such as good ,
so that good x is true for some values of x and false for others? The answer is
simple: we define a predicate in terms of the set of objects that satisfy it.

If p is a predicate with a free variable x of type t , and

c = { x : t | p }

then we say that c is the characteristic set of p: it is the set of values of x for
which p is true.

If we wished to define a predicate good , then we could define it as a set of
values:

good : P t

. . .

We can now write x ∈ good to represent the statement ‘x is good’.

Example 6.15 We wish to formalise the predicate ‘is a crowd’ upon sets of
people. To do this, we introduce a set of sets:

crowds : P(P Person)

crowds = { s : P Person | #s ≥ 3 }

The expression ‘#s’ denotes the number of elements in set s—it is defined form-
ally in Section 8.6. With this definition of crowds, we may make statements such



82 6 / Definitions

as

{Alice, Bill, Claire} ∈ crowds

and

{Dave, Edward} ∈ crowds

The first of these propositions is true, the second is false. �

It is sometimes convenient to treat the name of a set as a unary operator:
in this case, the definition will include an underscore to indicate the position
of the argument.

Example 6.16 For a number of reasons, it is not a good idea to have Alice and
Bill in the room at the same time. Thus, a set of people is safe if it contains
Alice, or Bill, or neither, but not both. We may define safe as a property of sets
of people:

safe : P(P Person)

∀ s : P Person • safe s a ¬({Alice, Bill} ⊆ s)

We treat safe s as an abbreviation of s ∈ safe. We are then free to decide the
truth of such statements as

safe {Alice, Claire, Dave}

and

¬ (safe {Alice, Bill, Edward})

�



Chapter 7

Relations

In a formal specification, it is often necessary to describe relationships between
objects: this record is stored under that key; this input channel is connected
to that output channel; this action takes priority over that one. These rela-
tionships, and others like them, can be described using simple mathematical
objects called relations.

In this chapter, we explain how to define relations, and how to extract
information from them. We explain that relations may be classified: as homo-
geneous or heterogeneous; as reflexive, symmetric, or transitive. We describe
how relations may be inverted or composed to form new objects, and explain
what these objects represent.

7.1 Binary relations

Although we may define relations that express links between any finite number
of objects, it is enough to employ binary relations: relations that express links
between pairs of objects. In our mathematical language, a relation is a set of
ordered pairs, a subset of a Cartesian product.

If X and Y are sets, then X ↔ Y denotes the set of all relations between X
and Y . The relation symbol may be defined by generic abbreviation:

X ↔ Y == P(X × Y )

Any element of X ↔Y is a set of ordered pairs in which the first element is drawn
from X , and the second from Y : that is, a subset of the Cartesian product set
X × Y .
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Example 7.1 The set of relations {a, b} ↔ {0, 1} is the set of sets of pairs

{∅, {(a, 0)}, {(a, 1)}, {(b, 0)}, {(b, 1)}, {(a, 0), (a, 1)}, {(a, 0), (b, 0)},
{(a, 0), (b, 1)}, {(a, 1), (b, 0)}, {(a, 1), (b, 1)}, {(b, 0), (b, 1)},
{(a, 0), (a, 1), (b, 0)}, {(a, 0), (a, 1), (b, 1)}, {(a, 0), (b, 0), (b, 1)},
{(a, 1), (b, 0), (b, 1)}, {(a, 0), (a, 1), (b, 0), (b, 1)}}

A typical element of this set is {(a, 0), (a, 1), (b, 0)}: the relation that associates
a with 0, a with 1, and b with 0. �

Where ordered pairs are being used as elements of relations, we will often
write them using a maplet notation. The expression x , y is another way of
writing (x, y).

Example 7.2 The relation drives is used to record which makes of car are driven
by the members of a small group of people. If the group of people is defined
by

Drivers == {helen, indra, jim, kate}

and the choice of cars is defined by

Cars == {alfa, beetle, cortina, delorean}

then drives is an element of Drivers ↔ Cars, and the statement ‘Kate drives a
cortina’ could be formalised as kate , cortina ∈ drives. �

We may also choose to introduce a relation as an infix symbol: a symbol
that sits between its arguments. Many familiar relations are written in this way:
the less-than-or-equal-to relation ≤ on numbers; the subset relation ⊆ on sets.
If the pair (x, y) is an element of the infix relation R, then we may write x R y .
When we define an infix relation, we include underscores to indicate where the
arguments should go.

Example 7.3 The relation drives could be defined by

drives : Drivers ↔ Cars

drives = {helen , beetle, indra , alfa, jim , beetle, kate , cortina}

That is, Helen and Jim drive Beetles, Indra drives an Alfa, Kate drives a Cortina,
and nobody drives a DeLorean. �

Simple relations can be illustrated using diagrams with arrows, or graphs. The
graph of drives is shown in Figure 7.1.
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helen

indra

jim

kate

alfa

beetle

cortina

delorean

Drivers Cars

Figure 7.1 Who drives what?

7.2 Domain and range

A relation may contain a great deal of information; often, we require only a
small part. To enable us to extract the information that we need, a number
of basic functions are included in our mathematical language. The simplest
examples are the domain and range functions, ‘dom’ and ‘ran’. If R is a relation
of type X ↔ Y , then the domain of R is the set of elements in X related to
something in Y :

dom R = { x : X ; y : Y | x , y ∈ R • x }

The range of R is the set of elements of Y to which some element of X is related:

ran R = { x : X ; y : Y | x , y ∈ R • y }

Example 7.4 The set of people that drive is the domain of drives:

dom drives = {helen, indra, jim, kate}

The set of cars that are driven is the range:

ran drives = {alfa, beetle, cortina}

�
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We may focus upon part of the domain, or part of the range, by considering
a subset of the relation. If R is a relation of type X ↔ Y , and A is any subset of
X , then A / R denotes the domain restriction of R to A; this is the set of pairs

{ x : X ; y : Y | x , y ∈ R ∧ x ∈ A • x , y }

Any maplet whose first element lies outside A is ignored.

Example 7.5 In Example 7.2, we presented information about cars driven by
members of the set Drivers. If we are concerned only with Jim and Kate, then
it is enough to examine the relation{jim, kate} / drives, which contains the
maplets jim , beetle and kate , cortina. �

Alternatively, we may restrict our attention to part of the range. If B is any
subset of Y , then R . B denotes the range restriction of R to B: this is the set
of pairs

{ x : X ; y : Y | x , y ∈ R ∧ y ∈ B • x , y }

Any maplet whose second element lies outside B is ignored.

Example 7.6 If we are interested only in sports cars, then it is enough to con-
sider the relation drives . {alfa, delorean} which contains the single maplet
indra , alfa. �

The position of the arguments is different for the two forms of restriction. In
domain restriction, the set argument appears to the left of the operator; in
range restriction, it appears to the right. This corresponds to the position of
domain and range in the Cartesian product underlying the relation.

To exclude the set A from the domain of a relation, we could consider
the domain restriction (X \ A) / R. However, this occurs so frequently that an
abbreviated form is provided. We write A � R to denote the domain subtraction
of A from R, where

A � R = { x : X ; y : Y | x , y ∈ R ∧ x 6∈ A • x , y }

This includes only those maplets whose first element does not lie in A.
Similarly, we may exclude the set B from the range of a relation. We write

R � B to denote the range subtraction of B from R, where

R � B = { x : X ; y : Y | x , y ∈ R ∧ y 6∈ B • x , y }

This includes every maplet whose second element does not lie in B.
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Figure 7.2 Relational image

Example 7.7 If we are concerned only with people who are not called ‘Jim’, then
the relation {jim} � drives tells us all that we want to know. It is a relation with
three elements:

{helen , beetle, indra , alfa, kate , cortina}

�

It may be that we are interested in the effect of a relation upon a particular
set of elements. If R is an element of X ↔ Y , and A is a subset of X , then we
write R(| A |) to denote the relational image of A under R. This is the set of all
elements in Y to which some element of A is related. We may observe that

R(| A |) = ran(A / R)

The relational image is simply the range of R domain restricted to A.

Example 7.8 The set of all cars that are driven by either Indra or Jim is given
by the relational image of the set {indra, jim} under drives. That is,

drives (| {indra, jim} |) = {alfa, beetle}

as shown in Figure 7.2. �
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Figure 7.3 The inverse relation

7.3 Relational inverse

If R is an element of the set X ↔ Y , then we say that X and Y are the source
and target sets of R. The choice of terminology reminds us that relations are
directional: they relate objects of one set to objects of another. It is always
possible to reverse this direction, and thus present the same information in a
different way.

The relational inverse operator ∼ does exactly this. Source and target
are exchanged, and so are the elements of each ordered pair; the result is an
element of Y ↔ X such that

∀ x : X ; y : Y • x , y ∈ R∼ ⇒ y , x ∈ R

The relation R∼ maps y to x exactly when R maps x to y .

Example 7.9 The inverse of the relation drives, defined in Example 7.2, relates
cars to their drivers:

drives∼ = {alfa , indra, beetle , helen, beetle , jim, cortina , kate}

The graph of this relation is shown in Figure 7.3. �

If the source and target of a relation have the same type, then we say that
the relation is homogeneous; if they are different, then we say that the relation
is heterogeneous.
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Example 7.10 The relation < on natural numbers is homogeneous: the source
and the target sets are the natural numbers N. The relation drives is hetero-
geneous: the source is Drivers, the target is Cars. �

An important homogeneous relation is the identity relation, defined by

id X == { x : X • x , x }

That is, it associates each element of X with itself, and makes no other associ-
ations. The identity relation is useful in reasoning about other relations and in
classifying them. If a homogeneous relation contains the identity relation, we
say that it is reflexive. The set of all reflexive relations on X is given by

Reflexive[X ] == {R : X ↔ X | id X ⊆ R}

That is, R is reflexive if ∀ x : X • x , x ∈ R.

Example 7.11 The relation ≤ upon N is reflexive; the relation < is not. �

Another useful property of homogeneous relations is symmetry: we say that a
relation is symmetric if whenever it relates x to y , it also relates y to x.

Symmetric[X ] == {R : X ↔ X | ∀ x, y : X • x , y ∈ R a y , x ∈ R}

A symmetric relation is its own inverse. Suppose that S ∈ X ↔ Y , x ∈ X ,
and y ∈ Y :

x , y ∈ S

a y , x ∈ S [S is symmetric]

a x , y ∈ S∼ [definition of ∼]

Since x are y are unconstrained, we may generalise:

∀ x : X ; y : Y • x , y ∈ S a x , y ∈ S∼

which, by the axiom of extensionality, tells us that S = S∼.
A homogeneous relation may be antisymmetric. In this case, it is im-

possible for two different elements to be related in both directions.

Antisymmetric[X ] ==
{ R : X ↔ X | (∀ x, y : X • x , y ∈ R ∧ y , x ∈ R ⇒ x = y) }

If a relation is antisymmetric, we may use it to prove equality between two
objects; we have only to show that the relationship holds in both directions.
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Figure 7.4 Who likes who?

Example 7.12 The subset relation ⊆ is antisymmetric. For any two sets s and
t , if s ⊆ t and t ⊆ s, then s = t . This fact is often used to show that two sets
are equal. �

A homogeneous relation R may be asymmetric. In this case, the statements
x , y ∈ R and y , x ∈ R are mutually exclusive.

Asymmetric[X ] ==
{ R : X ↔ X | ∀ x, y : X • (x , y ∈ R) ⇒ ¬(y , x ∈ R) }

That is, x , y ∈ R and y , x ∈ R cannot both be true.

Example 7.13 The strict subset relation is asymmetric: it is impossible to find
two sets s and t such that s ⊂ t and t ⊂ s. �

These three categories—symmetric, antisymmetric, and asymmetric—are not
exhaustive; it is quite possible for a relation to be none of the three.

Example 7.14 Three people—Louise, Martin, and Natalie—live together in a
shared house. A homogeneous relation likes records their feelings:

likes = {Louise , Martin, Louise , Louise, Martin , Louise,
Martin , Martin, Martin , Natalie, Natalie , Natalie}

This relation tells us that Louise likes Martin, that Martin likes Louise, and
Martin likes Natalie: see Figure 7.4.
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Although likes is reflexive relation, each member of the household likes
him- or herself, it is not symmetric: Martin likes Natalie, but Natalie does not
like Martin. Neither is it antisymmetric: Martin and Louise like each other, but
they are not the same person.

Finally, as a reflexive relation, it cannot be asymmetric. Even if we sub-
tract the identity relation, the reciprocal relationship between Louise and Martin
would break asymmetry. �

7.4 Relational composition

If the target type of one relation matches the source type of another, then they
may be combined to form a single relation. If R is an element of X ↔ Y , and S
is an element of Y ↔ Z , then we write R o

9 S to denote the relational composition
of R and S . This is the element of X ↔ Z such that

x , z ∈ R o
9 S a ∃ y : Y • x , y ∈ R ∧ y , z ∈ S

That is, two elements x and z are related by the composition R o
9 S if there is an

intermediate element y such that x is related to y and y is related to z.

Example 7.15 The relation uses of type Cars ↔Fuels tells us which fuel is used
by each of the cars in Example 7.2:

uses : Cars ↔ Fuels

uses = {alfa , unleaded, alfa , leaded, beetle , leaded,
cortina , leaded, delorean , electricity}

An Alfa can use either leaded or unleaded petrol, the older cars—Beetles and
Cortina—require leaded petrol, and the DeLorean in question runs on large
amounts of electricity.

We may compose the relations drives and uses to find out which fuels a
driver may purchase. If buys = drives o

9 uses then buys is a relation of type
Drivers ↔ Fuels such that

buys = {helen , leaded, jim , leaded, kate , leaded,
indra , unleaded, indra , leaded}

This composition of relations is illustrated in Figure 7.5. Note that the maplet
delorean , electricity makes no contribution to the new relation. �

In the previous section, we presented two useful properties of homogen-
eous relations: reflexivity and symmetry. A relation is reflexive if it includes
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Figure 7.5 Which fuel to buy?

the identity relation, and symmetric if it includes its own inverse. The inclusion
of a relational composition is associated with a third property: transitivity.

A homogeneous relation R is transitive if every pair of connecting maplets
x , y and y , z in R has a corresponding maplet x , z in R.

Transitive[X ] ==
{ R : X ↔ X | ∀ x, y , z : X • x , y ∈ R ∧ y , z ∈ R ⇒ x , z ∈ R }

Example 7.16 The likes relation is not transitive: it contains louise , martin
and martin , natalie but not louise , natalie. Louise likes Martin, and Martin
likes Natalie, but Louise does not like Natalie. �

A homogeneous relation T is transitive if and only if it contains the com-
position T o

9 T . Suppose that T is a transitive relation in the set X ↔X , and that
x and z are elements of X :

x , z ∈ T o
9 T

⇒ ∃ y : X • x , y ∈ T ∧ y , z ∈ T [definition of o
9]

⇒ ∃ y : X • x , z ∈ T [T is transitive]

⇒ x , z ∈ T [property of ∃]
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which, generalised, tells us that

∀ x, z : X • x , z ∈ T o
9 T ⇒ x , z ∈ T

and hence that T o
9 T ⊆ T . Conversely, suppose that T o

9 T ⊆ T and that t is an
element of X :

x , t ∈ T ∧ t , z ∈ T

⇒ ∃ y : X • x , y ∈ T ∧ y , z ∈ T [property of ∃]

⇒ x , z ∈ T o
9 T [definition of o

9]

⇒ x , z ∈ T [T o
9 T ⊆ T ]

Again, we may generalise this to conclude that

∀ x, t , z : X • x , t ∈ T ∧ t , z ∈ T ⇒ x , z ∈ T

and hence that T is transitive.
If a homogeneous relation is reflexive, symmetric, and transitive, then it

is an equivalence relation:

Equivalence[X ] == Reflexive[X ] ∩ Symmetric[X ] ∩ Transitive[X ]

Example 7.17 The relation same sign holds between two people if and only if
they have the same birth sign. Assuming that each person has exactly one birth
sign, this is an equivalence relation:

• any person a has the same sign as themselves, so same sign is reflexive;

• if a has the same sign as b, then b has the same sign as a, so same sign
is symmetric;

• if a has the same sign as b, and b has the same sign as c , then a has the
same sign as c , so same sign is transitive.

�

An equivalence relation E upon a set X divides that set into a number
of disjoint subsets, each consisting of elements that are related to one other,
according to E . For each element a, the equivalence class of a is the set

{x : X | x , a ∈ E}

That is, the set of elements that are related to a.
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Example 7.18 The relation same sign divides Person into twelve equivalence
classes, corresponding to the twelve signs of the zodiac. If Marina was born
on 28th January, then the equivalence class of Marina will be the set of all
Aquarians (20th January – 18th February). �

7.5 Closures

An idea that is often useful in specification is that of closure: given some in-
formation, we consider what may be obtained by using it to its fullest extent, or
by adding to it in a well-defined way. Applied to relations, this means adding
maplets to a relation until some useful property is achieved.

The simplest form of closure is obtained by adding the identity relation.
If R is a homogeneous relation, we write Rr to denote its reflexive closure, where

Rr = R ∪ id X

Example 7.19 The likes relation of Example 7.14 is its own reflexive closure:
the maplets louise , louise, martin , martin, and natalie , natalie are already
present. �

Another form of closure is obtained by adding just enough maplets to
produce a symmetric relation. If R is a homogeneous relation, we write Rs to
denote the symmetric closure of R, where

Rs = R ∪ R∼
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Any symmetric relation containing R must also contain R∼; the smallest such
relation is obtained by adding the maplets in R∼.

Example 7.20 The likes relation is not symmetric: Martin likes Natalie, but Nat-
alie does not like Martin. To obtain the symmetric closure likess, we must add
the maplet natalie , martin: the result is shown in Figure 7.6. �

If R is a homogeneous relation, it is useful to consider the result of com-
posing R with itself some finite number of times. If the maplet x , z is present
in R o

9 R, then we know that x and z are related by precisely two applications
of R: that is, x is related to some y , and that y is related to z. Similarly, the
maplet x , w is present in R o

9 R o
9 R if x and w are related by precisely three

applications of R.
For any positive natural number n, we may write Rn to denote the com-

position of n copies of R: that is,

R1 = R

R2 = R o
9 R

R3 = R o
9 R o

9 R
...

The information obtained from all finite iterations of R may be combined to
form the relation R+, where

R+ =
⋃

{ n : N | n ≥ 1 • Rn }

This is a transitive relation. Suppose that x , y and y , z are both elements
of R+. There must then be natural numbers a and b such that x , y ∈ Ra and
y ,z ∈ Rb . But then x ,z is an element of Ra o

9 Rb , and this is the same relation
as Ra+b , another element of R+. Thus x , z is also in R+. We say that R+ is the
transitive closure of R; it is the smallest transitive relation containing R.

Example 7.21 If likes is the relation introduced in Example 7.14, then

likes2 = likes ∪ {louise , natalie}
likes3 = likes2

...

and the transitive closure likes+ is given by

likes+ = likes ∪ {louise , natalie}

�
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Example 7.22 We may use a relation direct to record the availability of a direct
flight between two airports. For the four airports shown in Figure 7.7, this
relation is given by

direct = {singapore , london, london , singapore, singapore , perth,
london , san francisco, san francisco , london}

The composition direct o
9 direct comprises all of the possibly indirect flights

that involve at most one stop en route:

direct o
9 direct = {singapore , singapore, singapore , san francisco,

london , london, san francisco , singapore,
london , perth, san francisco , san francisco}

It is now possible to reach Perth from London. With a second stop, we may
reach Perth from San Francisco using only the flights shown in direct :

direct o
9 direct o

9 direct = {singapore , london, london , san francisco,
london , singapore, san francisco , london,
san francisco , perth, singapore , perth, }

No more journeys are added by considering further iterations: it is possible to
show that direct4 = direct2 and that direct5 = direct3. �
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Example 7.23 The transitive closure of direct relates two airports exactly when
there is a route between them consisting of some number of direct flights: see
Figure 7.8.

direct+ = {singapore , singapore, singapore , london,
singapore , san francisco, singapore , perth,
london , singapore, london , london,
london , san francisco, london , perth,
san francisco , singapore, san francisco , london,
san francisco , san francisco, san francisco , perth}

�

It is sometimes useful to consider the reflexive transitive closure of a ho-
mogeneous relation. If R is a relation of type X ↔X , then we write R∗ to denote
the smallest relation containing R that is both reflexive and transitive, given by

R∗ = R+ ∪ id X

where id X is the identity relation on X .

Example 7.24 In the direct+ relation of Example 7.23, there is no way to travel
from Perth to Perth: in our small collection of routes, there is not one flight that
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starts there. However, if we are planning the movement of equipment between
locations, we might wish to record the fact any equipment already at Perth
can be moved (trivially) to Perth. In this case, we would consider the reflexive
transitive closure direct∗ of our flights relation:

direct∗ = direct+ ∪ {perth , perth}

�



Chapter 8

Functions

Some relationships can be modelled by a special kind of relation. If each object
of one set is related to at most one object of another, then the relation between
the two sets is said to be a function: a term that should be familiar from any
introduction to mathematics or computation.

In this chapter, we introduce a notation for functions and their application.
We show how this notation can be used to produce concise definitions for many
of the basic operators in our language. We examine properties of functions, and
consider the case in which the domain of a function is finite.

8.1 Partial functions

A partial function from X to Y is a relation that maps each element of X to at
most one element of Y ; we write X 7→ Y to denote the set of all such relations,
and define

X 7→ Y ==
{f : X ↔ Y | ∀ x : X ; y1, y2 : Y • x , y1 ∈ f ∧ x , y2 ∈ f ⇒ y1 = y2}

Whenever a function appears to relate an element of X to two elements of Y ,
these two elements must be the same.

Example 8.1 An organisation has a system for keeping track of its employees
while they are on the premises. Each employee is issued with an active badge
which reports their current position to a central database. If the set of all people
is Person, and the set of all locations is Location, then the information provided
by the system may be described by a relation where is of type Person↔Location.



100 8 / Functions

It is impossible for an employee to be in two places at once, so this relation will
be a partial function:

where is ∈ Person 7→ Location

�

These relations are called partial functions because there may be elements
of X that are not related to any element of Y . If each element of X is related
to some element of Y , then the function is said to be total ; we write X → Y to
denote the set of all total functions from X to Y , where

X → Y == {f : X 7→ Y | dom f = X }

The domain of a total function must be the whole of the source set.

Example 8.2 We may define a relation double on the set of natural numbers N
as follows:

double : N ↔ N

∀ m, n : N • m , n ∈ double a m + m = n

This relation is a total function: for every natural number m there is a unique
number n such that m , n ∈ double. �

If a lies within the domain of a function f , we write f (a) to denote the
unique object that is related to x. We say that f (a) is the result of applying
function f to argument a. There are two inference rules associated with func-
tion application. The first rule states that if there is a unique maplet in f with
a as its first element and b as its second, then b = f (a).

∃1 p : f • p.1 = a a , b ∈ f

b = f (a)
[app−intro] provided that b does

not appear free in a

The second states that if b = f (a) and there is a unique pair whose first element
is a, then a , b ∈ f .

∃1 p : f • p.1 = a b = f (a)
a , b ∈ f

[app−elim] provided that b does

not appear free in a

In either case, we must be sure that there are no free occurrences of b in a.
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Example 8.3 If Rachel is an employee, then we may write where is rachel to
denote her current location. This expression makes sense only if the database
has a unique record of Rachel’s whereabouts. If where is is the function

{otto , lobby , peter , meeting, quentin , meeting, rachel , meeting}

(see Figure 8.1) then we may observe that

where is (rachel) = meeting

�

8.2 Lambda notation

Suppose that f is a function whose domain is precisely those elements of X
that satisfy a constraint p. If the result of applying f to an arbitrary element x
can be written as the expression e, then f can be described as

f = {x : X | p • x , e}
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The lambda notation offers a more concise alternative; we write

( λ declaration | constraint • result )

to denote the function that maps each object introduced by the declaration
that satisfies the constraint to the expression result . Using lambda notation,
our function f could be described as

f = ( λ x : X | p • e )

Example 8.4 The function double could also be defined by

double : N ↔ N

double = ( λ m : N • m + m )

As the domain of this function is the whole of the source, the constraint part
of the lambda expression is omitted. �

Example 8.5 The function min maps a set of natural numbers to the least num-
ber present in that set: the minimum value.

min : P N 7→ N

min =
( λ s : P N | s ≠ ∅ •

(µ x : s | ∀ y : s | y ≠ x • y > x) )

The minimum value is the unique element x of s such that for any element y of
s, if y is not equal to x then y must be greater than x.

The constraint s ≠ ∅ restricts the domain of the function to non-empty
sets of natural numbers. If we wished to define a corresponding function max
to return the maximum value in a set, then we would need to add a further
constraint upon its domain, restricting to finite sets of natural numbers (finite
sets are explained in the next chapter). �

If the declaration part of a lambda expression introduces more than one
variable, then the source type of the function is given by the resulting charac-
teristic tuple. For example, the source of the function

( λ a : A; b : B; c : C • . . . )

would be the Cartesian product set A × B × C ; we would expect to apply this
function to objects of the form (a, b, c), where a ∈ A, b ∈ B, and c ∈ C .
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Example 8.6 The function pair takes two functions f and g as arguments, each
of which must be a homogeneous relation on N. The result is a function that
takes a natural number n and returns the pair formed by applying each of f
and g to n:

pair : ((N 7→ N) × (N 7→ N)) → (N 7→ (N × N))

pair = ( λ f , g : N 7→ N • (λ n : N | n ∈ dom f ∩ dom g • (f n, g n)) )

Because f and g may be any partial function on the natural numbers, pair is a
total function. �

Functional application is left associative: the expression f g x should be
read as (f g) x: that is, function f takes function g as its argument, and the
result—which had better be a function—will be applied to x. Lambda notation
is particularly useful for defining higher-order functions: functions that take
functions as arguments.

Example 8.7 Let triple be the function (λ n : N • n + n + n). The expression

pair (double, triple) 3 = (pair (double, triple)) 3

= (λ n : N • (double n, triple n)) 3

= (double 3, triple 3)

= ((λ n : N • n + n) 3, (λ n : N • n + n + n) 3)

= (6, 9)

�

If, on the other hand, our intention is to apply two functions, one after
the other, then we may use the relational composition operator. If f and g are
functions, then so too is f o

9 g. If we suppose that f ∈ X 7→ Y and g ∈ Y 7→ Z ,
that x is an element of X , and that z1 and z2 are elements of Z , we may argue
as follows:

x , z1 ∈ f o
9 g ∧ x , z2 ∈ f o

9 g

⇒ (∃ y1 : Y • x , y1 ∈ f ∧ y1 , z1 ∈ g) ∧
(∃ y2 : Y • x , y2 ∈ f ∧ y2 , z2 ∈ g)

[definition of o
9, twice]

⇒ ∃ y1, y2 : Y • x , y1 ∈ f ∧ x , y2 ∈ f ∧
y1 , z1 ∈ g ∧∧ y2 , z2 ∈ g

[predicate logic]

⇒ ∃ y1, y2 : Y • y1 = y2 ∧ y1 , z1 ∈ g ∧ y2 , z2 ∈ g [f is a function]

⇒ ∃ y1 : Y • y1 , z1 ∈ g ∧ y1 , z2 ∈ g [one-point rule]
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⇒ ∃ y1 : Y • z1 = z2 [g is a function]

⇒ z1 = z2 [predicate logic]

This result confirms that, rather than writing g (f x), it is perfectly acceptable
to write (f o

9 g) x.

Example 8.8 If incr and decr are defined by

incr : N → N
decr : N 7→ N

∀ n : N •
incr n = n + 1 ∧
decr n = n − 1

we can use the properties of arithmetic to show that

(incr o
9 decr) = id N

�

Notice that, where the argument of a function is a single identifier, we will
usually omit the brackets that surround it. Rather than write f (x), we will write
simply f x.

8.3 Functions on relations

In the previous chapter, we introduced the operators that form the basis of a
calculus of relations: domain, range, inverse, composition, and closure. These
may all be seen as examples of functions upon relations.

Example 8.9 The domain and range operators may be defined by

[X , Y ]
dom : (X ↔ Y ) → P X
ran : (X ↔ Y ) → P Y

∀ R : X ↔ Y •
dom R = { x : X | ∃ y : Y • x , y ∈ R } ∧
ran R = { y : Y | ∃ x : X • x , y ∈ R }

�
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If a function takes more than one argument, then it may be defined as
an infix symbol; we use underscores to indicate the intended position of the
arguments.

Example 8.10 The restriction operators may be defined by

[X , Y ]
/ : P X × (X ↔ Y ) → (X ↔ Y )
. : (X ↔ Y ) × P Y → (X ↔ Y )

∀ R : X ↔ Y ; A : P X ; B : P Y •
A / R = { x : X ; y : Y | x ∈ A ∧ x , y ∈ R • x , y } ∧
R . B = { x : X ; y : Y | y ∈ B ∧ x , y ∈ R • x , y }

�

In the declarations above, we have assumed an order of precedence: by
convention, the Cartesian product symbol binds more tightly than the function
or relation symbols.

Example 8.11 The relational composition operator may be defined by

[X , Y , Z]
o
9 : (X ↔ Y ) × (Y ↔ Z) → (X ↔ Z)

∀ R : X ↔ Y ; S : Y ↔ Z •
R o

9 S = { x : X ; y : Y ; z : Z | x , y ∈ R ∧ y , z ∈ S • x , z }

The pair x , z is present in the relational composition R o
9 S exactly when there

is some y such that x , y ∈ R and y , z ∈ S . �

We may use a single underscore to indicate that a function is intended as
a suffix symbol.

Example 8.12 The relational inverse operator may be defined by

[X , Y ]
∼ : (X ↔ Y ) → (Y ↔ X )

∀ R : X ↔ Y •
R∼ = { x : X ; y : Y | x , y ∈ R • y , x }

Given any two sets X and Y , the inverse operator is a total function on the set
X ↔ Y which yields relations in the set Y ↔ X . �
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Example 8.13 The transitive closure operators may be defined by

[X ]
+ : (X ↔ X ) → (X ↔ X )
∗ : (X ↔ X ) → (X ↔ X )

∀ R : X ↔ X •
R+ =

⋂
{T : X ↔ X | R ⊆ T ∧ (T o

9 T ) ⊆ T } ∧
R∗ =

⋂
{T : X ↔ X | (R ∪ id X ) ⊆ T ∧ (T o

9 T ) ⊆ T }

These definitions rely upon the fact that a relation T is transitive if and only if
it contains the composition T o

9 T . �

8.4 Overriding

To combine the information contained in functions f and g, we could simply
write f ∪ g. However, there may be objects that are mapped to one value under
f , and to another under g; if this is the case, then f ∪ g is not a function. To
ensure that the combination of two functions is also functional, we must resolve
any conflicts that arise.

If f and g are functions of the same type, we write f ⊕ g to denote the
relational overriding of f with g. This is a relation that agrees with f everywhere
outside the domain of g; but agrees with g where g is defined:

[X , Y ]
⊕ : (X ↔ Y ) × (X ↔ Y ) → (X ↔ Y )

∀ f , g : X ↔ Y •
f ⊕ g = (dom g � f ) ∪ g

Although the operator is usually employed for functions, it may be applied to
any two relations of the same type.

Example 8.14 Suppose that a partial update arrives from the staff location sys-
tem, informing us that Rachel and Sally are in the lobby and that Tim is in the
office. This update may be represented by a partial function from Person to
Location:

update = {rachel , lobby , sally , lobby , tim , office}

The union of this function with our original information would not be func-
tional. The expression (where is ∪ update) rachel is not defined, as there are
two locations associated with rachel in this relation.
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Figure 8.2 Where is Rachel now?

If the information obtained from the update function takes precedence,
then we may use

where now = where is ⊕ update

as our new location relation. The result is shown in Figure 8.2. The information
that Quentin and Peter are in the meeting room comes from where is, the others
are within the domain of update. �

If two functions have disjoint domains, then there is no conflict between
them, and overriding behaves as the union operator:

dom f ∩ dom g = ∅ ⇒ f ⊕ g = f ∪ g

In this case, the overriding operator is commutative:

dom f ∩ dom g = ∅ ⇒ f ⊕ g = g ⊕ f

In practice, we can do better than this: it is enough to know that the two func-
tions agree on the intersection of their domains:

(dom f ∩ dom g) / f = (dom f ∩ dom g) / g ⇒ f ⊕ g = g ⊕ f
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Example 8.15 If we were to receive two pieces of information, one locating
Quentin and Peter,

information 1 = {quentin , meeting, peter , meeting}

and the other locating Rachel and Sally, then

information 2 = {rachel , lobby , sally , office}

then we could combine them in either order:

information 1 ⊕ information 2 = information 2 ⊕ information 1

as the domains are disjoint. �

8.5 Properties of functions

It is extremely helpful to categorise functions according to whether or not they
are total, and whether or not they possess three key properties: injectivity,
surjectivity, and bijectivity. Our mathematical language has a special symbol
associated with each category:

� partial, injective functions

) total, injective functions

7→→ partial, surjective functions

→→ total, surjective functions

7)→ partial, bijective functions

)→ total, bijective functions

When we introduce a function using one of these arrows, an important property
is made explicit.

The characteristic property of a function is a lack of diverging arrows in
its graph: no element of the source is mapped to more than one element of the
target. If in addition there are no converging arrows, then the relation is said
to be an injective function, or an injection. Formally, f is an injection if

∀ x1, x2 : dom f • f x1 = f x2 ⇒ x1 = x2
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Figure 8.3 Covering all the exits

Example 8.16 The location function of Example 8.3 is not injective. According
to where is, there are at least two different people in the meeting room:

where is quentin = meeting

where is peter = meeting

and quentin ≠ peter . �

If the range of a function is the whole of the target, then it is said to be a
surjective function, or a surjection. If the target of function f is B, then f is a
surjection if ran f = B.

Example 8.17 There are three entrances to the Pink Flamingo: the front door,
the back door, and the fire exit. Kenny and Peanut are paid to stand at the front
door, Neville and Sammy are watching the back, and Animal is leaning on the
fire exit. This situation is represented by a surjective function,

bouncers = {kenny , front , peanut , front ,
neville , back, sammy , back,
animal , fire exit}

in which every door is covered: see Figure 8.3. �
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Figure 8.4 Senior Citizens Night

A bijective function, or bijection, is a function which is both injective and
surjective: no two elements of the domain are mapped to the same object, and
the range is the whole of the target set.

Example 8.18 It is Senior Citizens Night at the Pink Flamingo, so Reg Thorpe,
the owner, decides that he needs just one bouncer on each door. Peanut and
Sammy are given the night off, and the relaxed state of security is described by
the following mapping, pictured in Figure 8.4:

{kenny , front ,
neville , back,
animal , fire exit}

This is a partial bijection from the set of bouncers

{kenny , peanut , neville, sammy , animal}

to the set of doors

{front , back, fire exit}

�
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We define the set of all partial injective functions by generic abbreviation:
if A and B are sets, then

A � B == { f : A 7→ B | ∀ x1, x2 : dom f • f x1 = f x2 ⇒ x1 = x2 }

A ) B == (A → B) ∩ (A � B)

A total injective function is any member of this set which is also a total function
from A to B.

Example 8.19 If s and t are the two sets {1, 2} and {a, b, c} respectively, then
the set of all partial injective functions from s to t is given by:

s � t = {∅,
{1 , a}, {1 , b}, {1 , c}, {2 , a}, {2 , b}, {2 , c},
{1 , a, 2 , b}, {1 , a, 2 , c}, {1 , b, 2 , a},
{1 , b, 2 , c}, {1 , c, 2 , a}, {1 , c, 2 , b}}

and the set of all total injective functions is given by

s ) t = {{1 , a, 2 , b}, {1 , a, 2 , c}, {1 , b, 2 , a},
{1 , b, 2 , c}, {1 , c, 2 , a}, {1 , c, 2 , b}}

�

If A and B are sets, we define the set of all partial surjections from one to the
other as follows:

A 7→→ B == { f : A 7→ B | ran f = B }

A →→ B == (A → B) ∩ (A 7→→ B)

A total surjective function is any element of this set that is also a total function
from A to B.

Example 8.20 If s and t are as defined in Example 8.19, then there are no sur-
jective functions from s to t :

s 7→→ t = ∅

The source s has fewer elements than the target t , and for a function to be
surjective, there must be at least as many elements in the domain—a subset of
the source—as there are in the target. �
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Finally, if A and B are sets, we define the set of all partial bijections from A to
B by generic abbreviation:

A 7)→ B == (A � B) ∩ (A 7→→ B)

A )→ B == (A 7)→ B) ∩ (A → B)

A total bijection is any element of this set that is also a total function.

Example 8.21 As none of the functions from s and t are surjections, there can
be no bijections between these two sets. If we replace t with the set {a, b}, then
two bijections are possible:

s 7)→ {a, b} = {{1 , a, 2 , b}, {1 , b, 2 , a}}

Both of these are total: for a function to be bijective, the domain and the target
must have the same number of elements. �

8.6 Finite sets

Our mathematical language can be used to talk about any set, regardless of the
number of elements it contains; indeed, infinite sets are often a more conveni-
ent abstraction. However, it is worth considering the properties of finite sets, if
only because they form the basis of our theory of finite sequences—the subject
of the next chapter.

A finite set is one whose elements are countable up to some natural num-
ber n: that is, a set that may be seen as the range of a total bijection from the
set 1, 2, . . . , n.

Example 8.22 The set {a, b, c} is finite: it may be seen as the range of a bijection
from the set {1, 2, 3},

{1 , a, 2 , b, 3 , c}

in which a, b, and c , correspond to 1, 2, and 3, respectively. �

Our mathematical language includes a familiar piece of notation for defin-
ing finite sets of numbers. The number range operator is a function on pairs
of natural numbers, defined by

. . : N × N → P N

∀ m, n : N • m . . n = {i : N | m ≤ i ≤ n}
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If m and n are natural numbers, then m . . n is the set consisting of all numbers
between m and n, inclusive.

We can now introduce a second power set symbol: if X is a set, then the
set of all finite subsets of X is given by

F X == { s : P X | ∃ n : N • ∃ f : 1 . . n )→ s • true }

If X is a finite set, then F X and P X are equal.

Example 8.23

• There are a finite number of oceans: we can exhibit a total bijection from
the range 1 . . 4 to the set of all Oceans:

{1 , Atlantic, 2 , Arctic, 3 , Indian, 4 , Pacific}

• There is only one Jose Feliciano: we can exhibit a total bijection from the
range 1 . . 1 to the set of all Jose Felicianos:

{1 , jose feliciano}

• The set of all inhabitants of Rockall is finite, despite being empty. The
empty function is a total bijection from the empty number range 1 . . 0 to
the empty set:

∅ ∈ 1 . . 0 )→ Rockallers

• The set of prime numbers is not finite. Given any natural number n, any
total injection

inj ∈ 1 . . n ) Primes

can be used to generate another element of Primes that is outside the
range of inj . Whatever n we choose, there is no hope of finding a surjective
function from 1 . . n to Primes.

�

If s is a finite set, we write #s to denote the number of elements in s. This
operator, called size or cardinality, is defined as follows:

[X ]
# : F X → N

∀ s : F X ; n : N •
n = #s a ∃ f : (1 . . n) )→ s • true
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For any finite set s, there is exactly one natural number n such that we can
define a bijection from 1 . . n to s.

Example 8.24

• #Oceans = 4

• #Jose Felicianos = 1

• #Rockallers = 0

• #Primes is undefined

�

If the domain of a function is a finite set, then that function is itself finite;
we write A 7 7→ B to denote the set of all finite functions from A to B:

A 7 7→ B == { f : A 7→ B | dom f ∈ F A }

This set is important: it corresponds to the set of all finite collections of B,
indexed by elements of A. Also of interest is the set of all finite injections,

A 7 7) B == A 7 7→ B ∩ A � B

This corresponds to the set of all finite collections of B, indexed by elements
of A, without repetition.

Example 8.25 The mapping from bouncers to doors described in Example 8.17
is a finite function:

bouncers ∈ Staff 7 7→ Doors

Once Peanut and Sammy are given the night off, as in Example 8.18, the mapping
becomes a finite injection: the entrances are indexed by bouncers, without
repetition. �



Chapter 9

Sequences

It is sometimes necessary to record the order in which objects are arranged: for
example, data may be indexed by an ordered collection of keys; messages may
be stored in order of arrival; tasks may be performed in order of importance.
In this chapter, we introduce the notion of a sequence: an ordered collection of
objects. We examine the ways in which sequences may be combined, and how
the information contained within a sequence may be extracted. We show that
the resulting theory of sequences falls within our existing theory of sets, and
provide formal definitions for all of the operators used. The chapter ends with
a proof method for universal statements about sequences.

9.1 Sequence notation

A sequence is an ordered collection of objects. If there are no objects in the
collection, the sequence is the empty sequence, and is written ‘〈〉’. Otherwise,
the sequence is written as a list of objects between angle brackets: for example,
the expression 〈a, b, c〉 denotes the sequence containing objects a, b, and c , in
that order.

A useful way of composing sequences is concatenation, in which two se-
quences are combined in such a way that the elements of one follow the ele-
ments of the other, and order is maintained. If s and t are sequences, we write
s_t to denote the concatenation of s and t . For example,

〈a, b, c〉_〈d, e〉 = 〈a, b, c, d, e〉

Example 9.1 The ticket office in a railway station has a choice of two counters
at which tickets may be purchased. There are two queues of people, one at each
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counter; these may be modelled as sequences:

queue a = 〈sally , tim, ulla〉
queue b = 〈vicky , wilson, xavier〉

Sally and Vicky are at the head of their respective queues, but—just as Vicky
is about to be served—the ticket machine at Counter b breaks down, and the
people waiting there join the end of other queue. Order is maintained, so the
result is given by queue a_queue b, the sequence

〈sally , tim, ulla, vicky , wilson, xavier〉

A queue of six people forms at Counter a. �

A sequence contains information about a collection of elements and the
order in which they occur. It may be that not all of this information concerns
us: we may restrict our attention to elements from a given set using the filter
operator: if s is a sequence, then s uA is the largest subsequence of s containing
only those objects that are elements of A:

〈a, b, c, d, e, d, c, b, a〉 u {a, d} = 〈a, d, d, a〉

The order and multiplicity of elements is preserved.

Example 9.2 In the station, there is a destination board displaying a list of
trains, arranged in order of departure: see Figure 9.1. This may be modelled as
a sequence of pairs, each recording a time and a destination:

trains == 〈(10.15, london), (10.38, edinburgh), (10.40, london),
(11.15, birmingham), (11.20, reading), (11.40, london)〉

Sally is interested only in those trains that are going to London; she would be
content with the filtered sequence

trains u { t : Time • (t , london) }

that is,

〈(10.15, london), (10.40, london), (11.40, london)〉

�
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time     from                to

10 15    OXFORD              LONDON PADDINGTON

10 38    LONDON PADDINGTON   EDINBURGH

10 40    GREAT MALVERN       LONDON PADDINGTON

11 15    MANCHESTER          POOLE

11 20    OXFORD              READING

11 40    LONDON PADDINGTON   MANCHESTER

Figure 9.1 Destination board

It may be that we need to refer to the first element of a sequence, or to the
part of the sequence that follows the first element; these are called the head
and tail, respectively. For example,

head 〈a, b, c, d, e〉 = a

tail 〈a, b, c, d, e〉 = 〈b, c, d, e〉

Notice that the head of a sequence is an element, while the tail is another se-
quence. If s is any non-empty sequence, then

s = 〈head s〉_tail s

Neither of these operators is defined upon the empty sequence.

Example 9.3 Sally wants to take the first train to London. From the list of trains
on the destination board, she knows that this is the 10:15,

head(trains u { t : Time • (t , london) }) = (10.15, london)

Tim is still waiting to buy a ticket, and the first train is about to leave. If we
assume that he will not reach the platform in time, then the list of available
trains is given by ‘tail trains’, the sequence

〈(10.38, edinburgh), (10.40, london), (11.15, birmingham),
(11.20, reading), (11.40, london)〉

�
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The number of elements in a sequence is often of interest: if s is a se-
quence, then we write ‘#s’ to denote the length of s. For example,

#〈a, b, c, d, e, f 〉 = 6

Recall that the same notation was used in Section 8.6 to denote the size of a
finite set.

Example 9.4 The total number of trains on the destination board is given by

#trains = 6

and the total number of trains to London is given by

#(trains u { t : Time • (t , london) }) = 3

�

A distributed version of the concatenation operator maps a sequence of
sequences to a single sequence; this process is sometimes called flattening. For
example,

_/〈〈a, b, c〉, 〈d, e〉, 〈f , g, h〉〉 = 〈a, b, c, d, e, f , g, h〉

When a sequence of sequences is flattened, the result consists of the constituent
sequences concatenated in order.

Example 9.5 The names and addresses of Sally’s friends are stored in 26 files,
address.a, address.b, …, address.z, according to the first letter of the person’s
surname. Within each file, the records are ordered alphabetically: e.g., ad-
dress.h contains the records

Robert Harris, 15 Royal Crescent, …

Guy Hart-Davis, 38 Bridge Street, …

Alison Harvey, 56 West Street, …

Sally would prefer to have just one file containing all of the records. Using the
DOS copy command, she types:

copy address.a + address.b + … + address.z address.all

If we model each file as a sequence of addresses—for example, the first file
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might be represented by a sequence address.a, where

address.a = 〈‘Gregory Abowd, 1126 Pacific Street, …’ ,
‘Laurence Arnold, 9 Acacia Avenue, …’ ,
. . . 〉

—then we may describe the effect of the copy command using distributed con-
catenation:

address.all = _/〈address.a, address.b, . . . , address.z〉

The result is exactly what Sally requires: a file address.all containing all of the
names and addresses, arranged in alphabetical order. �

9.2 A model for sequences

The operators introduced above have not been formally defined; we have no
way of proving anything about sequences, nor can we be sure that mathematical
objects exist with the specified properties. For example, we stated that for any
non-empty sequence s,

s = 〈head s〉_tail s

but how can we be sure that this is the case? Clearly, we must find a formal
basis for our theory of sequences.

Such a basis already exists within our mathematical language. A sequence
may be regarded as a function from the natural numbers to a collection of
objects: the object associated with 1 comes first in the sequence, the object as-
sociated with 2 comes second, and so on. Thus, in our mathematical language,
a finite sequence is a function defined upon some initial segment of the natural
numbers: a number range starting at 1.

If X is a set, then the set of all finite sequences of objects from X is defined
by the following abbreviation:

seq X == {s : N 7 7→ X | ∃ n : N • dom s = 1 . . n}

This definition makes explicit an assumption about sequences: that every ele-
ment of a given sequence must share the same type. The expression

〈1, (1, 2)〉

makes no sense to us: the first element is an element of N, while the second is
an element of N × N.
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In this book, we will restrict ourselves to sequences with finite length.
Such sequences are easier to reason about, and are sufficient for most applic-
ations. However, certain properties are impossible to describe without infinite
sequences; fairness is an obvious example; it is perfectly possible to add a the-
ory of infinite sequences to our mathematical language.

If a sequence is to be a special kind of function, then we are free to re-use
the notation introduced in Chapters 7 and 8. For example, we can use functional
application to refer to objects according to their position: if s is a sequence of
at least n objects, then the expression ‘s n’ denotes the nth object in s.

Example 9.6 The third person in the queue at Counter b is Wilson:

queue b 3 = wilson

and the second train on the destination board is the 10.38 to Edinburgh:

trains 2 = (10.38, edinburgh)

�

Furthermore, the practice of using ‘#’ to denote both the cardinality of a set
and the length of a sequence now makes perfect sense: if we regard a sequence
s as a function, then the length of s is equal to the number of maplets in s.

If s and t are sequences and i is a number in the range 1 . . #s, then the ith

element of s_t is the ith element of s:

(s_t) i = s i

and if j is a number in the range 1 . . #t , then the (j + #s)th element of s_t is the
j th element of t :

(s_t) (j + #s) = t j

As s _ t is a sequence of length #s + #t , this is enough to provide a unique
definition of the concatenation operator:

[X ]
_ : seq X × seq X → seq X

∀ s, t : seq X •
#(s_t) = #s + #t
∀ i : 1 . . #s • (s_t) i = s i
∀ j : 1 . . #t • (s_t) (#s + j) = t j
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The restriction operator is harder to define. Not only must we remove any
maplets which point to objects outside the chosen set, but we must also make
sure that the result is a sequence. The first task is accomplished using range
restriction, while the second requires an auxiliary function:

s u A = squash (s . A)

The auxiliary function squash takes a finite function defined upon the nat-
ural numbers and returns a sequence. It compacts the domain to remove any
spaces created by range restriction, while preserving the order of the remaining
maplets: for example,

squash {1 , a, 3 , c, 6 , f } = {1 , a, 2 , c, 3 , f } = 〈a, c, f 〉

A suitable definition of squash would be:

[X ]
squash : (N1 7 7→ X ) → seq X

∀ f : (N1 7 7→ X ) •
squash f = (µ g : 1 . . #f )→ dom f | g∼ o

9 ( + 1) o
9 g ⊆ ( < ))

o
9

f

For any function f whose domain is a finite set of numbers, we consider the
unique function g that enumerates the domain of f in ascending order. The
composition of g with f is then the sequence we require.

Our generic definition of restriction is then:

[X ]
u : seq X × P X → seq X

∀ s : seq X ; A : P X •
s u A = squash (s . A)

The head operator is easily described:

[X ]
head : seq X 7→ X

∀ s : seq X | s ≠ 〈〉 •
head s = s 1
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but the tail operator requires a translation:

[X ]
tail : seq X 7→ seq X

∀ s : seq X | s ≠ 〈〉 •
#tail s = #s − 1
∀ i : 1 . . #s − 1 • (tail s) i = s (i + 1)

These definitions make it clear that ‘head ’ and ‘tail ’ are strictly partial: the
empty sequence has neither a head nor a tail. Because this sequence is excep-
tional, we give a name to the set of all non-empty sequences over X ,

seq1 X == {s : seq X | s ≠ 〈〉}

Observe that ‘head ’ and ‘tail ’ are total when defined upon this set.
Another special set of sequences is the set of all injective sequences: se-

quences in which no element appears more than once. We write iseq X to denote
the set of all injective sequences over set X , where

iseq X == { s : seq X | s ∈ N ) X }

Such sequences are used to represent ordered collections of distinct objects.

9.3 Functions on sequences

In the course of a specification, we may wish to describe new operations upon
sequences. For example, it might be necessary to reverse the order in which
objects appear, or to select every other object in a sequence. We can, of course,
define these new operations in terms of their effect upon finite functions, but
there is a more convenient alternative.

We may introduce an operation f by describing its effect upon the empty
sequence, and also its effect upon a sequence starting with an arbitrary element:

f 〈〉 = k

f (〈x〉_s) = g (x, f (s))

In this description, k is a constant expression, while g may be any function of
x and f s. The fact that these equations define a unique function f on finite
sequences is a consequence of the recursion principle for the natural numbers,
which will be discussed in Section 10.4.
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Example 9.7 The function ‘reverse’ returns a sequence in which the elements
appear in reverse order. The two equations

reverse 〈〉 = 〈〉 (reverse.1)

reverse(〈x〉_s) = (reverse s)_〈x〉 (reverse.2)

are enough to describe the effect of ‘reverse’ upon any finite sequence. In this
case, the constant k is simply 〈〉, and the function g is given by

[X ]
g : X × seq X → seq X

∀ x : X ; s : seq X •
g (x, s) = (reverse s)_〈x〉

�

However an operator is defined, we will find it useful to identify a set of
laws: equations that express important properties of the operator in question.
For example, the restriction operator admits the law

〈〉 u A = 〈〉 (filter.1)

which states that the empty sequence is unaffected by an application of the
filter operator, and the law

(〈x〉_s) u A = 〈x〉_(s u A) if x ∈ A

s u A otherwise

(filter.2)

which describes the effect of u upon an arbitrary non-empty sequence.
A proof by equational reasoning is a series of expressions, each obtained

from the previous one by substitution. Each substitution is justified by an
appropriate equation or law.

Example 9.8 Using laws ‘reverse.1’ and ‘filter.1’, we may construct a proof that
‘reverse(〈〉 u A) = (reverse 〈〉) u A’ for any set A. We proceed as follows:

reverse(〈〉 u A)
= reverse 〈〉 [filter.1]

= 〈〉 [reverse.1]

= 〈〉 u A [filter.1]

= (reverse 〈〉) u A [reverse.1]

�
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A common property of functions on sequences is distributivity. We say
that a function f is distributive if

f (s_t) = (f s)_(f t)

for any sequences s and t . That is, if it distributes through concatenation.

Example 9.9 The function add one is defined on sequences of numbers by the
following pair of equations:

add one 〈〉 = 〈〉
add one (〈n〉_s) = 〈n + 1〉_(add one s)

The effect of applying add one is to increase each number in the sequence
by precisely one: for example, add one 〈2, 4, 6〉 = 〈3, 5, 7〉. This function is
distributive, as add one (s_t) = (add one s)_(add one t). �

The filter operator u is also distributive, but this cannot be established by
equational reasoning using the laws given above. We would need to show that

(s_t) u A = (s u A)_(t u A)

for arbitrary sequences s and t . If s is empty, or a singleton sequence, then we
may construct a proof using ‘filter.1’ or ‘filter.2’, respectively. If s has two or
more elements, say

s = 〈x1, x2, x3, . . .〉

then we must rewrite s as 〈x1〉_〈x2, x3, . . . , 〉 before we can apply ‘filter.2’. To
produce a formal proof, we must write s in extension.

To establish that u is distributive by equational reasoning, it seems that
we require an infinite family of proofs: a proof for when s is empty, a proof
for when s has length 1, a proof for when s has length 2, and so on. The proof
for length n will require n applications of the law ‘filter.2’, followed by a single
application of ‘filter.1’. Fortunately, there is another way.

9.4 Structural induction

The set of natural numbers N has an important property. If P is a predicate
on natural numbers such that

• P 0 is true, and

• if i ∈ N and P i is true, then P (i + 1) is also true
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then P n is true for all natural numbers n. This is an induction principle for the
natural numbers, and it can be extremely useful in proofs of universal proper-
ties.

Example 9.10 The cumulative sum of the first n natural numbers has the value
x = (n2 + n) div 2. Assuming a suitable definition of the function ‘sum’, and
using the induction principle as a proof rule, we define a predicate

P : P N

∀ n : N • P n a sum{ i : 0 . . n } = (n2 + n) div 2

to be our inductive hypothesis. We construct a proof of the following form:

...

P 0

...

∀ m : N • P m ⇒ P (m + 1)

∀ n : N • P n
[induction]

∀ n : N • sum{ i : 0 . . n } = (n2 + n) div 2
[axdef]

The left-hand branch of the proof is called the base case; the right-hand branch
is called the inductive step. �

The set of all finite sequences over X has a similar property. If P is a
predicate on sequences such that

• P 〈〉 is true

• if x ∈ X , t ∈ seq X , and P t is true, then P (〈x〉_t) is also true

then P s is true for all sequences s in seq X . This is an induction principle for
finite sequences over X ; it can be written as a proof rule:

P 〈〉 ∀ x : X ; t : seq X • P t ⇒ P (〈x〉_t)
∀ s : seq X • P s

[induction]

This form of reasoning is called structural induction. Our induction principle
is based upon the structure of a sequence; every non-empty sequence may be
built up from the empty sequence by adding the appropriate elements, one at
a time. If a property is true of 〈〉, and remains true whatever elements we add,
then it is true of every finite sequence.

We are now able to construct a proof that u is distributive: we can use
structural induction to show that

∀ s, t : seq X ; A : P X • (s_t) u A = (s u A)_(t u A)
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There are two sequence variables in the above predicate, but we will need to
consider only one of them. Our inductive hypothesis is described by the fol-
lowing predicate:

P : P seq X

∀ s : seq X •
P s a ∀ t : seq X ; A : P X • (s_t) u A = (s u A)_(t u A)

and the proof proceeds as follows:

P 〈〉 [Lemma 1]

dx ∈ X ∧ r ∈ seq X e[1] dS re[2]

S (〈x〉_r)
[Lemma 2]

S r ⇒ S (〈x〉_r) [⇒−intro[2]]

∀ x : X ; r : seq X • S r ⇒ S (〈x〉_r) [∀−intro[1]]

∀ s : seq X • P s
[induction]

∀ s : seq X • ∀ t : seq X ; A : P X • (s_t) u A = (s u A)_(t u A)
[axdef]

∀ s, t : seq X ; A : P X • (s_t) u A = (s u A)_(t u A)
[law of ∀]

The base case and inductive step in this proof have been reduced to simpler
inferences: Lemma 1 and Lemma 2. These can be established by equational
reasoning, using the following laws:

〈〉_s = s (cat.1)

s_(t _u) = (s_t)_u (cat.2)

The first of these confirms that 〈〉 is a unit for the concatenation operator; the
second states that concatenation is associative.

The first lemma can be proved using the unit law of concatenation and law
‘filter.1’, which describes the effect of applying the filter operator to the empty
sequence.

(〈〉_t) u A

= t u A [cat.1]

= 〈〉_(t u A) [cat.1]

= (〈〉 u A)_(t u A) [filter.1]

The inductive step—Lemma 2—depends upon the associative property of con-
catenation and the law ‘filter.2’.

((〈x〉_r)_t) u A
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= (〈x〉_(r _t)) u A [cat.2]

= 〈x〉_((r _t) u A) if x ∈ A

(r _t) u A otherwise

[filter.2]

= 〈x〉_((r u A)_(t u A)) if x ∈ A

(r u A)_(t u A) otherwise

[P r ]

= (〈x〉_(r u A))_(t u A) if x ∈ A

(r u A)_(t u A) otherwise

[cat.2]

= ((〈x〉_r) u A)_(t u A) [filter.2]

The step marked P r is justified by our inductive assumption that the result
holds for sequence r .

Example 9.11 For any set A and sequence s, the sequences ‘reverse(s u A)’ and
‘(reverse s) u A’ are equal, provided that the types of s and A are compatible:

∀ s : seq X ; A : P X • reverse(s u A) = (reverse s) u A

The order in which reverse and filter are applied makes no difference.
This result is easily established by structural induction, with the following

predicate as an inductive hypothesis:

P : seq X

∀ s : seq X •
P s a ∀ A : P X • reverse(s u A) = (reverse s) u A

The base case of the induction has already been established; it was the subject
of a proof in Example 9.8.

P 〈〉 [Example 9.8]

dx ∈ X ∧ r ∈ seq X e[1] dP re[2]

P (〈x〉_r)
[see below]

P t ⇒ P (〈x〉_r) [⇒−intro[2]]

∀ x : X ; r : seq X • P r ⇒ P (〈x〉_r) [∀−intro[1]]

∀ s : seq X • P s
[induction]

∀ s : seq X • ∀ A : P X • reverse(s u A) = (reverse s) u A
[axdef]

∀ s : seq X ; A : P X • reverse(s u A) = (reverse s) u A
[law of ∀]

As in the proof that the filter operator is distributive, the inductive step can be
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completed using equational reasoning:

reverse((〈x〉_r) u A)

= reverse(〈x〉_(r u A)) if x ∈ A

reverse(r u A) otherwise

[filter.2]

= reverse(r u A)_〈x〉 if x ∈ A

reverse(r u A) otherwise

[reverse.2]

= ((reverse r) u A)_〈x〉 if x ∈ A

(reverse r) u A otherwise

[P r ]

= ((reverse r) u A)_(〈x〉 u A) [filter.2]

= ((reverse r)_〈x〉) u A [filter is distributive]

= (reverse (〈x〉_r)) u A [reverse.2]

As with ordinary formal proofs, once an equational result has been established,
it may be used as a law in subsequent proofs. Here, we have been able to exploit
the fact that the filter operator is distributive. �

9.5 Bags

A sequence stores information about the multiplicity and ordering of its ele-
ments. In the sequence 〈a, b, c, a, b, c〉, we can see that there are exactly two
occurrences of a, and that these occupy the first and fourth positions in the
sequence. Sometimes this is more information than we need.

Suppose that only the number of occurrences of a is important. If this is
the case, then the sequence above contains more detail than is necessary: it is
not a fully abstract representation. The set {a, b, c}, on the other hand, is not
an adequate representation: it records that a is present, but does not record
how many times it occurs.

If we wish to record multiplicities, but not ordering, then we may represent
a collection of objects as a bag. We write �a, a, b, b, c, c� to denote the bag
containing two copies of a, two copies of b, and two copies of c . The order
in which elements are written is not important: the expression �a, b, b, a, c, c�
denotes exactly the same bag.

Example 9.12 Four friends—Alice, Bill, Claire, and David—are sitting in a café,
waiting for their drinks to arrive. Alice and Claire have asked for espresso, Bill
has asked for fruit tea, and David has asked for grape juice. Their requests can
be represented by a bag:

�espresso, espresso, fruit tea, grape juice�
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The order in which these drinks are to be delivered is left unspecified; the group
will be content with any ordering that includes two espressos, one fruit tea, and
one grape juice. �

If B is a bag of elements from set X , then B may be regarded as a partial
function from X to N. Any element of X that appears in B is associated with
a natural number, recording the number of instances that are present. For
example, the bag �a, a, b, b, c, c� contains the same information as the function
{a , 2, b , 2, c , 2}, which associates each element with the number 2.

If X is a set, then the set of all bags of elements from X may be defined by
the following generic abbreviation:

bag X == X 7→ N \ {0}

where N denotes the set of all natural numbers. A bag is a finite partial function
from X to N; elements of X that do not appear in the bag are left out of the
domain, rather than mapped to zero.

If we wish to know how many instances of an object there are in a given
bag, then we could simply apply the bag as a function. However, if the object
is not present in the bag, the effect of this functional application is undefined.
To avoid this, we employ the total function count :

[X ]
count B : bag X )→ (X → N)

∀ B : bag X •
count B = ( (λ x : X • 0) ⊕ B )

If B is a bag of elements from set X , then count B associates each element of X
with the number of times that it occurs in B, even if that number is zero.

For convenience, we define an infix version: if x is an element of X , then
B ] x is the number of occurrences of x in B:

[X ]
] : bag X × X → N

∀ B : bag X ; x : X •
B ] x = count B x

The number of occurrences of a in the bag �a, a, b, b, c, c� could be written
either as count �a, a, b, b, c, c� a or as �a, a, b, b, c, c� ] a.
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Example 9.13 If drinks denotes the collection of drinks requested by the four
friends in Example 9.12, then

count drinks espresso = 2

reflecting the fact that two people have asked for an espresso. It is also possible
to order decaffeinated coffee in the café, but no-one has asked for it. This
information may be expressed using the prefix function count ,

count drinks decaffeinated coffee = 0

or the infix function ],

drinks ] decaffeinated coffee = 0

�

We define bag membership and sub-bag relations, similar to the set mem-
bership and subset relations introduced in Chapter 5:

[X ]
−ä : X ↔ bag X
v : bag X ↔ bag X

∀ x : X ; B : bag X •
x −ä B a x ∈ dom B

∀ B, C : bag X •
B v C a ∀ x : X • B ] x ≤ C ] x

An element x is a member of bag B if it appears in the domain of B, considered
as a function. A bag B is a sub-bag of another bag C of the same type if each
element occurs no more often in B than it does in C .

Example 9.14 At least one grape juice has been requested,

grape juice −ä drinks

and two of the group have asked for espresso,

�espresso, espresso� v drinks

�
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We define also bag union and bag difference operators. If B and C are
bags of the same type, then their union B ] C contains as many copies of each
element as B and C put together:

[X ]
] , −∪ : bag X × bag X → bag X

∀ B, C : bag X ; x : X •
B ] C ] x = B ] x + C ] x
B −∪ C ] x = max{B ] x − C ] x, 0}

If there are m copies of some element in bag B, and n copies of the same element
in bag C , then the bag difference B −∪ C contains m − n copies, provided that
m ≥ n. If there are more copies in C than in B, then the count of this element
is zero in the difference.

Example 9.15 No sooner have the drinks been asked for than two more friends
arrive—Edward and Fleur—and take their places at the table. Edward asks for
a cappucino; Fleur asks for a mineral water. If we define

more drinks == �cappucino, mineral water�

then the collection of requests is a bag union:

requests == drinks ] more drinks

A few minutes later, a tray of drinks is brought over. It holds a mineral
water, a grape juice, a decaffeinated coffee, and an espresso:

tray == �mineral water , grape juice, decaffeinated coffee, espresso�

The collection of outstanding requests is a bag difference:

remainder == requests −∪ tray

No-one has asked for a decaffeinated coffee, decaffeinated coffee 6−ä requests,
so its inclusion on the tray has no effect upon the remainder, which is equal to
the bag �fruit tea, espresso, cappucino�. �

If s is a sequence, then we may extract the multiplicity information from
s using the function items, which turns sequences into bags:
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[X ]
items : seq X → bag X

∀ s : seq X ; x : X •
(items s) ] x = #(s . {x})

The ordering information present in the sequence is discarded.

Example 9.16 Another tray is brought over with the remaining drinks; these
are placed on the table in front of our friends. The order in which the drinks
are placed upon the table is recorded in the following sequence,

arrive == 〈grape juice, mineral water , espresso, fruit tea, cappucino,
cappucino, espresso〉

but only the count of each drink is important. The group at the table will be
content, as items arrive = drinks. �



Chapter 10

Free Types

In the course of a specification we may define a variety of data structures: lists,
arrays, or trees of elements drawn from one or more basic types. These struc-
tures could be modelled using a combination of sets and relations, but the res-
ulting definitions would be quite verbose. A more elegant, concise alternative
is offered by free types: sets with explicit structuring information.

In this chapter we show how free types are used to model enumerated
collections, compound objects, and recursively defined structures. We exam-
ine the motivation behind free type definitions by attempting to describe a
recursive data structure resembling the natural numbers. We then explain the
consequences of such definitions, giving inference rules for reasoning about
the objects that are introduced.

10.1 The natural numbers

The set of all natural numbers, N, is already part of our mathematical language;
it has been defined as a subset of the built-in type Z. However, the construction
of a set similar to N will prove a useful illustration of the properties of a free
type. Thus we attempt to define such a set, beginning with a basic type nat , a
zero element, and a partial function called succ :

zero : nat
succ : nat 7→ nat

∀ n : nat • n = zero ∨ ∃ m : nat • n = succ m

Every element n is either the constant zero or the result of applying the suc-
cessor function succ to an element m.
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(a)

(b)

(c)

(d)

zero

succ

zero

succ

zero

succ

zero

succ

Figure 10.1 Four sets that are not the natural numbers

Unfortunately, this is not enough to capture the essence of N. The set
pictured in Figure 10.1(a) satisfies the above definition, but is quite unlike the
set of natural numbers. Accordingly, we decide to exclude zero from the range
of succ ; however, even this is not enough. Consider the following:

zero : nat
succ : nat 7→ nat

∀ n : nat • n = zero ∨ ∃ m : nat • n = succ m
{zero} ∩ ran succ = ∅

This definition fails to exclude the set shown in Figure 10.1(b): it is quite pos-
sible to have elements of nat that have no successor. Having realised that the
function used to construct the natural numbers must be total, we try again:
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zero : nat
succ : nat → nat

∀ n : nat • n = zero ∨ ∃ m : nat • n = succ m
{zero} ∩ ran succ = ∅

And still this is not enough. We have failed to exclude the possibility that some
element is the successor of two or more others: see Figure 10.1(c). There is
nothing that allows us to conclude that nat is an infinite set.

We must thus add a fourth requirement: that the function used to con-
struct the natural numbers is injective. This leads us to the following definition:

zero : nat
succ : nat ) nat

{zero} ∩ ran succ = ∅
{zero} ∪ ran succ = nat

With this, we are guaranteed an infinite set with the familiar structure of the
natural numbers. There is one more requirement to consider; the above defini-
tion fails to exclude the set shown in Figure 10.1(d). The set nat must contain a
copy of the natural numbers N, or at least a set with exactly the same structure,
but it may contain more besides. The final requirement is that nat should be
the smallest set that meets the conditions laid down above.

10.2 Free type definitions

Our mathematical language has a special mechanism for introducing sets such
as nat : the free type definition. To begin with, consider the special case in
which the set to be introduced has a small, finite number of elements. An
example might be the set of colours of the rainbow: red, orange, yellow, green,
blue, indigo, and violet. In the programming language Pascal, this set may be
introduced as an enumerated type:

Colours = {red, orange, yellow, green, blue, indigo, violet}

We could take a similar approach in Z, writing

Colours == {red, orange, yellow, green, blue, indigo, violet}

However, this abbreviation does not define the constants in the set. It not only
fails to introduce the names, it also fails to make them distinct: there is no
guarantee that red is different from green.
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The following free type definition has a different effect; it introduces a set
Colours, and seven distinct constants:

Colours ::= red | orange | yellow | green | blue |
indigo | violet

Once this definition has been made, we may infer that Colours is the smallest set
containing the seven distinct elements red , orange, yellow , green, blue, indigo,
and violet . The order in which these elements are introduced is unimportant:
the definition

Colours ::= violet | indigo | blue | green | yellow | orange | red

would have the same effect.

Example 10.1 The people in charge of Oxford colleges are given a variety of
titles. We may represent this variety as a free type:

Titles ::= dean | master | president | principal |
provost | rector | warden

From this definition we can conclude that ‘dean’ and ‘warden’ are elements of
the set Titles and that dean ≠ warden. A dean and a warden are quite different
animals. �

We may include copies of other sets as part of a free type, using constructor
functions. The notation

FreeType ::= constructor 〈〈source〉〉

introduces a collection of constants, one for each element of the set source.
constructor is an injective function whose target is the set FreeType.

Example 10.2 The University of Oxford awards a number of different degrees;
four of the most common are: BA, bachelor of arts; MSc , master of science;
D.Phil , doctor of philosophy; MA, master of arts. For ceremonial purposes,
these degrees are ordered as follows: an MA is the highest ranking; a D.Phil
takes second place, followed by an MSc and a BA, in that order.

Suppose that we wish to represent this ordered collection of degrees as a
free type. The ordering of elements is similar to the one imposed upon the first
four natural numbers by the less-than-or-equal to relation. Importing these
numbers into a free type, we define

Degree ::= status 〈〈0 . . 3〉〉
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and give names to the four elements of the set Degree:

ba, msc, dphil, ma : Degree

ba = status 0

msc = status 1

dphil = status 2

ma = status 3

We are then free to define the University’s ordering of degrees in terms of the
≤ ordering on 0 . . 3:

≤status : Degree ↔ Degree

∀ d1, d2 : Degree •
d1 ≤status d2 a status∼d1 ≤ status∼d2

Because status is an injection, we can be sure that its inverse is a function, and
hence that status∼ d is well-defined. �

Constants and constructor functions may be used together in the same
definition, as in the following free type:

FreeType ::= constant | constructor 〈〈source〉〉

What is more, the source type of a constructor function may refer to the free
type being defined. The result is a recursive type definition: FreeType is defined
in terms of itself.

Example 10.3 The set nat discussed in the previous section could be intro-
duced by the following free type definition:

nat ::= zero | succ 〈〈nat〉〉

Every element of nat is either zero or the successor of a natural number, zero
is not a successor, and every element of nat has a unique successor. The set
nat is the smallest set containing the following collection of distinct elements:
zero, succ zero, succ(succ zero), succ(succ(succ zero)), and so on. �

Example 10.4 We may define a free type of binary trees, in which every element
is either a leaf or a branching point.

Tree ::= leaf 〈〈N〉〉 | branch 〈〈Tree × Tree〉〉
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branch leaf leaf( 3, 5)

leaf 5

leaf 9

leaf 3

branch branch leaf leaf , leaf( ( 3, 5) 9)

Figure 10.2 A binary tree

Each leaf contains a number; each branching point joins a pair of sub-trees. For
example, one element of Tree is given by

branch (branch (leaf 3, leaf 5), leaf 9)

in which three different leaves are joined together to form the structure pictured
in Figure 10.2. �

Example 10.5 The following definition introduces a more complex free type, in
which every element is a tree: a pair whose first component is a natural number
and whose second component is a sequence of trees.

SequenceTree ::= tree〈〈N × seq SequenceTree〉〉

This is a particularly involved data structure, a typical element of which is
shown below:

(1, 〈(2, 〈〉), (3, 〈〉), (4, 〈(2, 〈〉)〉)〉)

�
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Suppose that E1, E2, …, En are expressions that may depend on set T , and
that c1, c2, …, cm are constant expressions. The definition

T ::= c1 | . . . | cm | d1 〈〈E1〉〉 | . . . | dn 〈〈En〉〉

introduces a new basic type T , with constant elements c1, . . . , cm and con-
structor functions d1, . . . , dn. The same effect could be achieved by introducing
T as a basic type and making the following axiomatic definition:

c1 : T
...
cm : T
d1 : E1 ) T
...
dn : En ) T

disjoint 〈{c1}, . . . , {cm}, ran d1, . . . , ran dn〉
∀ S : P T •

({c1, . . . , cm} ∪ d1(| E1[S / T ] |) ∪ . . . ∪ dn(| En[S / T ] |)) ⊆ S
⇒ S = T

Such a definition adds two inference rules to a specification. The first states
that the constants are distinct and that the ranges are disjoint:

disjoint 〈{c1}, . . . , {cm}, ran d1, . . . , ran dn〉

Example 10.6 In the case of nat , we may infer that the constant zero is not the
successor of any natural number,

disjoint 〈{zero}, ran succ〉

�

Example 10.7 From the definition of Tree, we may conclude that leaves and
branches are different objects:

disjoint 〈ran leaf , ran branch〉

A tree may be either a leaf or a branch, but not both. �
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The second rule is an induction principle: it is essential to reasoning about
the elements of a recursive type.

S ⊆ T {c1, . . . , cm} ∪ d1(| E1[S / T ] |) ∪ . . . ∪ dn(| En[S / T ] |) ⊆ S
S = T

Any subset of T that contains all of the constants and is closed under the con-
structors must be the whole of T . A set S is closed under d and E if the image
of E[S / T ] under d is within S itself.

Example 10.8 The free type definition of nat can be used to justify the follow-
ing assertion:

∀ s : P nat • ({zero} ∪ succ(| s |) ⊆ s) ⇒ s = nat

Any subset of nat which contains zero and is closed under succ must be equal
to nat itself. �

10.3 Proof by induction

The second inference rule above can be rewritten to match the induction prin-
ciples given in the previous chapter. Suppose that P is a predicate upon ele-
ments of a free type T , and define the characteristic set

S == {t : T | P t}

that is, S is the set of elements of T that satisfy P . Since S is a subset of T , the
inference rule gives us that

({c1, . . . , cm} ∪ d1(| E1[S / T ] |) ∪ . . . dn(| En[S / T ] |)) ⊆ S
S = T

We may use properties of the union and subset operators to separate the ante-
cedent part of the rule into a list of inequalities. Furthermore, Each of the
expressions involving ⊆ may be rewritten:

di (| Ei[S / T ] |) ⊆ S

a Ei[S / T ] ⊆ d∼
i (| S |)

a ∀ e : Ei[S / T ] • e ∈ d∼
i (| S |)

a ∀ e : Ei[S / T ] • di e ∈ S

That is, whenever a constructor di is applied, the result is an element of S .
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If we may replace each instance of the statement e ∈ S with the abbreviated
form P e, then we obtain an induction principle that matches those given for
sequences:

P c1 . . . P cm

∀ e : E1[S / T ] • P (d1 e)
. . . ∀ e : En[S / T ] • P (dn e)

∀ t : T • P t
[induction principle]

The appearance of S in the source set of e corresponds to the condition that P
holds for any elements of the free type used in the construction of e.

Example 10.9 The definition of nat involved a single constant zero and a single
constructor function succ :

nat ::= zero | succ 〈〈nat〉〉

This type has a single constant and a single constructor function; the definition
yields an inference rule of the form

S ⊆ nat ({c} ∪ d(| E[S / nat] |)) ⊆ S
S = nat

In this instance: the constant c is zero; the constructor function d is succ ; and
the expression E is nat itself.

If P is a predicate on nat , we may take S to be the characteristic set

S == {n : nat | P n}

and obtain the following induction principle:

P zero

∀ m : nat • P m ⇒ P (succ m)

∀ n : nat • P n

To establish that P holds of every natural number, we must show that it holds
for zero and that it is preserved by the successor function: if it is true of m,
then it is also true of succ m. �

Example 10.10 The definition of Tree in Example 10.4 leads to the following
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induction principle:

∀ n : N • P (leaf n)
∀ t1, t2 : Tree •

P t1 ∧ P t2 ⇒ P (branch (t1, t2))

∀ t : Tree • P t

To show that a property P is true of all trees, we must show that it holds for
any leaf, whatever value is stored there. We must show also that the property is
preserved when trees are joined using branch: if it is true of both components,
then it is true of their combination. �

10.4 Primitive recursion

A function defined upon the elements of a free type may have a number of
different parts: one for each clause in the type definition. For example, suppose
that f is a function upon elements of a free type T , introduced by

T ::= c | d〈〈E〉〉

There may be two parts to the definition of f : one explaining the effect of f
upon constant c , the other explaining the effect of f upon an element of the set
d(| E |).

If the expression E contains a copy of the free type T , the function defin-
ition will be recursive. It will describe the result of applying f to an element of
d(| E |) in terms of the result of applying f to one or more components.

Example 10.11 We may define a function fact upon nat by giving a case for
zero and a case for successors:

fact 0 = 1

fact (succ n) = (n + 1) ∗ (fact n)

If + and ∗ correspond to addition and multiplication, respectively, then this
defines the ubiquitous factorial function upon nat . �

The fact that such functions are well defined follows from a recursion
principle for the type in question. In the case of the natural numbers, this
principle may be stated as follows: for every value k and operator g, there is a
unique total function f from the natural numbers such that

f 0 = k
f (n + 1) = g(n + 1)(f n)
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This may be used to justify the use of recursively defined functions upon N. A
similar principle applies to arbitrary free types, provided that their definitions
are consistent, a condition discussed in the next section.

Example 10.12 We may define a function flatten that takes a binary tree and
produces a sequence by traversing the tree from left to right.

flatten : Tree → seq N

∀ n : N • flatten leaf n = 〈n〉
∀ t1, t2 : Tree • flatten branch (t1, t2) = flatten t1

_flatten t2

Whenever it is applied to a branch, it will produce a sequence in which all of
the elements of the left branch appear before those of the right.

Furthermore, we may define a function flip which transforms on binary
trees by swapping the position of any two trees that meet at the same branch.

flip : Tree → Tree

∀ n : N • flip leaf n = leaf n
∀ t1, t2 : Tree • flip branch (t1, t2) = branch (flip t2, flip t1)

In both cases, the fact that the given equations define a unique function is a
consequence of the recursion principle for binary trees. �

Recursion and induction go hand-in-hand. If a function has been defined
using recursion, then induction may be required when we come to reason about
its properties.

Example 10.13 Using the induction principle for binary trees, we may prove
that flipping and flattening is the same as flattening and then reversing. To be
more precise, if we apply flip to a binary tree and then flatten the result, we
obtain the same sequence that appears when we flatten the tree and apply the
reverse function. Formally,

∀ t : Tree • (flip o
9 flatten) t = (flatten o

9 reverse) t

where ‘reverse’ is the function on sequences defined in Chapter 9.
The proof of this result proceeds as follows. We begin by identifying our

inductive hypothesis:

P(t) a (flip o
9 flatten) t = (flatten o

9 reverse) t

and then check that the base case is valid. For any natural number n,

(flip o
9 flatten) leaf n
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= flatten(flip leaf n) [property of o
9]

= flatten(leaf n) [definition of flip]

= 〈n〉 [definition of flatten]

= reverse 〈n〉 [definition of reverse]

= reverse(flatten leaf n) [definition of flatten]

= (flatten o
9 reverse) leaf n [property of o

9]

This piece of equational reasoning can be incorporated into a simple deductive
proof of the base case:

dn ∈ Ne[1]

(flip o
9 flatten) leaf n =

(flatten o
9 reverse) leaf n

[equational reasoning]

P(leaf n)
[definition of P]

∀ n : N • P(leaf n) [∀−intro[1]]

We then proceed to show that the inductive step is also valid:

(flip; flatten) branch (t1, t2)
= flatten (flip branch (t1, t2)) [definition of o

9]

= flatten ( branch (flip t2, flip t1)) [definition of flip]

= flatten (flip t2)_flatten (flip t1) [definition of flatten]

= (flip o
9 flatten) t2

_(flip o
9 flatten) t1 [definition of o

9]

= (flatten o
9 reverse) t2

_(flatten o
9 reverse) t1 [P t1 ∧ P t2]

= reverse (flatten t2)_reverse(flatten t1) [definition of o
9]

= reverse (flatten t1
_flatten t2) [property of reverse]

= reverse (flatten branch (t1, t2)) [definition of flatten]

= (flatten o
9 reverse) branch (t1, t2) [definition of o

9]

Again, we may incorporate this reasoning into a deductive proof:

dt1 ∈ Treee[1] dt2 ∈ Treee[1] dP t1e[1] dP t2e[1]

(flip o
9 flatten) branch (t1, t2) =

(flatten o
9 reverse) branch (t1, t2)

[equational reasoning]

P(branch (t1, t2))
[definition of P]

P t1 ∧ P t2 ⇒ P (branch (t1, t2)) [⇒−intro[1]]

∀ t1, t2 : Tree • P t1 ∧ P t2 ⇒ P (branch (t1, t2)) [∀−intro[1]]
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The equality that we were trying to prove now follows immediately, with a single
application of the induction principle for Tree. �

10.5 Consistency

It is possible to use a free type definition to introduce a contradiction into any
specification. To see how it might happen, consider the following definition:

T ::= d〈〈P T 〉〉

The free type T contains an element d s for each element s of P T . Since d is
injective, T must be at least as big as its power set. This is impossible, as for
any α, if T has α elements, then P T has 2α.

The problem lies in our use of the power set construction. This generates
too many new elements at each application, producing a set that is bigger than
itself. The same problem may occur with any construction using the relation
symbol ↔ or the function symbol →. Such constructions are not finitary, and
we cannot be sure that they will produce a consistent definition.

More formal definitions of finitary can be found in the literature, but for
most applications it is enough to know that any construction involving only
Cartesian products and finite power sets is finitary, and that any free type defin-
ition that uses only finitary constructions will be consistent. That is, the free
type definition

T ::= c1 | . . . | cm | d1〈〈E1〉〉 | . . . | dn〈〈En〉〉

will be consistent if each of the constructions

E1, . . . , En

involves only Cartesian products, finite power sets, finite functions, and finite
sequences.

Example 10.14 The free type definition

Fun ::= atom 〈〈N〉〉 | fun〈〈Fun → Fun〉〉

may not be consistent, as the construction Fun → Fun is not finitary. �

Example 10.15 The free type definition

List ::= nil | atom〈〈N〉〉 | cat〈〈List × List〉〉

must be consistent, as both constructions are finitary. �





Chapter 11

Schemas

In the Z notation there are two languages: the mathematical language and the
schema language. The mathematical language is used to describe various as-
pects of a design: objects, and the relationships between them. The schema
language is used to structure and compose descriptions: collating pieces of
information, encapsulating them, and naming them for re-use.

Re-usability is vital to the successful application of a formal technique. By
identifying and sharing common components, we keep our descriptions both
flexible and manageable. In the schema language, we see specifications shar-
ing parts, proofs sharing arguments, theories sharing abstractions, problems
sharing common aspects.

We believe that the use of schemas helps to promote a good specification
style. However, as with any notation, the language of schemas requires careful
and judicious application if it is not to be abused. We should take care to
develop simple theories and to use schemas to present them in an elegant and
comprehensible fashion.

This chapter is an informal introduction to schemas: their appearance,
and the information they contain. We see how they may be used as types, as
declarations, and as predicates. In subsequent chapters, we present a language
of schema operators, and show how schemas may be used in reasoning about
formal descriptions.

11.1 The schema

The mathematical language of Z is powerful enough to describe most aspects
of system behaviour. However, the unstructured application of mathematics
soon results in descriptions that are difficult to understand. To avoid this, we
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must present mathematical descriptions in a sympathetic fashion, explaining
small parts in the simplest possible context, and then showing how to fit the
pieces together to make the whole.

One of the most basic things that we can do to help the reader—or in-
deed the writer—of a specification is to identify commonly used concepts and
factor them out from the mathematical description of a system. In this way, we
can encapsulate an important concept and give it a name, thus increasing our
vocabulary—and our mental power.

In formal specifications, we see a pattern occurring over and over again: a
piece of mathematical text which is a structure describing some variables whose
values are constrained in some way. We call this introduction of variables under
some constraint a schema.

Example 11.1 The set comprehension term, lambda expression, and quantified
predicates below each exhibit this pattern of introduction and constraint:

{m, n : N | n = 2 × m • m , n}

( λ s : seq X | s ≠ 〈〉 • (tail s)_〈head s〉 )

∀ x, y : N | x ≠ y • x > y ∨ y > x

∃ z : N | z ≠ 1 • z < 2

�

Example 11.2 A concert hall uses a software system to keep track of bookings
for performances. Inside the hall is a certain amount of seating, some or all
of which may be made available to customers for a given performance. At this
level of abstraction, we have no need to consider the representation of seats
and customers, so we introduce them as given sets:

[Seat , Customer]

The box office maintains a record of which seats have been sold, and to whom.
This relationship should be functional: that is, no seat can be sold to two dif-
ferent customers:

sold ∈ Seat 7→ Customer

To allow for the possibility that seats may be added to or removed from the hall,
we introduce a set seating, a subset of Seat , to represent the seating allocated
for the performance.
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It should not be possible to book seating that has not been allocated; the
following predicate should be true at all times

dom sold ⊆ seating

That is, the domain of sold should be a subset of seating. This property, to-
gether with the declarations of sold and seating, forms a schema which we shall
call BoxOffice. �

A schema consists of two parts: a declaration of variables; and a predicate
constraining their values. We can write the text of a schema in one of two forms:
horizontally

[declaration | predicate]

or vertically

declaration

predicate

In the horizontal form, the declaration and predicate are separated by a vertical
bar, and the schema text is delimited by brackets. In the vertical form, the
declaration and predicate are separated by a horizontal bar, and the schema
text is delimited by a broken box.

Example 11.3 We can write the box office schema in horizontal form, as

[seating : P Seat ; sold : Seat 7→ Customer

| dom sold ⊆ seating]

or in vertical form, as

seating : P Seat ; sold : Seat 7→ Customer

dom sold ⊆ seating

�

In the declaration part of a schema, the order in which variables are in-
troduced is unimportant. In the above example, it would make no difference if
sold were to be declared before seating.
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The schema language includes a special operator for associating names
with schemas. We may name a schema by writing

Name =̂ [declaration | predicate]

or by embedding the name in the top line of the schema box

Name
declaration

predicate

In either case, we are introducing a syntactic equivalence between Name and
the schema text. We may use Name to refer to this text in the remainder of a
formal description.

Example 11.4 We can name the box office schema text by writing

BoxOffice =̂ [seating : P Seat ; sold : Seat 7→ Customer |
dom sold ⊆ seating]

or by writing

BoxOffice
seating : P Seat ; sold : Seat 7→ Customer

dom sold ⊆ seating

�

Two schemas are equivalent if they introduce the same variables, and place
the same constraints upon them. When considering equivalence, remember
that some constraints may be hidden in the declaration part.

Example 11.5 The declaration part of the box office schema includes the con-
straint that the relation sold between Seat and Customer must be functional.
The following schema, in which this constraint appears as part of the predicate,
is entirely equivalent:

seating : P Seat ; sold : Seat ↔ Customer

dom sold ⊆ seating ∧ sold ∈ Seat 7→ Customer

�
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To make a schema more readable, we may put each declaration on a new
line, and leave out the semicolons. Similarly, we may put each conjunct on a
new line, and leave out the conjunction symbols. For example, the predicate

a ⇒ b

c ∨ d

is another way of writing (a ⇒ b) ∧ (c ∨ d). Of course, this is not the case
where the line is broken with another operator: for example, the predicate

∃ y : T •
x < y ∨
y < x

means ∃ y : T • x < y ∨ y < x.

Example 11.6 The schema of Example 11.5 could be written in the following
form:

seating : P Seat
sold : Seat ↔ Customer

dom sold ⊆ seating
sold ∈ Seat 7→ Customer

�

If the schema text introduces components, but places no constraints upon
them, then we may omit the predicate part.

Example 11.7 The following schema text has a single component, a set of seats
called stalls, with no constraints:

stalls : P Seat

This is equivalent to the text

stalls : P Seat

true

�
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11.2 Schemas as types

In our mathematical language, there are four ways of introducing a type: as
a given set, as a free type, as a power set, or as a Cartesian product. If we
require a composite type, one with a variety of different components, then the
schema language offers a useful alternative. The schema below corresponds to
a composite data type with two components: an integer called a, and a set of
integers called c .

SchemaOne
a : Z
c : P Z

We may introduce elements of this type in the usual way: the declaration s :
SchemaOne introduces an object s of schema type SchemaOne.

To write an object of schema type in extension, we list the component
names and the values to which they are bound. This requires a new piece of
notation:

〈|a � 2, c � {1, 2, 3}|〉

is a binding in which a is bound to 2 and c is bound to the set {1, 2, 3}. The
schema type SchemaOne is the set of all bindings in which a and c are bound
to an integer and a set of integers, respectively.

Example 11.8 The declaration b : BoxOffice introduces an object b with two
components: a set called seating and a relation called sold . The type of b is a
schema type:

[seating : P Seat ; sold : Seat ↔ Customer]

The schema BoxOffice appears as a subrange type; it describes only those bind-
ings in which sold is a partial function, and the domain of sold is a subset of
seating. �

Example 11.9 A date is an object consisting of two named components: the
name of a month and the number of a day. We may define Month as a free type
with twelve constants:

Month ::= jan | feb | mar | apr | may | jun | jul | aug | sep |
oct | nov | dec
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The set of all valid dates may be represented as a schema type:

Date
month : Month
day : 1 . . 31

month ∈ {sep, apr , jun, nov} ⇒ day ≤ 30
month = feb ⇒ day ≤ 29

A binding 〈|month � m, day � d|〉 is a valid date provided that there are at
least d days in month m. �

A schema type differs from a Cartesian product in that the components
are stored not by position but by name. To refer to a particular component, we
employ a selection operator ‘ . ’. For example, if s is an object of schema type
SchemaOne, we may write s.a and s.c to denote the integer component and set
component of s, respectively.

Example 11.10 In a token ring or Ethernet network, information is transmitted
in the form of data frames. Each frame has a source address, a destination, and
a data component. The type of all frames is a schema type:

Frame
source, destination : Address
data : Data

where Address is the set of all addresses in the network, and Data is the set
of all possible data components. If f is an object of type Frame, then we write
f .source to denote its source, f .destination to denote its destination, and f .data
to denote its data component. �

Example 11.11 We may declare an object of subrange type Date to represent
Fleur’s birthday:

Fleur’s birthday : Date

Following such a declaration, we may refer to name of the month in which Fleur
was born as fleur’s birthday .month, and to the day on which she was born as
fleur’s birthday .day . �
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11.3 Schemas as declarations

A schema may be used whenever a declaration is expected: in a set comprehen-
sion, in a lambda expression, or following a logical quantifier. The effect is to
introduce the variables mentioned in the declaration part of the schema, under
the constraint of the predicate part.

To illustrate this, we introduce a second schema with the same compon-
ents as SchemaOne, but under some constraint:

SchemaTwo
a : Z
c : P Z

a ∈ c ∧ c ≠ ∅

This describes a subset of the bindings described by SchemaOne: number a
must be an element of set c .

The following set consists of those sets of integers c that contain the in-
teger 0:

{ SchemaTwo | a = 0 • c }

The same effect could be achieved by replacing SchemaTwo with a list of de-
clarations and a constraint:

{ a : Z; c : P Z | a ∈ c ∧ c ≠ ∅ ∧ a = 0 • c }

or by declaring an object of subrange type SchemaTwo and selecting the two
components:

{ s : SchemaTwo | s.a = 0 • s.c }

The first expression, in which SchemaTwo is used as a declaration, is both more
concise and more readable.

Example 11.12 If Date is the schema named in Example 11.9, then the set com-
prehension

{ Date | day = 31 • month }

describes the set of all months that have 31 days:

{jan, mar , may , jul, aug, oct , dec}

�
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If a set comprehension has no term part, then the type of objects in the
set depends upon the characteristic tuple of the declaration. For example, in
the set

{ a : Z; c : P Z | a ∈ c ∧ a = 0 }

the characteristic tuple is the pair (a, c), and the type of objects in the set is
Z × P Z. The set consists of every pair (a, c) that meets the stated constraint.

In a schema, the order in which components are declared is unimportant,
so the characteristic tuple of

{ SchemaTwo | a = 0 }

is quite different from (a, c). A typical element of this set is a binding associat-
ing a with 0 and c with some set containing 0; the characteristic tuple has one
component: the binding 〈|a � a, c � c|〉.

This is a binding in which component a is bound to the value of variable
a, and component c is bound to the value of variable c :

〈| a � a , c︸︷︷︸
component name

�
variable value︷︸︸︷

c |〉

Such a binding, in which each component of a schema is bound to a value of
the same name, is called a characteristic binding.

If S is the name of a schema, then we write θS to denote the characteristic
binding of components from S . For example,

θSchemaTwo = 〈|a � a, c � c|〉

Whenever this expression is used, variables a and c must already have been
declared. Furthermore, the types of these variables must match those given in
the declaration part of SchemaTwo, although any predicate information in the
schema is ignored.

Example 11.13 If Date is the schema named in Example 11.9, then θDate de-
notes the characteristic binding

〈|month � month, day � day|〉

Whenever this expression is used, variables month and day must be in scope,
and their types must match those given in the declaration part of Date. �
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There is a close relationship between our use of schemas as types and our
use of the θ notation. As an illustration of this, consider the schema

SchemaThree
a : Z
c : P Z

c ≠ ∅ ∧ a ∈ c
c ⊆ {0, 1}

This introduces the same variables as SchemaOne and SchemaTwo, but under
a more restrictive set of constraints.

If we use SchemaThree to describe a set of bindings, then this set will have
exactly four elements:

SchemaThree = {〈|a � 0, c � {0}|〉, 〈|a � 0, c � {0, 1}|〉,
〈|a � 1, c � {1}|〉, 〈|a � 1, c � {0, 1}|〉}

The same set of bindings is described by the set comprehension

{ a : Z; c : P Z | c ≠ ∅ ∧ a ∈ c ∧ c ⊆ {0, 1} • 〈|a � a, c � c|〉 }

which is equal to { SchemaThree • θSchemaThree }.
When a schema name is used where a set or type would be expected, we

take it to represent the corresponding set of bindings. For any schema S , the
declaration a : S is an abbreviated form of

a : { S • θS }

The variable a is declared to be a binding of appropriate type that meets the
constraint part of schema S . Thus we see that bindings, not schema types, are
the primitive notion.

Example 11.14 When used in a variable declaration, the schema name Date
represents the set of all valid dates: bindings in which there are at least day
days in month month. This set of bindings could also be written as a set com-
prehension:

{ Date • θDate }

Notice that, although θDate is the default term of this set comprehension, we
include it here to avoid confusion. It is not immediately obvious that the ex-
pression {Date} denotes a set comprehension. �
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A schema may be used as the declaration part of a lambda expression. If
SchemaOne is as defined above, then

FunctionOne == ( λ SchemaOne • a2 )

introduces a function defined upon objects of schema type, mapping any bind-
ing of a and c to the square of the value of a. For example,

FunctionOne 〈|a � 2, c � {1, 2, 3}|〉 = 4

As in Section 8.2, the source type of a lambda expression is given by the char-
acteristic tuple of the declaration. In this case, the characteristic tuple has a
single component: θSchemaOne.

Example 11.15 An object of schema type BoxOffice has two components: a set
of seats allocated for the performance, and a record of which seats have been
sold, and to whom. Given such an object, we may be interested in the set of
seats that have yet to be sold. The function

free == ( λ BoxOffice • #(seating \ dom sold) )

maps an object of type BoxOffice to the number of unsold seats, calculated as
the size of the set difference between seating and dom sold . �

A schema may be used as the declaration part of a quantified expression;
this has the effect of introducing the components of the schema and then con-
straining them. For example,

∃ SchemaTwo • a = 0 a ∃ a : Z; c : P Z | c ≠ ∅ ∧ a ∈ c • a = 0

In such expressions, the order in which the components are declared is unim-
portant: there are no characteristic tuples to consider.

These expressions may be used to make statements about objects of the
corresponding schema type. For example, the following predicate states that,
for any object of type SchemaOne, the a component must be an element of the
c component:

∀ SchemaOne • a ∈ c

This predicate is false, as the binding 〈|a � 1, c � {2, 3}|〉 is an object of type
SchemaOne. On the other hand, the predicate

∀ SchemaTwo • a ∈ c
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is true, as any binding of subrange type SchemaTwo must satisfy precisely this
constraint.

Example 11.16 The following predicate states that there is an object of schema
type Date such that the value of month is feb and the value of day is 29:

∃ Date • month = feb ∧ day = 29

This is true: there can be 29 days in February. �

Example 11.17 The following predicate states that, for any object of schema
type Date, the value of day must be less than or equal to 30:

∀ Date • day ≤ 30

This is false, as the binding 〈|month � mar , day � 31|〉 satisfies the predicate
part of Date. March is a month with 31 days. �

Whenever a schema appears as the declaration part of a quantified expres-
sion, the same result could be achieved by declaring an object of schema type.
For example, the quantified predicate

∀ SchemaTwo • a ∈ c

is logically equivalent to

∀ s : SchemaTwo • s.a ∈ s.c

Both predicates insist that there is a binding of type SchemaTwo such that a is
an element of c .

11.4 Schemas as predicates

A schema may be used as a predicate, provided that each component of the
schema has already been declared as a variable of the correct type. The effect
is to introduce a constraint equivalent to the predicate information stored in
the schema. The following quantified expression states that any integer a and
set of integers c satisfying the predicate SchemaThree must also satisfy the
predicate SchemaTwo.

∀ a : Z; c : P Z | SchemaThree • SchemaTwo
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This is logically equivalent to the following statement:

∀ a : Z; c : P Z | c 6∈ ∅ ∧ a ∈ c ∧ c ⊆ {0, 1} • c 6∈ ∅ ∧ a ∈ c

The declaration parts are discarded; only the constraints remain.

Example 11.18 If A is an element of type Address, the set of all addresses
within a network, then the following schema represents the set of all frames
whose source address is A:

FromA
source, destination : Address
data : Data

source = A

Used as a predicate, this schema asserts that the value of source is A. �

When we use a schema as a predicate, we should remember that the de-
claration part may include some constraint information. At first glance, the
following schema appears equivalent to SchemaTwo:

SchemaFour
a : N
c : P N

a ∈ c ∧ c ≠ ∅

but this is not the case: an additional constraint upon a and c has been imposed
by the declarations a : N and c : P N.

To avoid confusion, we may choose to rewrite a schema so that all of the
constraint information appears in the predicate part. This process is called
normalisation; the declaration part has been reduced to a unique, canonical
form. For example, the above schema may be rewritten as

SchemaFourNormalised
a : Z
c : P Z

a ∈ N
c ∈ P N
a ∈ c ∧ c ≠ ∅
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It is now obvious that this schema contains strictly more information than
SchemaTwo. When used as a predicate, it will insist that a, and every element
of c , is greater than or equal to 0.

Example 11.19 At first glance, it might seem that any set seating of seats, and
any relation sold between seats and customers, such that

dom sold ⊆ seating

would meet the constraint of schema BoxOffice. We would expect to be able to
show that

∀ seating : P Seat ; sold : Seat ↔ Customer •
dom sold ⊆ seating ⇒ BoxOffice

However, this is not the case. The declaration part of BoxOffice includes the
additional requirement that sold is a partial function. �

Example 11.20 The schema Date introduces two variables, month and day , in
such a way that they correspond to a date in the Gregorian calendar. Using this
schema as a predicate, we can show that

∀ month : Month; day : Z • Date ⇒ day ∈ 1 . . 31

The necessary constraint upon the range of day is included in the declaration
part of the schema. If we consider the normalised form of Date,

DateNormalised
month : Month
day : Z

day ∈ 1 . . 31
month ∈ {sep, apr , jun, nov} ⇒ day ≤ 30
month = feb ⇒ day ≤ 29

then the truth of the implication becomes obvious. �

11.5 Renaming

It is sometimes useful to rename the components of a schema; in this way, we
are able to introduce a different collection of variables with the same pattern
of declaration and constraint. If Schema is a schema, then we write

Schema[new/old]
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to denote the schema obtained from Schema by replacing component name old
with new . For example, we might wish to introduce variables q and s under the
constraint of SchemaTwo: the schema

SchemaTwo[q/a, s/c]

is equivalent to the schema

q : Z
s : P Z

s ≠ ∅ ∧ q ∈ s

The new predicate part is obtained by systematically substituting q and s for
free occurrences of a and c .

Example 11.21 The variables start month and start day represent the month
and the day on which a contract of employment is due to start. The requirement
that this should be a valid date can be encapsulated by an appropriate renaming
of the schema Date:

Date[start month/month, start day/day]

This is equivalent to the following schema:

StartDate
start month : Month
start day : 1 . . 31

start month ∈ {sep, apr , jun, nov} ⇒ start day ≤ 30
start month = feb ⇒ start day ≤ 29

The types of the variables, and the constraints upon them, are unaffected by
the renaming operation. �

Renaming the components of a schema produces a new schema type. For
example, the schema type

SchemaOne[q/a, s/c]

consists of all bindings of q and s to values in Z and P Z. This is quite different
from the schema type SchemaOne, which consists of bindings of a and c . In a
schema type, component names are important.
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Example 11.22 We may use another renaming to describe the set of all valid
finish dates for our contract:

FinishDate =̂ Date[finish month/month, finish day/day]

A start date and a finish date are quite different objects, although each has a
component of type Month and another of type Z. If s ∈ StartDate and f ∈
FinishDate, then the value of s = f is undefined: these are variables of different
types. However, it still makes sense to state that

s.start day = f .finish day

as both expressions are of type Z. �

11.6 Generic schemas

Although we may rename the components of a schema, we cannot change their
types. If we wish to use the same structure for a variety of different types, we
may define a generic schema: a schema with one or more formal parameters.
The following schema introduces two variables, a and c , under the constraint
that a is an element of c :

SchemaFive[X ]
a : X
c : P X

a ∈ c

The types of a and c are parameterised by formal parameter X , which may be
instantiated with any set.

This schema may be used whenever we wish to introduce two objects that
are related in this way. If we choose Z to be the actual parameter, we obtain a
schema that is equivalent to SchemaTwo:

a : Z
c : P Z

a ∈ c

and if we choose N, we obtain a schema that is equivalent to SchemaFour .

Example 11.23 The booking system could be generalised to describe a system
which monitors the sale of unspecified items to a client base.
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System[Items, Client]
seating : P Items
sold : Items 7→ Client

dom sold ⊆ seating

We may obtain the familiar BoxOffice system by instantiating Items with Seat
and Client with Customer .

System [Seat , Customer] = BoxOffice

�





Chapter 12

Schema Operators

In this chapter we see how the information contained in schemas may be com-
bined in a variety of different ways. We introduce a language of logical schema
operators: conjunction, disjunction, negation, quantification, and composition.
To illustrate the use of this language, we explain how schemas may be used to
describe the behaviour of a computing system.

This application of the schema language revolves around the concept of
an abstract data type: a collection of variables, and a list of operations that may
change their values. We encapsulate these variables within a schema, so that
an object of the corresponding schema type represents a state of the system.

An operation that affects the state can be seen as a relation upon objects
of schema type: bindings of the state variables. The schema notation provides
a convenient way of describing such a relation: we may use a schema to express
the relationship between the state before and the state after an operation.

12.1 Conjunction

We may combine the information contained in two schemas in a variety of ways:
the simplest of these is conjunction. Suppose that S and T are the schemas
introduced by

S
a : A
b : B

P

T
b : B
c : C

Q

where P and Q are predicates upon the corresponding variables.
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We write S ∧ T to denote the conjunction of these two schemas: a new
schema formed by merging the declaration parts of S and T and conjoining
their predicate parts:

a : A
b : B
c : C

P ∧ Q

If the same variable is declared in both schemas, as with b above, then the types
must match, or the schema S ∧ T will be undefined.

The result of a schema conjunction is a schema that introduces both sets
of variables and imposes both constraints. Schema conjunction allows us to
specify different aspects of a specification separately, and then combine them
to form a complete description. This makes for simple, well-structured descrip-
tions, in which each individual component can be easily understood.

Example 12.1 Our theatre company presents premieres: special performances
of new productions. Only those customers who have signed up as friends of
the theatre may buy seats for these shows. To include this information in our
formal description, we add a new variable of type Status:

Status ::= standard | premiere

A show may be a standard performance, or it may be a premiere. We require also
a set friends, to represent the set of all customers who are currently registered
as friends of the theatre.

The necessary enhancement to the box office system is described by the
following schema:

Friends
friends : P Customer
status : Status
sold : Seat 7→ Customer

status = premiere ⇒ ran sold ⊆ friends

If the current performance is a premiere, then seats may be sold only to friends
of the theatre.

To describe the enhanced box office, we have only to conjoin this schema
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with the original:

FriendlyBoxOffice =̂ BoxOffice ∧ Friends

The same effect could have been achieved by defining:

FriendlyBoxOffice
status : Status
friends : P Customer
sold : Seat 7→ Customer
seating : P Seat

dom sold ⊆ seating
status = premiere ⇒ ran sold ⊆ friends

In such a small example, there is little to be gained from the separate description
of different features. In larger, more realistic examples, such a separation of
concerns is essential if we are not to be overwhelmed by complexity. �

We may also conjoin two schemas by including one in the declaration
part of the other. This has the same effect as schema conjunction, in that the
declarations are merged and the predicates conjoined, but suggests a more
hierarchical structure. This is particularly useful if we wish to describe an
enhanced state.

Example 12.2 The friendly box office could have been introduced by including
BoxOffice in the declaration part of a schema:

FriendlyBoxOffice
BoxOffice
status : Status
friends : P Customer

status = premiere ⇒ ran sold ⊆ friends

or by including both BoxOffice and Friends:

FriendlyBoxOffice
BoxOffice
Friends

�
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Example 12.3 An alternative enhancement to the box office provides a variable
available, which represents the number of seats available for the current per-
formance. If we take free to be the function defined in Example 11.15, then this
enhancement is described by

EnhancedBoxOffice
BoxOffice
available : N

available = free θBoxOffice

To obtain the number of seats available, we have only to apply free to the bind-
ing θBoxOffice, representing the values of seating and sold . �

12.2 Decoration

Suppose that the state of a system is modelled by a schema State with two
components a and b, and that these are introduced under a constraint P .

State
a : A
b : B

P

Each object of schema type State represents a valid state: a binding of a and b
in which predicate P is satisfied. We say that P forms part of the state invariant
for the system: a constraint that must always be satisfied.

Example 12.4 The set of all valid states of our box office system is described
by the schema type BoxOffice, where

BoxOffice
seating : P Seat
sold : Seat 7→ Customer

dom sold ⊆ seating

Each state is a binding of variables seating and sold ; the state invariant insists
that only allocated seats are sold, and that the relationship between seats and
customers remains functional. �
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To describe an operation upon the state, we use two copies of State: one
representing the state before the operation; the other representing the state
afterwards. To distinguish between the two, we decorate the components of
the second schema, adding a single prime to each name: that is,

State′

a′ : A
b′ : B

P[a′/a, b′/b]

The predicate part of the schema is modified to reflect the new names of the
state variables.

Example 12.5 To describe the state of the box office system after some opera-
tion, we could use the following schema:

BoxOffice′

seating′ : P Seat
sold′ : Seat 7→ Customer

dom sold′ ⊆ seating′

This introduces two variables, seating′ and sold′, corresponding to the seat
seating and the sales record after the operation has been performed. �

We may describe an operation by including both State and State′ in the
declaration part of a schema. For example,

Operation
State
State′

. . .

This is a schema with four components, two of them primed. The inclusion of
State and State′ indicates that a and b constitute a valid state of the system,
and that the same is true of a′ and b′.

The predicate part of such a schema characterises the operation: it de-
scribes its effect upon the values of the state variables; it states what must
be true of the state if the effect of the operation is to be fully defined. In the
above example, we would expect the predicate part of Operation to include free
occurrences of a, a′, b and b′.
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Example 12.6 One operation upon the state of the box office system is the
purchasing of a single seat for the current performance. Suppose that this seat
is denoted by s?, and that the customer buying it is c?. If the operation is to be
a success, then s? must be available for sale beforehand:

s? ∈ seating \ dom sold

Afterwards, the sold relation should be modified to indicate that s? has been
sold to customer c?:

sold′ = sold ∪ {s? , c?}

Finally, the collection of seats allocated for this performance should be un-
changed by the operation.

We may encapsulate all of this information in a single schema Purchase0,
representing the successful purchasing of seat s? by customer c?:

Purchase0

BoxOffice
BoxOffice′

. . .

s? ∈ seating \ dom sold
sold′ = sold ∪ {s? , c?}
seating′ = seating

�

Some operations, such as the one described in the example above, involve
either input to the system or output from it. To model such operations, we
include additional components in the declaration part of the operation schema.
The predicate part can then relate the values of these components to the states
before and after the operation. For example, the schema

Operation
State
State′

i? : I
o! : O

. . .

includes an input component of type I and an output component of type O.
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There is a simple convention concerning input and output. If a component
represents an input, then its name should end with a query (?); if it represents
output, then its name should end with a shriek (!). It should be emphasised that
these are not decorations, but part of the component name.

Example 12.7 The operation of purchasing a seat requires two inputs: the
name of the seat, and the name of the customer. We model these as two input
components s? and c?, of types Seat and Customer , respectively. The operation
of successfully purchasing a seat is described by

Purchase0

BoxOffice
BoxOffice′

s? : Seat
c? : Customer

s? ∈ seating \ dom sold
sold′ = sold ∪ {s? , c?}
seating′ = seating

The effect of this operation is defined only when input s?, the seat requested,
is available for sale. �

Example 12.8 We may add an output to our description of the purchasing op-
eration, corresponding to the response offered to the customer. This response
will be drawn from a free type of responses:

Response ::= okay | sorry

and may be declared in a separate schema:

Success
r ! : Response

r ! = okay

The effect of a successful purchase may now be modelled as

Purchase0 ∧ Success

This produces a schema with two inputs and a single output r !, whose value
will be okay . �
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There is a convention for including two copies of the same schema, one of
them decorated with a prime. If Schema describes the state of a system, then
∆Schema is a schema including both Schema and Schema′: that is,

∆Schema
Schema
Schema′

This schema could be included whenever we wish to describe an operation that
may change the state.

Example 12.9 The operation schema Purchase0 could include ∆BoxOffice in
place of BoxOffice and BoxOffice′:

Purchase0

∆BoxOffice
. . .

. . .

�

The inclusion of a schema name in a declaration introduces a combination
of components. An important advantage of the schema notation is that it allows
us to refer to this combination as a single entity. This can be done using the
characteristic binding operator defined in Chapter 11.

Recall that the characteristic binding of Schema, written θSchema, is a
binding in which each component of Schema is associated with the value of the
variable with the same name. If Schema is included in a declaration, then we
may use θSchema to refer to the combination of component values.

If the state of a system is described by schema State, then—within an
operation schema—the binding θState corresponds to the before state. We can
describe properties of this binding, apply functions to it, or even equate it to
another object of the same schema type. Frequently, we will wish to equate it
to the after state, thereby insisting that nothing has changed.

To do this, we use a decorated version of the same binding, rather than
the characteristic binding of the decorated schema, which would have a differ-
ent schema type (since the components have different names). The decorated
binding (θState)′ associates the components of State with the values of decor-
ated variables. For example, if θState were 〈|a , a, c , c|〉 then θState′ would
be 〈|a , a′, c , c′|〉. Note that θ binds more closely than decoration (′).
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Two bindings are equal if they bind their component names to equivalent
values: the two bindings above will be equal if and only if a = a′ and c = c′.
Equating decorated and undecorated bindings of State is thus a way of insisting
that the before state is equal to the after state: each component has been left
with the same value.

Again, there is a convention: we write ΞSchema to denote the schema that
includes Schema and Schema′ and equates their bindings:

ΞSchema
∆Schema

θSchema = θSchema′

This schema could be included whenever we wish to describe an operation that
does not change the state of the system.

Example 12.10 We may interrogate the box office system to determine the
number of seats that are still available for the current performance. This oper-
ation may be described by

QueryAvailability
ΞBoxOffice
available! : N

available! = free θBoxOffice

The output component available! is obtained by applying the function free to
the box office state: see Example 11.15. The inclusion of ΞBoxOffice confirms
that this operation leaves the state unchanged: there are no side effects. �

When we use an abstract data type to model the behaviour of a system,
we should include a description of the initial state. This may be seen as the
result of an operation, some form of initialisation, that does not refer to the
state beforehand. The initial state of a system may be described by a decorated
copy of the state schema, representing the state after initialisation.

StateInit
State′

. . .

The predicate part of this schema describes the initial constraints upon the
components of the state.



174 12 / Schema Operators

Example 12.11 If we assume that the initial allocation of seats for the current
performance has been declared as a global variable,

initial allocation : P Seat

then the initial state of the box office system is described by the following
decorated schema:

BoxOfficeInit
BoxOffice′

seating′ = initial allocation
sold′ = ∅

In the initial state, no seats have been sold. �

12.3 Disjunction

Schema disjunction allows us to describe alternatives in the behaviour of a
system. We may describe a variety of ways in which a system may evolve, and
then combine them to produce a complete description. If S and T are the
schemas introduced by

S
a : A
b : B

P

T
b : B
c : C

Q

then S ∨ T is the schema

a : A
b : B
c : C

P ∨ Q

As with conjunction, the declaration parts are merged. This time, however, the
predicate parts are disjoined.

If the same variable is declared in both schemas, as with b above, then the
types must match. Any constraint information that is present in just one of the
declarations should be moved into the predicate part before combination: for
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example, if set A in the above example is a proper subset of type T , then the
constraint a ∈ A should be conjoined with P , and the declaration a : A should
be replaced with a : T .

Example 12.12 If a customer attempts to purchase a seat from the box office,
but the seat requested is not available, then the schema Purchase0 does not
apply. To specify what happens in this case, we introduce another schema:

NotAvailable
ΞBoxOffice
s? : Seat

s? 6∈ seating \ dom sold

This schema applies whenever the seat requested has not been allocated, or
has already been sold. The inclusion of ΞBoxOffice confirms that the state of
the system is unchanged.

To indicate that the seat could not be sold, we specify a different response
for the customer:

Failure
r ! : Response

r ! = sorry

We may then combine the various schemas to produce a complete description
of the purchasing operation:

Purchase =̂ (Purchase0 ∧ Success)
∨
(NotAvailable ∧ Failure)

If the seat requested is available, then the effect of the operation is described
by the first disjunct; if it is not, then the second disjunct applies. �

If an operation schema places no constraints upon the state of the system
beforehand, then we say that the operation it describes is total. Otherwise, the
operation is said to be partial.

This nomenclature corresponds exactly to the notion of partial and total
functions introduced in Chapter 8. The effect of a partial operation may be
undefined for some combinations of before states and inputs; the effect of a
total operation is defined for all combinations.
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Example 12.13 Having purchased a seat, a customer may decide not to attend
the performance. In this case, they may return the seat to the box office. The
operation of successfully returning a seat is described by

Return0

∆BoxOffice
s? : Seat
c? : Customer

s? , c? ∈ sold
sold′ = sold \ {s? , c?}
seating′ = seating

This is a partial operation upon the state of the box office. Its effect is defined
only if the seat has been sold to the customer in question: that is, if

s? , c? ∈ sold

If this seat has not been sold, or if it has been sold to another customer, then the
schema tells us nothing about the consequences of this customer attempting
to return it to the box office. The state after this attempt could be any state of
the system.

To model the effect of an unsuccessful attempt, we introduce another
partial operation schema. This will apply only if the seat has not been sold to
the customer in question:

NotPossible
ΞBoxOffice
s? : Seat
c? : Customer

s? , c? 6∈ sold

The inclusion of ΞBoxOffice tells us that the state of the box office system is not
changed by this operation.

We may combine these partial operations using schema disjunction. The
result is a total operation upon the box office state:

Return =̂ (Return0 ∧ Success) ∨ (NotPossible ∧ Failure)

This describes the effect of attempting to return a seat whatever the current
state of the box office. �
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12.4 Negation

The negation of a schema introduces the same set of components under a neg-
ated constraint. If S is a normalised schema, then its negation ¬S may be
obtained by negating the predicate part. For example, if A and B are types and
S is introduced by

S
a : A
b : B

P

then ¬S is the schema

a : A
b : B

¬P

However, this procedure applies only to normalised schemas.
If the declaration part of a schema contains constraints upon the com-

ponents, then these constraints must also be negated. Consider the case of
SchemaFour , a schema introduced in the previous chapter:

SchemaFour
a : N
c : P N

a ∈ c ∧ c ≠ ∅

This schema has not been normalised: the declaration part includes the con-
straint that a ∈ N and c ∈ P N. The negation ¬SchemaFour has a different
declaration part:

a : Z
c : P Z

¬(a ∈ N ∧ c ∈ P N ∧ a ∈ c ∧ c ≠ ∅)

This schema is easily recognised as the negation of the normalised form:
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SchemaFourNormalised
a : Z
c : P Z

a ∈ N ∧ c ∈ P N ∧ a ∈ c ∧ c ≠ ∅

Where there is constraint information in the declaration part, it is advisable to
normalise a schema before calculating its negation.

Example 12.14 The schema Date was used to characterise the set of all valid
dates in the Gregorian calendar. Its negation, ¬Date, describes the set of all
bindings of day and month that do not correspond to a valid date:

month : Month
day : Z

day 6∈ 1 . . 31 ∨
(month ∈ {sep, apr , jun, nov} ∧ day > 30) ∨
(month = feb ∧ day > 29)

�

Example 12.15 If the box office is no longer in the initial state, then its state
may be characterised by the conjunction

BoxOffice′ ∧ (¬BoxOfficeInit)

Notice that it is not enough to simply negate the initialisation schema. The
schema ¬BoxOfficeInit describes the set of all bindings of seating and sold that
do not match the initial state: this includes bindings that are not valid states
of the system. �

12.5 Quantification and hiding

We may quantify over some of the components of a schema while retaining the
declarations of the others. If Q is a quantifier and dec is a declaration, then the
quantified schema

Q dec • Schema

may be obtained from Schema by removing those components that are also
declared in dec and quantifying them with Q in the predicate part. For this
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schema to be properly defined, every variable declared in dec must appear in
Schema as a component of the same type.

For example, if S is the schema with components a and b of types A and
B, introduced under the constraint P ,

S
a : A
b : B

P

then ∀ b : B • S is the schema

a : A

∀ b : B • P

and ∃ b : B • S is the schema

a : A

∃ b : B • P

Example 12.16 The friendly box office records the status of the current per-
formance: if the show is a premiere, then seats are sold only to customers who
are registered friends of the theatre:

FriendlyBoxOffice
status : Status
friends : P Customer
sold : Seat 7→ Customer
seating : P Seat

dom sold ⊆ seating
status = premiere ⇒ ran sold ⊆ friends

If we precede this schema with a universal quantification of the variable status,
then we obtain a schema that no longer records the status of the current per-
formance. The result is not the same as if this component had never been
present: the system behaves as if it is still there, universally quantified, in the
predicate part of the schema.
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To see why, consider the quantified schema:

∀ status : Status • FriendlyBoxOffice

The predicate part insists that

∀ status : Status •
dom sold ⊆ seating

status = premiere ⇒ ran sold ⊆ friends

If this quantified expression is to be an invariant of the system, then tickets
may be sold only to friends of the theatre, for else the subexpression status =
premiere ⇒ ran sold ⊆ friends would be false for one of the values of status.

The quantification over status has produced a cautious version of the box
office system:

CautiousBoxOffice
friends : P Customer
sold : Seat 7→ Customer
seating : P Seat

dom sold ⊆ seating
ran sold ⊆ friends

It is as if the universal quantification over status has forced the system to
take a pessimistic view as to the status of the performance: it caters for both
possibilities—standard and premiere—by selling only to friends. �

Example 12.17 The operation of successfully returning a ticket to the box of-
fice required the name of a customer. We may dispense with this requirement
by existentially quantifying over the input component c?. The result is an an-
onymous version of the return operation:

∃ c? : Customer • Return0

The predicate part of the new schema states that

∃ c? : Customer •
s? , c? ∈ sold ∧
sold′ = sold \ {s? , c?} ∧
seating′ = seating
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With care, we may rewrite this predicate to make the results of the operation
more obvious:

∆BoxOffice
s? : Seat

∃ c? : Customer •
s? , c? ∈ sold ∧
sold′ = sold \ {s? , c?} ∧
seating′ = seating

It is as if the existential quantification has forced the system to take an op-
timistic view as to the identity of the customer. By the one-point rule and the
properties of functions, this schema is equivalent to

AnonymousReturn0

∆BoxOffice
s? : Seat

s? ∈ dom sold
sold′ = {s?} � sold
seating′ = seating

For this operation to be properly defined, it is necessary only that the input s?
is an element of the domain of sold . �

Schema existential quantification is also called hiding: the quantified com-
ponents are no longer visible in the declaration, yet the predicate tells us that
they exist. This provides a powerful mechanism for abstraction in the schema
language: we may hide any components that are not required at the current
level of specification.

This mechanism has its own operator: if list is a list of component names,
then the schema Schema \ list may be obtained by existentially quantifying each
component in list within Schema. For example, if S is the schema introduced
by

S
a : A
b : B

P

then S \(a) is the schema



182 12 / Schema Operators

b : B

∃ a : A • P

Thus hiding is no more than a quick way of writing (and pronouncing) existential
quantification over schema components.

Example 12.18 The enhanced box office system included a component that
recorded the number of seats available for the current performance. We may
abstract away this information by hiding available within the schema:

EnhancedBoxOffice \ (available)

The result is a schema with the same components as BoxOffice:

BoxOffice

∃ available : N • available = free θBoxOffice

Since free is a total function, the number of seats available is always uniquely
determined by the values of seating and sold . This schema is equivalent to the
original box office description. �

12.6 Composition

The use of schemas to describe operations begs an interesting question: how
does one describe the effect of one operation followed by another? Alternat-
ively, we might ask: if an operation schema characterises a relation between
states of the system, then how does one represent the composition of two such
relations? The answer in both cases is schema composition.

If OpOne and OpTwo are operation schemas, each including primed and
unprimed copies of a state schema State, then the composition OpOne o

9 OpTwo
describes the change in state that results when operation OpOne is followed by
operation OpTwo.

In OpOne, the components of State′ represent the state of the system im-
mediately after the operation. In the composition above, this is also the state
of the system immediately before OpTwo. We introduce a new schema to rep-
resent this intermediate state: State′′.

The schema composition relates the state immediately before OpOne to
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the state immediately after OpTwo, and State′′ is hidden:

OpOne o
9 OpTwo = ∃ State′′ •

∃ State′ • [OpOne; State′′ | θState′ = θState′′]
∧
∃ State • [OpTwo; State′′ | θState = θState′′]

The relationship between the before state and the intermediate state—θState
and θState′′—is described by schema OpOne; the relationship between the
intermediate state and the after state—θState′′ and θState′—is described by
schema OpTwo.

For the composition to be defined, both schemas must refer to the same
state. For any primed component in OpOne, there must be an unprimed com-
ponent of the same name in OpTwo. For example, suppose that OpOne and
OpTwo are introduced by

OpOne
a, a′ : A
b, b′ : B

P

OpTwo
a, a′ : A
b, b′ : B

Q

The state components in each operation are the same, so their schema compos-
ition will be well defined.

The composition of OpOne and OpTwo may be calculated using schema
existential quantification, as above, or by renaming the state components cor-
responding to the intermediate state:

OpOne o
9 OpTwo =

(OpOne[a′′/a′, b′′/b′] ∧ OpTwo[a′′/a, b′′/b]) \ (a′′, b′′)

The components representing the intermediate state, a′′ and b′′ are then hid-
den. If we were to expand this schema, we would see that the composition is
equivalent to:

a, a′ : A
b, b′ : B

∃ a′′, b′′ •
P[a′′/a′, b′′/b′] ∧ Q [a′′/a, b′′/b]
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Example 12.19 If a customer successfully purchases a seat, and then returns it
immediately to the box office, then the state of the system should be unaffected.
The combined operation is described by

Purchase0
o
9 Return

where Purchase0 and Return are as defined above. The result that we might
hope to establish can be expressed as

Purchase0
o
9 Return

ΞBoxOffice

This is an inference in which the composition is used as a declaration: intro-
ducing a collection of components under the stated constraint. The schema
ΞBoxOffice is used only as a predicate. �



Chapter 13

Promotion

In this chapter we describe an important technique for structuring formal de-
scriptions. It is called promotion, and it allows us to compose and factor spe-
cifications. It has also been called framing, because it is evocative of placing a
frame around part of a specification: only what is inside the frame may change;
what is outside must remain unaffected.

We begin the chapter with three different examples of the technique: a
game, a mail system, and a data array. We then give a formal definition of
promotion, and distinguish between two varieties: free and constrained. The
chapter ends with two further examples of promotion: a free promotion of a
booking system, and a constrained promotion within a priority stack.

13.1 Factoring operations

Large software systems often contain multiple, indexed instances of the same
component. A database may contain a number of records, a computer system
may have several users, a data network may consist of a number of switching
nodes. If this is the case, then there will exist a uniform relationship between
the system state and the state of each indexed component.

This relationship allows us to link certain changes in system state to
changes in the state of indexed components. We may factor a global oper-
ation into a local operation and a mixed operation, the latter expressing the
relationship between local and global state. This is a useful separation of con-
cerns; the two factors may be specified and analysed in isolation. We have used
the structuring information in the design of the system to simplify our formal
description.
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global score

local score

Figure 13.1 A game in progress

Example 13.1 In the game of Trivial PursuitTM, the players collect tokens of
various colours—red, green, yellow, blue, brown, and pink—the aim being to
collect one token of each colour. There are no teams: each player maintains an
individual score. A player’s score may be modelled using a schema type

LocalScore
s : P Colour

where Colour is the set of colours mentioned above.
The overall state of play at any point during the game is given by a binding

of the following schema type:

GlobalScore
score : Players 7→ LocalScore

Here, a partial function called score associates each player with an object of
type LocalScore. Figure 13.1 shows a situation in which one of the players has
collected exactly two tokens.
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Players are awarded tokens if and when they provide correct answers to
questions on various subjects; the colour awarded depends upon the choice of
subject. If a player p? earns a token of colour c?, then the effect upon the state
of play is described by the following operation schema:

AnswerGlobal
∆GlobalScore
p? : Player
c? : Colour

p? ∈ dom score
{p?} � score′ = {p?} � score
(score′ p?).s = (score p?).s ∪ {c?}

Provided that p? is indeed part of the current game, the function score is up-
dated to reflect the new score associated with p?.

An alternative approach would involve factoring this operation into a local
operation—

AnswerLocal
∆LocalScore
c? : Colour

s′ = s ∪ {c?}

—and a schema expressing the relationship between global and local states—

Promote
∆GlobalScore
∆LocalScore
p? : Player

p? ∈ dom score
θLocalScore = score p?
score′ = score ⊕ {p? , θLocalScore′}

—in which a change in GlobalScore and a change in LocalScore are linked by the
identity of the player involved.

If we conjoin the AnswerLocal and Promote schemas, then we obtain a
schema that describes an operation upon the global state:

∃ ∆LocalScore • AnswerLocal ∧ Promote
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The local state is uniquely determined by the function score, so there is no need
to record this information at the global level. The existential quantification
hides it, yielding a predicate part

∃ ∆LocalScore •
p? ∈ dom score

θLocalScore = score p?

score′ = score ⊕ {p? , θLocalScore′}
s′ = s ∪ {c?}

We may rewrite this as

∃ s, s′ : P Colour •
p? ∈ dom score

〈|s � s|〉 = score p?

score′ = score ⊕ {p? , 〈|s � s′|〉}
s′ = s ∪ {c?}

and hence as

∃ s : P Colour •
p? ∈ dom score

(score p?).s = s

score′ = score ⊕ {p? , 〈|s � s ∪ {c?}|〉}

to obtain a schema equivalent to AnswerGlobal :

∆GlobalScore
p? : Player
c? : Colour

p? ∈ dom score
{p?} � score′ = {p?} � score
(score′ p?).s = (score p?).s ∪ {c?}

�

In the above example, there is little to choose between the two approaches,
although the factored description makes it easier to see the effect of the op-
eration upon the local state. However, as we define more operations, and add
more information to the local state, the advantages of the factored approach
become obvious.
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The relationship between the global state and the collection of local states
need not be functional. There may be several components with the same index,
in which case the association between indices and components can be modelled
as a relation.

Example 13.2 An electronic mail system consists of several instances of the
component MailBox. Each instance may be associated with one or more ad-
dresses from the set Address. A user of the system may have more than one
address, and an address may be associated with more than one user.

MailSystem
address : User ↔ Address
mailbox : Address 7→ MailBox

The association between users and addresses is given by a relation address,
and the association between addresses and mailboxes is given by the partial
function mailbox.

Figure 13.2 shows a mail system with three users: Carolyn, Denise, and
Edward. Each user has a personal mailbox, with an appropriate address. Car-
olyn and Denise share ownership of the system administrator’s mailbox with
address admin. Edward has two mail addresses, edward and edwardc , each
with its own mailbox.

A mailbox is modelled by a schema type with three components. The first
is a sequence of type Message, representing the mail messages stored in the
box. The others are time stamps:

MailBox
mail : seq Message
new mail, last read : TimeStamp

Of these, new mail records the time of arrival of the latest mail message, and
last read records the last time that mail in the box was read.

A typical object of type MailBox might be

〈| mail � 〈m1, m2, m3〉 , ,
new mail � Tue 14 Feb, 11.00 a.m. ,
last read � Sun 12 Feb, 12.30 p.m. |〉

This tells us that the box holds three messages—m1, m2, and m3—the last of
which arrived at 11.00 a.m. on Tuesday 14th February. It states also that mail
in this box was last read at 12.30 p.m. on Sunday 12th February.



190 13 / Promotion

AddressUser Mailbox

address mailbox

Denise

Carolyn

Edward
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edwardc
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edward

Figure 13.2 Addresses and mailboxes

If a message m? arrives at time t? for user u?, then it will be added to one
of the mailboxes belonging to u?. These components are taken as inputs to the
following operation schema, which describes the effect upon the global state:

ReceiveSystem
∆MailSystem
u? : User
m? : Message
t? : TimeStamp
a! : Address

u? , a! ∈ address
address′ = address
a! ∈ dom mailbox
{a!} � mailbox′ = {a!} � mailbox
(mailbox′ a!).mail = (mailbox a!).mail_〈m?〉
(mailbox′ a!).new mail = t?
(mailbox′ a!).last read = (mailbox a!).last read

The address used, a!, is provided as an output to the operation. The value of
address and the contents of the other mailboxes—given by {a!} � mailbox—are
left unchanged.
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Again, we may choose an alternative approach, factoring global operations
such as ReceiveSystem into two parts. The first part, which is the same for each
operation, expresses the link between local and global changes of state:

Promote
∆MailSystem
∆MailBox
u? : User
a! : Address

u? , a! ∈ address
address′ = address
a! ∈ dom mailbox
θMailBox = mailbox a!
mailbox′ = mailbox ⊕ {a! , θMailBox′}

The link is made by identifying the user u? and the address a! involved in the
operation. The local state is given by mailbox a!, where u?,a! is an element of
the address relation. This is the only part of the global state that will change;
this is the frame in which the operation will take place.

The second part of the factorisation is a schema that describes the effect
of adding mail to a single mailbox:

ReceiveBox
∆MailBox
m? : Message
t? : TimeStamp

mail′ = mail_〈m?〉
new mail′ = t?
last read′ = last read

The incoming message is added to the end of the sequence mail , and the
new mail is set to t?. The other time stamp remains unchanged.

If we conjoin these two schemas, and abstract away the components of
the local state, as in

∃ ∆MailBox • ReceiveBox ∧ Promote

then we obtain a schema that is logically equivalent to the global operation
ReceiveSystem. �
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value

value

local state

global state

Figure 13.3 A data array

In some systems, the components may be indexed sequentially; in this
case, the relationship between the global and local states may be based upon a
sequence, rather than a simple function or relation.

Example 13.3 In a model of a data array, each element may be represented by
an object of schema type Data, where

Data
value : Value

The state of the array is represented by an object of schema type with a single
component, a sequence of Data elements:

Array
array : seq Data

The relationship between the state of the array—the global state—and the state
of a data element—the local state—is illustrated in Figure 13.3.

If an operation upon the array affects but a single element, then we may
express it as the product of two schemas: a local operation schema and a pro-
motion schema. For example, the operation of assigning a new value to a data
element could be described as

∃ ∆Data • AssignData ∧ Promote
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where the local operation schema is introduced by

AssignData
∆Data
new? : Value

value′ = new?

and the promotion schema, which makes the link between global and local
states using the index of the data, is introduced by

Promote
∆Array
∆Data
index? : N

index? ∈ dom array
{index?} � array = {index?} � array ′

array index? = θData
array ′ index? = θData′

Once again, the promotion schema describes the frame, while the local opera-
tion schema describes the effect. �

13.2 Promotion

When a global operation is defined in terms of a local operation upon an indexed
component, as in each of the examples above, we say that the local operation
has been promoted. Formally, suppose that we have

• a state schema Local , that describes a copy of the local state;

• a state schema Global , that describes a copy of the global state;

• a local operation schema LocalOperation, that contains decorated and un-
decorated copies of the state schema Local ;

• a promotion schema Promote, that contains decorated and undecorated
copies of both Local and Global .

Then the promotion schema promotes the local operation to

∃ ∆Local • Promote ∧ LocalOperation

which operates on the global state Global .
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Example 13.4 A global box office system keeps track of bookings for a number
of performances. The record of seats allocated and tickets sold for each per-
formance is represented by an object of schema type BoxOffice. These objects
are indexed by a function on Performance, the set of all possible performances:

GlobalBoxOffice
announced : P Performance
booking : Performance 7→ BoxOffice

dom booking ⊆ announced

As well as booking, the system maintains a set called announced for reference
purposes. The two components are connected: any performance for which we
are booking must have been announced. On the other hand, some performances
may have been announced but have not yet started booking.

A booking operation is an operation upon the global box office system that
involves the sale or return of a seat. These operations may be factored using
promotion. We define a promotion schema:

Promote
∆GlobalBoxOffice
∆BoxOffice
p? : Performance

p? ∈ dom booking
θBoxOffice = booking p?
θBoxOffice′ = booking′ p?
{p?} � booking′ = {p?} � booking
announced′ = announced

This tells us the relationship between the local state of a box office system and
the global state in such an operation, given that we are talking about perform-
ance p?. Such local operations do not affect the list of performances that have
been announced.

We may promote the local operation of buying a ticket to a global operation
simply by conjoining the schema above with Purchase:

GlobalPurchase0 =̂ ∃ ∆BoxOffice • Purchase ∧ Promote

A single box office has changed—the one identified by input p?—and the effect
of this change is described by the operation schema Purchase.
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The promotion schema identifies input p? with a unique performance; if
we expand GlobalPurchase0, then the existential quantification can be elimin-
ated. The result is a schema equivalent to the following:

∆GlobalBoxOffice
p? : Performance
s? : Seat
c? : Customer
r ! : Response

p? ∈ dom booking
( ( s? ∈ booking p?.seating \ dom booking p?.sold ∧

booking p?.sold′ = booking p?.sold ∪ {s? , c?} ∧
r ! = okay)

∨
( s? 6∈ booking p?.seating \ dom booking p?.sold ∧

booking p?.sold′ = booking p?.sold ∧
r ! = sorry ) )

{p?} � booking′ = {p?} � booking
announced′ = announced

Even where the indexing relation is functional, the advantages of structuring
our descriptions using promotion should be obvious. �

Of course, the promotion schema is used only in factoring operations
which may be described in terms of their effect within an indexed frame. Other
operations upon the global state will not be factorised in this way.

Example 13.5 The GlobalPurchase0 operation defined above is not total: it de-
scribes only those situations in which the performance in question is already
booking. We may wish to add the following alternative:

NotYetBooking
ΞGlobalBoxOffice
p? : Performance
r ! : Response

p? ∈ announced \ dom booking
r ! = not yet booking

This describes the situation in which—although the performance in question
has been announced—the office is not accepting bookings. �



196 13 / Promotion

Example 13.6 We may instruct the box office system to start accepting book-
ings for a performance p?:

StartBooking
∆GlobalBoxOffice
p? : Performance

p? ∈ announced
p? 6∈ dom booking
announced′ = announced
∃ BoxOfficeInit •

booking′ = booking ∪ {p? , θBoxOffice′}

A performance cannot start booking unless it has been announced; neither can
it start booking more than once. �

13.3 Free and constrained promotion

A promotion is said to be free if and only if the promotion schema satisfies

(∃ Local′ • ∃ Global′ • Promote) ⇒ (∀ Local′ • ∃ Global′ • Promote)

That is, provided that the update is possible at all, it is possible for all outcomes
of the local state.

In a free promotion, neither the promotion schema nor the global state
invariant should place any additional constraint upon the component variables
of the local state: that is, any constraint above that provided by the local state
schema itself. Then, and only then, can the quantifiers be exchanged.

To decide whether a given promotion is free, we expand ∃ Global′ • Promote
and simplify the predicate part of the resulting schema. We should be left with
an expression in which θLocal appears unconstrained, other than by the pre-
dicate part of Local iself.

The exchange of quantifiers can then be justified using schema equivalents
of the quantifier rules. The rule required for existential elimination is

∃ S • B

ds ∈ Se[i] dB[s/θS]e[i]

...

C

C
[∃−elim[i]]

provided that s is not free

in either the other assumptions or C
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and the rule for universal introduction is

ds ∈ Se[i]

...

B[s/θS]

∀ S • B
[∀−intro[i]] provided that s is not free

in the other assumptions

Notice how the decoration mechanism gives us a way of generating instances
of the appropriate schema type in such a way that we are able to distinguish
between them at component level: the components in S ′ are associated with
variables that differ from those of S .

Example 13.7 The data array description of Example 13.3 is an example of a
free promotion. The schema ∃ Data′ • ∃ Array ′ • Promote asserts that the
index chosen as input is a valid index for the array—index? ∈ dom array—and
does not constrain the value stored at that index, apart from identifying it as
array index?. The promotion is thus independent of the actual value stored at
the index; provided that the index is valid, the promotion will work: it is free.

To see this in terms of the implication that was used to characterise a
free promotion, we consider the expression ∃ Data′ • ∃ Array ′ • Promote. That
is, there is at least one local after-state with a global after-state satisfying the
promotion condition.

Consider the inner existential quantification: that beginning with ∃ Array ′.
Replacing the Promote schema with the body of its definition, and moving
the existential quantification of Array ′ into the predicate part of the resulting
schema, we see that

∃ Array ′ • Promote

a [Array ; ∆Data; index? : N |
∃ Array ′ •

index? ∈ dom array

array index? = θData

array ′ = array ⊕ {index? , θData′}]

a [Array ; ∆Data; index? : N |
∃ array ′ : seq Data •

index? ∈ dom array

array index? = θData

array ′ = array ⊕ {index? , θData′}]
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Simplifying the predicate part using the one-point rule to eliminate the quanti-
fication of array ′, we obtain

∃ Array ′ • Promote

a [Array ; ∆Data; index? : N |
index? ∈ dom array

array index? = θData

array ⊕ {index? , θData′} ∈ seq Data]

Given that index? ∈ dom array , the last of these conditions requires only that
θData′ ∈ Data. Thus

∃ Array ′ • Promote

a [Array ; ∆Data; index? : N |
index? ∈ dom array

array index? = θData

θData′ ∈ Data]

The predicate above places no constraint on θData′, other than the requirement
that it meets the constraint of Data. It is then a simple matter to show that

∃ Data′ • ∃ Array ′ • Promote ⇒ ∀ Data′ • ∃ Array ′ • Promote

using the rules for existential elimination and universal introduction. �

A promotion that is not free is said to be constrained. In general, con-
strained promotions are not as elegant: they lack the modularity that freeness
implies. However, there are situations in which a constrained promotion is the
natural solution.

Example 13.8 We wish to model a stack of data objects, each of which contains
a piece of data and a priority value:

PriData
priority : N
data : Data

The objects in the stack are ordered with respect to their priority values. If
object a has a lower index than object b—if it is nearer the top of the stack—
then it must have a higher priority value:
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Stack
stack : seq PriData

∀ i, j : dom stack | i < j • (stack i).priority ≥ (stack j).priority

At any time, only the data object with the highest priority may be operated upon:
that is, the object at the head of the stack. Our promotion schema includes this
condition:

Promote
∆Stack
∆PriData

stack ≠ 〈〉
θPriData = head stack
stack′ = 〈θPriData′〉_tail stack

The constraint of the promotion schema states that the stack must be non-
empty, and that any change is made to the object at the head of the sequence.

In this description, the global state invariant refers to a component of the
indexed local state: the priority value. In an arbitrary operation, there may be
local after-states which violate the global state invariant. Consider the case in
which the stack contains two objects:

stack = 〈〈|priority � 3, data � a|〉, 〈|priority � 2, data � b|〉〉

In an operation, the state of the first object may change to

〈|priority � 3, data � c|〉

so at least one after-state exists, but after-states such as

〈|priority � 1, data � c|〉

are disallowed. Hence

∃ PriData′ • ∃ Stack′ • Promote 6⇒ ∀ PriData′ • ∃ Stack′ • Promote

and the promotion is constrained. Having observed this, we might decide to
strengthen the predicate part of Promote in the hope of achieving a free pro-
motion, or we may decide that the existing promotion is an entirely suitable
description of our system. �





Chapter 14

Preconditions

The construction of an abstract data type presents two important proof op-
portunities. The first involves a demonstration that the various requirements
upon the data type are consistent and not contradictory. The second involves
a demonstration that each operation is never applied outside its domain, in a
situation for which the results of the operation are not defined.

If the language of schemas is used to construct the data type, then these
opportunities present themselves as simple mathematical tasks. To show that
the requirements are consistent, we have only to show that the constraint part
of the state schema is satisfiable. This is usually achieved by proving an initial-
isation theorem: we show that an initial state, at least, exists.

To show that the operations are never applied outside their domain, we
must investigate their preconditions. These may be calculated from the opera-
tion schemas using the one-point rule. In this chapter, we explain the procedure
for calculating preconditions, and show how it may be simplified by the use of
structuring techniques such as promotion.

14.1 The initialisation theorem

In the previous chapters we have seen how the behaviour of a system may
be described in terms of an abstract data type. The state of the system was
modelled as an object of schema type, the predicate part of which represented
a state invariant: a list of requirements that should be true in any valid state.

Clearly, if this includes a contradiction, then the data type description is
vacuous: it is impossible to fulfil the requirements, therefore no state exists.
To check that this is not the case, and that our specification is of some use, it
is enough to establish that at least one state exists.
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If the description is to be useful, then there must also exist an initial
state. As we saw in Example 12.11, this is usually characterised by a decorated
schema, representing the state after initialisation. This is an obvious candidate
for our proof of consistency.

Suppose that State describes the state of the system, and that StateInit
characterises the initial state. If we can prove that

∃ State′ • StateInit

then we have shown that an initial state exists, and hence also that the re-
quirements upon the state components are consistent. This result is called the
initialisation theorem for the data type.

Example 14.1 In the case of the box office system, the initial state was charac-
terised by

BoxOfficeInit
BoxOffice′

seating′ = initial allocation
sold′ = ∅

The initialisation theorem is therefore

∃ BoxOffice′ • BoxOfficeInit

�

The initialisation theorem is an easy one to prove, unless there are com-
plicated initial conditions. Most often, the initial state is described uniquely
with a number of equations, so the proof strategy is simple: eliminate the
quantified variables. Once this has been done, the truth of the predicate should
follow immediately from the properties of the mathematical objects involved.

Example 14.2 In the case of the box office, we may proceed as follows:

∃ BoxOffice′ • BoxOfficeInit

a ∃ BoxOffice′ •
[BoxOffice′ |

seating′ = initial allocation ∧
sold′ = ∅]

[definition of BoxOfficeInit ]
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a ∃ BoxOffice′ •
seating′ = initial allocation ∧
sold′ = ∅

[schema quantification]

a ∃ seating′ : P Seat •
∃ sold′ : Seat 7→ Customer •

dom sold′ ⊆ seating′ ∧
seating′ = initial allocation ∧
sold′ = ∅

[definition of BoxOffice′]

a initial allocation ∈ P Seat ∧
∅ ∈ Seat 7→ Customer

[one-point rule, twice]

The proof may be completed by recalling the axiomatic definition of constant
initial allocation, which is indeed of type P Seat , and expanding the definition
of the generic symbol 7→. �

14.2 Precondition investigation

The precondition of an operation schema describes the set of states for which
the outcome of the operation is properly defined. If Operation is an operation
schema, then we write

pre Operation

to denote the precondition of Operation. This is another schema, and is ob-
tained from Operation by hiding any components that correspond to the state
after the operation, and any outputs that happen to be present.

If the state of the system in question is modelled by a schema State, and
outputs is the list of outputs associated with the operation, then the following
equation defines the precondition schema:

pre Operation = ∃ State′ • Operation \ outputs

This schema characterises the collection of before states and inputs for which
some after state can be shown to exist.

Example 14.3 The precondition of the operation schema Purchase0, which de-
scribes the effect of a successful purchase, is given by

pre Purchase0

= ∃ BoxOffice′ • Purchase0 [definition of pre ]
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= [BoxOffice; s? : Seat ; c? : Customer |
∃ seating′ : P Seat ;

sold′ : Seat 7→ Customer |
dom sold′ ⊆ seating′ •

s? ∈ seating \ dom sold

sold′ = sold ∪ {s? , c?}
seating′ = seating]

[definition of BoxOffice′]

= [BoxOffice; s? : Seat ; c? : Customer |
dom(sold ∪ {s? , c?} ⊆ seating ∧

s? ∈ seating \ dom sold]

[one-point rule, twice]

= [BoxOffice; s? : Seat ; c? : Customer •
s? ∈ seating \ dom sold]

[property of ‘dom’]

The predicate part of Purchase0 identifies an after-state that satisfies the state
invariant only if the chosen seat s? has been allocated and not sold. The effect
of Purchase0 is defined only when

s? ∈ seating \ dom sold

Notice that the actual precondition includes additional declaration and con-
straint information. The effect of the operation is properly defined only if the
initial values of seating and sold satisfy the constraint of BoxOffice and s? is an
element of Seat . �

In many cases, the precondition for an operation may be obvious to the
writer of the specification. For example, the precondition of Purchase0—see
the above example—was sufficiently obvious to be included in the operation
schema. In general, we might wish to concentrate upon what the operation
is supposed to do, and calculate the precondition later. In the specification
process, such cross-checking can be useful.

Example 14.4 A simple control system monitors the entry and exit of vehicles
from a car park. It maintains a count of the number of vehicles presently inside;
this count should never exceed capacity , an integer number greater than zero:

CarPark
count : N

count ≤ capacity

We may define an operation Exit0 that describes the successful departure of a
car from the parking area:
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Exit0

∆CarPark

count ′ = count − 1

It might seem that this schema would apply to all states of the system, in that
we are not placing any explicit constraint upon count . However,

pre Exit0

= ∃ CarPark′ • Exit0 [definition of Exit0]

= [CarPark | ∃ count ′ : N |
count ′ ≤ capacity • count ′ = count − 1]

[definition of CarPark′]

= [CarPark | count − 1 ∈ N] [one-point rule]

Because of the state invariant, this operation should be restricted to those states
in which the count variable is strictly greater than 0. The effect upon other
states is undefined. By calculating the precondition, we have identified a pos-
sible source of error.

To see why Exit0 alone might be an unsatisfactory description of the exit
operation, suppose that there is a way for cars to enter the car park unobserved.
In this case, the function that implements the exit operation may be called while
the value of count is 0. The subsequent value of count , according to Exit0,
conflicts with our choice of data representation: anything could happen.

Now that the problem has been detected, we may choose to totalise the
operation using a second schema to describe the effect of a car leaving when
the system believes that the car park is empty:

ExtraCar
ΞCarPark
r ! : Report

count = 0
r ! = extra car

Assuming that a suitable type of reports is introduced, we may define

Exit =̂ Exit0 ∨ ExtraCar

and be sure that all of the possibilities are catered for. �
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14.3 Calculation and simplification

The process of calculating preconditions is both straightforward and routine.
Indeed, much of the hard work can be carried out using some form of the-
orem prover or mechanical proof assistant. Suppose that we wish to find the
precondition of the following operation schema:

Operation
Declaration

Predicate

where Declaration represents the declaration part of Operation, and Predicate
the predicate part. To calculate the precondition of Operation,

1. divide Declaration into three parts:

• Before containing only inputs and before components (unprimed
state components)

• After containing only outputs and after components (primed state
components)

• Mixed containing all other declarations and inclusions

2. if Mixed is not empty, expand every schema mentioned in Mixed ; add all
input and before components to Before; add all output and after
components to After . As there may be several levels of schema
inclusion, repeat this step until Mixed is empty.

3. the precondition of Operation is then

Before

∃ After •
Predicate

Example 14.5 To see how this recipe for preconditions may be applied, con-
sider the following state schema definitions:

S
a : N
b : N

a ≠ b

T
S
c : N

b ≠ c
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and suppose that we wish to calculate the precondition of the following oper-
ation schema:

Increment
∆T
in? : N
out ! : N

a′ = a + in?
b′ = b
c′ = c
out ! = c

The first step of our recipe requires that we divide the declaration part of the
schema into three parts:

Before = {‘in? : N’}

After = {‘out ! : N’}

Mixed = {‘∆T ’}

The second step requires us to empty the third part, Mixed , by expanding
schema definitions and separating input, output, before and after components.
The result is

Before = {‘in? : N’, ‘T ’}

After = {‘out ! : N’, ‘T ′’}

Mixed = {}

The precondition of Increment is then given by

T
in? : N

∃ out ! : N; T ′ •
a′ = a + in?
b′ = b
c′ = c
out ! = c

�
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As we can see from the last example, the precondition schema obtained
after the third stage of the recipe may be quite complicated. It is usually pos-
sible to simplify the predicate part of a precondition schema using the one-point
rule. For a precondition schema

Before

∃ After •
Predicate

we may proceed as follows:

4. expand any schemas in After that contain equations identifying outputs
or after components

5. expand any schemas in After that refer to outputs or after components
for which we already have equations

6. if Predicate contains an equation identifying a component declared in
After , then use the one-point rule to eliminate that component; repeat
this step as many times as possible

7. if After1 and Predicate1 are what remains of After and Predicate, then the
precondition is now

Before

∃ After1 •
Predicate1

Example 14.6 The precondition of Increment , calculated in the last example,
can be greatly simplified using the remaining part of the recipe. Its predicate
part is currently

∃ out ! : N; T ′ •
a′ = a + in?

b′ = b

c′ = c

out ! = c

Looking at Step 5 of the recipe, we expand T ′, as it contains a declaration of an



14.3 / Calculation and simplification 209

after component for which we have an equation:

∃ out ! : N; S ′; c′ : N | b′ ≠ c′ •
a′ = a + in?

b′ = b

c′ = c

out ! = c

The same is true of S ′, so we follow this step again:

∃ out ! : N; a′ : N; b′ : N; c′ : N | a′ ≠ b′ ∧ b′ ≠ c′ •
a′ = a + in?

b′ = b

c′ = c

out ! = c

There are no more schemas to expand, so we proceed to Step 6. The one-point
rule can be applied four times, yielding the predicate

a + in? ≠ b

b ≠ c

a + in? ∈ N

b ∈ N

c ∈ N

This is as far as the recipe takes us. However, all but one of these conjuncts
follow immediately from the declarations in the precondition schema:

in? : N

T

Removing the redundant information from our predicate, we obtain the final
simplified form of ‘pre Increment ’:

in? : N
T

a + in? ≠ b

�
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14.4 Structure and preconditions

The process of calculating preconditions can be further simplified by consid-
ering the structure of an operation. If an operation schema is defined to be
the disjunction of several partial operations, or if an operation is defined using
promotion, then we may be able to save time and effort by factoring out part
of the calculation.

The simplest case is that of disjunction. If an operation schema Op is
defined to be the disjunction of two or more operation schemas, then we may
make use of the fact that the precondition operator ‘pre’ distributes through
disjunction. For example, if

Op =̂ Op1 ∨ Op2

then we may conclude that

pre Op = pre Op1 ∨ pre Op2

This result follows immediately from the definition of ‘pre’, given the following
theorem of our predicate calculus:

∃ A • P ∨ Q a ∃ A • P ∨ ∃ A • Q

Existential quantification distributes through disjunction.

Example 14.7 The Purchase operation was defined as a disjunction of two par-
tial operations

Purchase =̂ (Purchase0 ∧ Success)
∨
(NotAvailable ∧ Failure)

Using the distributive property of ‘pre’, we may observe that

pre Purchase = pre (Purchase0 ∧ Success)
∨
pre (NotAvailable ∧ Failure)

We may calculate the preconditions of the two partial operations—Purchase0 ∧
Success and NotAvailable ∧ Failure—separately, and combine them to obtain
the precondition of Purchase. �
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The ‘pre’ operator does not necessarily distribute through conjunction.
If Op =̂ Op1 ∧ Op2 then pre Op may not be equivalent to pre Op1 ∧ pre Op2.
However, this will be the case whenever one of the schemas contributes nothing
to the precondition.

Example 14.8 In Example 12.8, the schema Success was defined to be

Success
r ! : Response

r ! = okay

This schema imposes no constraint upon the before components of the box of-
fice state, neither does it describe any input. It therefore makes no contribution
to the precondition of an operation, and we may observe that

pre (Purchase0 ∧ Success) = pre Purchase0

�

If an operation is defined using a free promotion, then its precondition
may be expressed in terms of the precondition of a local operation. If Promote
is a free promotion, then the equivalence

∃ Local′ • ∃ Global′ • Promote a ∀ Local′ • ∃ Global′ • Promote (∗)

must hold; this follows from the definition at the start of Section 13.3. Now
consider the precondition of GOp, the promotion of a local operation LOp:

pre GOp

a ∃ Global′ • GOp [definition of ‘pre’]

a ∃ Global′ • ∃ ∆Local • Promote ∧ LOp [definition of GOp]

a ∃ ∆Local • ∃ Global′ • Promote ∧ LOp [property of ∃]

a ∃ ∆Local • (∃ Global′ • Promote) ∧ LOp

[Global′ does not appear in LOp]

a ∃ Local • (∃ Local′; Global′ • Promote) ∧ ∃ Local′ • LOp

[free promotion]

a ∃ Local • pre Promote ∧ pre LOp [definition of ‘pre’, twice]

The equivalence justified by the phrase ‘free promotion’ can be derived from
the equivalence labelled ‘∗’ using the proof rules for existential introduction
and universal elimination.
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The result that we have established can be stated as follows: under a
free promotion, the precondition of a global operation is a conjunction of two
preconditions—the precondition of the local operation, and the precondition
of the promotion. We might say that the precondition of the local operation
has itself been promoted.

Example 14.9 The description of a data array in Example 13.3 included a global
operation AssignIndex defined by

AssignIndex =̂ ∃ ∆Data • AssignData ∧ Promote

This is a free promotion, so the precondition of AssignIndex is given by

pre AssignIndex = ∃ Data • pre Promote ∧ pre AssignData

The local operation AssignData is total: the constraint part of pre AssignData
is simply true precondition. The promotion schema Promote was defined by

Promote
∆Array
∆Data
index? : N

index? ∈ dom array
{index?} � array = {index?} � array ′

array index? = θData
array ′ index? = θData′

The precondition of Promote adds the constraint index? ∈ dom array . The
precondition of AssignIndex is therefore

Array
new? : N
index? : N

index? ∈ dom array

�

The separation of concerns afforded by the free promotion is not possible
where the promotion is constrained. In such cases, the precondition of a pro-
moted operation is calculated by first conjoining the local operation and the
promotion schema and then applying the existential quantifier.
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Example 14.10 In the prioritised data stack of Example 13.8, we propose a local
operation that sets the priority of the top element to 100:

SetPriority
∆PriData

priority ′ = 100
data′ = data

We may promote this operation to the global operation

SetPriorityStack =̂ ∃ ∆PriData • SetPriority ∧ Promote

where the promotion schema Promote is defined by

Promote
∆Stack
∆PriData

stack ≠ 〈〉
θPriData = head stack
stack′ = 〈θPriData′〉_tail stack

This insists that the stack is non-empty. We may calculate the precondition of
SetPriorityStack as follows:

pre SetPriorityStack

a ∃ Stack′ • SetPriorityStack [definition of ‘pre’]

a ∃ Stack′ • ∃ ∆PriData • Promote ∧ SetPriority

[definition of SetPriorityStack]

a ∃ ∆PriData • ∃ Stack′ • Promote ∧ SetPriority [property of ∃]

a ∃ ∆PriData • (∃ Stack′ • Promote) ∧ SetPriority

[Stack′ does not appear in SetPriority]

At this point, we calculate the value of ∃ Stack′ • Promote, and obtain

Stack
∆PriData

stack ≠ 〈〉
θPriData = head stack
∀ j : dom tail stack • θPriData′.priority ≥ (stack j).priority
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In conjunction with SetPriority , this yields

Stack
∆PriData

stack ≠ 〈〉
θPriData = head stack
θPriData′.priority = 100
θPriData′.data = θPriData.data
∀ j : dom tail stack • θPriData′.priority ≥ (stack j).priority

Following on from the argument above, we may obtain the precondition of
SetPriorityStack by quantifying this schema with ∃ ∆PriData, yielding

Stack

stack ≠ 〈〉
∀ j : dom tail stack • 100 ≥ (stack j).priority

For the operation to be defined: the stack must be non-empty; every priority
value in the tail of the stack must be less than 100; the stack must be ordered
according to decreasing priority values.

A very different result would be obtained by factoring the precondition
calculation as if it were a free promotion. The constraint part of pre SetPriority
is simply true: there is no restriction at the level of the data objects. The schema

∃ PriData′ • pre Promote ∧ pre SetPriority

is equivalent to

Stack

stack ≠ 〈〉

This schema that omits an essential part of the precondition: the constraint
that every object in the tail of the stack has a priority lower than 100.

The missing constraint appears when we combine the information from
the local operation—that the new priority value is 100—with the invariant prop-
erty of the global state. If we hide the new priority value before combining the
two schemas, then this information is lost. �

Any investigation of the initialisation and preconditions of a specification
should be properly recorded. A useful convention, followed by many practi-
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Operation Precondition

BoxOfficeInit true

Purchase0 s? ∈ seating \ dom sold

NotAvailable s? 6∈ seating \ dom sold

Success true

Purchase true

Return0 s? , c? ∈ sold

NotPossible s? , c? 6∈ sold

Failure true

Return true

Table 14.1 Preconditions in the box office system

tioners, involves tabulating the results of the investigation. In such a table, we
may find related partial operations listed together: any overall precondition is
then easily established.

Example 14.11 In our theatre box office system, the constraint part of the ini-
tialisation schema is simply true. No initial input is required: the initial value
of seating is simply that of some global variable initial allocation.

The Purchase and Return operations were both total. Each is the disjunc-
tion of two partial operations, Purchase being defined by

Purchase =̂ (Purchase0 ∧ Success) ∨ (NotAvailable ∧ Failure)

and Return by

Return =̂ (Return0 ∧ Success) ∨ (NotPossible ∧ Failure)

Each total operation involves two inputs—s? and c?—and a single output—r !.
Having calculated the preconditions, we may collect the results together in a
single table: see Table 14.1. �





Chapter 15

A File System

In this chapter, we present the first of several case studies using Z. We show how
the schema notation can be used to specify a simple file system: representing
concrete data structures and a set of operations upon them. We show also
how the preconditions of the various operations can be calculated, and how
the description of a single file can be promoted to an indexed component of a
file system.

15.1 A programming interface

We will begin by setting down exactly what it is that we intend to model. In
this case, it is the programming interface to a file system. This is a list of
operations upon the file system, complete with a description of their intended
effects. For example: the operation create may be used to create a new file, and
the operation read may be used to obtain data from an existing file.

We may divide the operations into two groups: those that affect the data
within a single file, and those that affect the file system as a whole. At the file
level, there are four operations:

• read: used to read a piece of data from a file;

• write: used to write a piece of data to a file;

• add: used to add a new piece of data to a file;

• delete: used to delete a piece of data from a file.

The operations add and write are quite different. The first will extend the file
to accommodate the new data, while the second will overwrite an existing part
of the file.
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The remainder of the programming interface consists of operations upon
the file system. We will consider four of these:

• create: used to create a new file;

• destroy: used to destroy an existing file;

• open: used to make a file available for reading and writing of data;

• close: used to make a file unavailable for reading and writing.

Of these, the first two may be seen as file management operations, while the
others may be seen as file access operations upon the file system.

15.2 Operations upon files

We will represent each file using a relation between storage keys and data ele-
ments. For the purposes of this specification, we may suppose that keys and
data are drawn from basic types:

[Key , Data]

In more elaborate descriptions, there may be more to a file than simply its con-
tents. To keep our specification both flexible and extensible, we use a schema
to describe the structure of a file:

File
contents : Key 7→ Data

A file should not associate the same key with two different pieces of data, hence
the requirement that the relation contents should be a partial function.

When a file is initialised, it contains no data, so the value of contents should
be the empty function. The initial state of a file is described by:

FileInit
File′

contents′ = ∅

The schema File corresponds to a set of bindings, each with a single component
contents. The schema FileInit corresponds to a much smaller set of bindings,
the singleton set

{〈|contents′ � ∅|〉}
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To describe an operation which may change the contents of a file, we will
include two copies of the file state:

∆File
File
File′

If an operation leaves the contents of a file unchanged, then we will add the
condition that the binding remains the same:

ΞFile
∆File

θFile = θFile′

This schema will be included whenever an operation merely interrogates the
file state.

A successful read operation requires an existing key as input and provides
the corresponding datum as output:

Read0

ΞFile
k? : Key
d ! : Data

k? ∈ dom contents
d ! = contents k?

There are no side effects to this operation.
A successful write operation replaces the datum stored under an existing

key, and provides no output:

Write0

∆File
k? : Key
d? : Data

k? ∈ dom contents
contents′ = contents ⊕ {k? , d?}

The old value of contents is updated with a maplet associating k? with a second
input d?.
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A successful add operation has a complementary precondition. This time,
the key k? must not be in the domain of contents:

Add0

∆File
k? : Key
d? : Data

k? 6∈ dom contents
contents′ = contents ∪ {k? , d?}

Again, there is no output from this operation.

Finally, a successful delete operation requires only that the key in question
exists. A single input is required, and the state of the file will change:

Delete0

∆File
k? : Key

k? ∈ dom contents
contents′ = {k?} � contents

The effect of removing the key is modelled using domain co-restriction: the
maplet starting at k? is removed from contents.

15.3 A more complete description

Thus far, we have described only partial operations upon files. For each op-
eration, there are circumstances in which the effect upon the file state is not
fully defined. For example, we have not explained what happens if an attempt
is made to add data using a key that is already in use. We will now extend our
description to cover every eventuality.

We will add a type of reports to our formal specification, allowing us to
provide some output whether or not the operation is successful:

Report ::= key in use | key not in use | okay

A failed operation upon the file state will always produce a report as output. It
will prove convenient to include the following schema:
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KeyError
ΞFile
k? : Key
r ! : Report

An error may arise because the specified key is not in use,

KeyNotInUse
KeyError

k? 6∈ dom contents
r ! = key not in use

or because the specified key is in use,

KeyInUse
KeyError

k? ∈ dom contents
r ! = key in use

A successful operation will always produce a report of the same value:

Success
r ! : Report

r ! = okay

We are now ready to define a collection of total operations: schemas in which
the state before may be any valid file state:

Read =̂ (Read0 ∧ Success) ∨ KeyNotInUse

Write =̂ (Write0 ∧ Success) ∨ KeyNotInUse

Add =̂ (Add0 ∧ Success) ∨ KeyInUse

Delete =̂ (Delete0 ∧ Success) ∨ KeyNotInUse

The four operations Read , Write, Add , and Delete have been built up in a struc-
tured fashion from small components. This avoids any duplication of effort,
allowing us to factor out common aspects of the design, and results in a clearer,
more comprehensible specification.

In larger case studies and industrial applications, a structured approach
is essential if the reader is not to be overwhelmed by detail. As an indication
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of the amount of information that might be involved, consider the following
schema, an expanded version of the operation schema used to describe the
read operation:

contents, contents′ : Key 7→ Data
k? : Key
d ! : Data
r ! : Report

( k? ∈ dom contents ∧
d ! = contents k? ∧
contents′ = contents ∧
r ! = okay )

∨
( k? 6∈ dom contents ∧

contents′ = contents ∧
r ! = key not in use )

The output d ! can take any value if the specified key is not in use.

15.4 A file system

A file system contains a number of files indexed using a set of names. In this
specification, we will regard the set of names as a basic type:

[Name]

In our description of the system, we will consider two aspects of a file system
state: the collection of named files known to the system, and the set of files
that are currently open:

System
file : Name 7→ File
open : P Name

open ⊆ dom file

It is important that the system should not associate the same name with two
different files: file must always be functional.

When the file system is initialised, there are no files. The partial function
file is empty, as is the set open. As the state invariant insists that every open file
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is also recorded in file, it is enough to insist that the value of file is ∅. Following
our convention that the initialisation schema uses a decorated copy of the state
schema, it is a decorated version of the component that we constrain:

SystemInit
System′

file′ = ∅

Again, the following pair of schemas will be useful when we come to describe
file system operations:

∆System =̂ [System; System′]

ΞSystem =̂ [∆System | θSystem = θSystem′]

Both of these schemas insist that the state invariant is preserved: file must
remain functional, and open must remain within its domain.

Since the state of our file system includes indexed copies of File, we may
choose to promote the operations defined above. The local state is described by
File, the global state is described by System, and the promotion is characterised
by the schema

Promote
∆System
∆File
n? : Name

n? ∈ open
file n? = θFile
file′ n? = θFile′

{n?} � file = {n?} � file′

open′ = open

which uses the indexing function file to explain the relationship between local
and global states.

We define four operations using this promotion:

KeyRead0 =̂ ∃ ∆File • Read ∧ Promote

KeyWrite0 =̂ ∃ ∆File • Write ∧ Promote

KeyAdd0 =̂ ∃ ∆File • Add ∧ Promote

KeyDelete0 =̂ ∃ ∆File • Delete ∧ Promote
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Although each local operation is total, the file in question may not be open. The
resulting global operations are partial.

The operations open and close do not change the name of any file, neither
do they add or remove files from the system. They may be described as file
access operations, in that they may change the availability of a file for reading
and writing. In the formal descriptions of these operations, we will find the
following schema useful:

FileAccess
∆System
n? : Name

n? ∈ dom file
file′ = file

This schema describes an operation upon the file system in which the indexing
function file is left unchanged. It insists also that the input component n?
describes a file that is known to the system.

A successful open operation adds a name to the list of open files.

Open0

FileAccess

n? 6∈ open
open′ = open ∪ {n?}

This operation is strictly partial. An open operation will fail if the name sup-
plied denotes a file that is already open. This possibility is excluded above.

A successful close operation removes a name from the list of open files:

Close0

FileAccess

n? ∈ open
open′ = open \ {n?}

Again, this operation is strictly partial. A close operation will fail if the name
supplied does not denote an open file. This possibility is excluded above.

The remaining operations, create and destroy, are file management oper-
ations. They may change the list of files known to the system, but they should
not affect the list of open files. As with FileAccess, we may use a single schema
to describe the information that is common to both operations:
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FileManage
∆System
n? : Name

open′ = open

This schema insists that the set of open files is preserved.
A successful create operation adds a new name to the list of files known

to the system:

Create0

FileManage

n? 6∈ dom file
∃ FileInit •

file′ = file ∪ {n? , θFile′}

Immediately after this operation, the state of the file associated with name n?
is described by the binding θFileInit . That is, n? is associated with a binding of
schema type File in which contents is bound to the empty set.

A successful destroy operation removes a name from the list of files, do-
main co-restricting the function file:

Destroy0

FileManage

n? ∈ dom file
file′ = {n?} � file

We require that the name n? already exists.
We might also wish to insist that n? is not an element of open, thus prevent-

ing the destruction of open files. However, this condition is already enforced
by the predicate part of FileManage—which insists that this operation should
not affect the list of open files—acting in combination with our state invariant
open ⊆ dom file. If we cannot remove n? from open, then we cannot remove n?
from the domain of file.

We will now extend our free type of report messages to take account of
the errors that may occur in file access and file management operations:

Report ::= key in use | key not in use | okay | file exists |
file does not exist | file is open | file is not open

This definition replaces the one given earlier.
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If an error occurs, then the system state will be left unchanged:

FileError
ΞSystem
n? : Name
r ! : Report

This information will be common to each of the error cases that we encounter
in specifying operations at the system level.

If we attempt to create a file using a name that is already in use, we will
receive a report complaining that a file with that name exists:

FileExists
FileError

n? ∈ dom file
r ! = file exists

Conversely, if we attempt to destroy a file using a name that is not in use, we
will receive a report complaining that the file does not exist:

FileDoesNotExist
FileError

n? 6∈ dom file
r ! = file does not exist

Sometimes a file will be open when it should be closed,

FileIsOpen
FileError

n? ∈ open
r ! = file is open

and sometimes a file will be closed when it should be open,

FileIsNotOpen
FileError

n? ∈ dom file
n? 6∈ open
r ! = file is not open
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We are now ready to describe the interface to the file system. There are
four operations involving the contents of files: KeyRead , KeyWrite, KeyAdd ,
and KeyDelete. In each case, if the file exists and is open, then the effect of the
operation is described by a promoted file operation:

KeyRead =̂ KeyRead0 ∨ FileIsNotOpen ∨ FileDoesNotExist

KeyWrite =̂ KeyWrite0 ∨ FileIsNotOpen ∨ FileDoesNotExist

KeyAdd =̂ KeyAdd0 ∨ FileIsNotOpen ∨ FileDoesNotExist

KeyDelete =̂ KeyDelete0 ∨ FileIsNotOpen ∨ FileDoesNotExist

We may complete the definitions of the access and management operations
using a similar combination of error cases:

Open =̂ (Open0 ∧ Success) ∨ FileIsOpen ∨ FileDoesNotExist

Close =̂ (Close0 ∧ Success) ∨ FileIsNotOpen ∨ FileDoesNotExist

Create =̂ (Create0 ∧ Success) ∨ FileExists

Destroy =̂ (Destroy0 ∧ Success) ∨ FileDoesNotExist ∨ FileIsOpen

This completes our formal description of the file system.

15.5 Formal analysis

A formal description of a programming interface is useful indeed: it provides a
clear, unambiguous account of the operations available, and explains their ef-
fects upon the state. It raises a number of important issues—can we destroy an
open file?—and acts as a source document to resolve the uncertainties inherent
in our natural language explanation of the file system’s behaviour.

However, there may be errors or contradictions within this formal descrip-
tion. There may be conflicting assumptions about system behaviour, in which
case our formal design may be impossible to implement. Alternatively, there
may be hidden assumptions within an operation schema, leading to circum-
stances in which the effect of the operation is not explained.

Accordingly, we should undertake some formal analysis. Without too
much effort, it is possible to conduct an investigation of our formal design.
We begin by checking that our state invariant contains no contradictions. We
may establish this by proving the initialisation theorem

∃ SystemInit • true

That is, that there exists a binding of file and open which satisfies the constraint
part of SystemInit .
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An outline proof of the theorem is easily constructed. Expanding the
schema definition of SystemInit and applying the one-point rule to file′, we
find ourselves with an existential statement concerning the empty set. This is
easily divided into two statements—labelled [2] and [3] below—about ‘P’ and
‘dom’, which we may take as valid or prove at our leisure:

∅ ∈ Name 7→ File
[1]

∅ ∈ P Name
[2] ∅ ⊆ dom ∅ [3]

∃ open′ : P Name |
open′ ⊆ dom ∅ • true

[∃−intro]

∃ file′ : Name 7→ File; open′ : P Name |
open′ ⊆ dom file′ ∧ file′ = ∅ • true

[one-point rule]

∃ SystemInit • true
[definition]

The result labelled [1] is also immediate, since we require only that file is a
partial function from Name to File. This is true of the empty function, even if
File is an empty set.

Since we are using File as a type, we should also prove that

∃ File′ • FileInit

This is not required for the initialisation of the system, but it will form part of
the precondition for any operation that requires at least one file to exist. The
proof is easy to construct:

∅ ∈ Key 7→ Data
[4]

∃ contents′ : Key 7→ Data | contents′ = ∅ • true
[one-point rule]

∃ FileInit • true
[definition]

As Key and Data are basic types, we know that they cannot be empty. Hence
the empty relation is an element of Key 7→ Data, and an initial state exists.

The second part of our investigation involves calculating the precondition
of each operation. As an example, consider the operation KeyRead , defined by

KeyRead =̂ KeyRead0 ∨ FileDoesNotExist ∨ FileIsNotOpen

Since the ‘pre’ operator distributes through disjunction, we know that

pre KeyRead a

pre KeyRead0 ∨ pre FileDoesNotExist ∨ pre FileIsNotOpen
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If we recall the definition of FileDoesNotExist , we may observe that its precon-
dition is equivalent to

System
n? : Name

∃ r ! : Report •
n? 6∈ dom file
r ! = file does not exist

Using the one-point rule, we may rewrite the predicate part of this schema
as n? 6∈ dom file. Similarly, we may establish that pre FileIsNotOpen has the
constraint n? ∈ dom file ∧ n? 6∈ open.

The first disjunct requires a little more work. The operation KeyRead0 was
defined by promoting the local operation Read :

KeyRead0 =̂ ∃ ∆File • Read ∧ Promote

The combination of System, File, and Promote makes for a free promotion. We
can prove this by starting with the schema

∃ File′ • ∃ System′ • Promote

and applying the definition of Promote to yield

[ n? : Name; File; System |
∃ File′ • ∃ System′ •

n? ∈ open ∧
file n? = θFile ∧
file′ n? = θFile′ ∧
{n?} � file = {n?} � file′ ∧
open′ = open ]

We can rewrite this expression to obtain equalities for both file′ and open′ are
both uniquely defined:

∃ File′ • ∃ System′ •
n? ∈ open ∧
file n? = θFile ∧
file′ = file ⊕ {n? , θFile′} ∧
open′ = open ]
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Applying the existential one-point rule to the components of System′, we obtain

∃ File′ •
open ⊆ dom file ⊕ {n? , θFile′} ∧
n? ∈ open ∧
file n? = θFile ∧
file ⊕ {n? , θFile′} ∈ Name 7→ File ∧
open ∈ P Name ]

Using the properties of 7→ and ⊕, we may rewrite the predicate within the quan-
tifier to obtain:

∃ File′ •
open ⊆ dom file ∧
n? ∈ open ∧
file n? = θFile ∧
file ∈ Name 7→ File ∧
θFile′ ∈ File ∧
open ∈ P Name ]

It is now clear that there is no constraint upon θFile′ except that it is an element
of File. Since this is the case, we can replace the existential quantification with
a universal quantification over the same schema name:

∀ File′ • ∃ System′ •
n? ∈ open
file n? = θFile
file′ n? = θFile′

{n?} � file = {n?} � file′

open′ = open

This establishes the truth of the schema implication

∃ File′ • ∃ System′ • Promote ⇒ ∀ File′ • ∃ System′ • Promote

and confirms that the promotion is free.
The precondition of KeyRead0 is given by

pre KeyRead0 = ∃ Local • pre Read ∧ pre Promote

Expanding the precondition schema ‘pre Read ’, we find that its predicate part
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is simply true. The remaining predicate information is contributed by the pro-
motion schema, which insists that the file in question is listed as open:

pre KeyRead0 a n? ∈ open

The precondition of KeyRead0 is then

System
n? : Name

n? ∈ open

and the precondition of KeyRead is

System
n? : Name

That is, KeyRead is a total operation.
We may document the results of our analysis in a table of preconditions:

see Table 15.1. For each operation, we list the partial operations used in its
definition, together with their preconditions. In every case, the disjunction of
these preconditions is true; our operations are total.
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Operation Precondition

KeyRead KeyRead0 n? ∈ open

FileIsNotOpen n? ∈ (dom file) \ open

FileDoesNotExist n? 6∈ dom file

KeyRead true

KeyWrite KeyWrite0 n? ∈ open

FileIsNotOpen n? ∈ (dom file) \ open

FileDoesNotExist n? 6∈ dom file

KeyWrite true

KeyAdd KeyAdd0 n? ∈ open

FileIsNotOpen n? ∈ (dom file) \ open

FileDoesNotExist n? 6∈ dom file

KeyAdd true

KeyDelete KeyDelete0 n? ∈ open

FileIsNotOpen n? ∈ (dom file) \ open

FileDoesNotExist n? 6∈ dom file

KeyDelete true

Open Open0 n? ∈ (dom file) \ open

FileIsOpen n? ∈ open

FileDoesNotExist n? 6∈ dom file

Open true

Close Close0 n? ∈ open

FileIsNotOpen n? ∈ (dom file) \ open

FileDoesNotExist n? 6∈ dom file

Close true

Create Create0 n? 6∈ dom file

FileExists n? ∈ dom file

Create true

Destroy Destroy0 n? ∈ (dom file) \ open

FileIsOpen n? ∈ open

FileDoesNotExist n? 6∈ dom file

Destroy true

Table 15.1 Summary of results



Chapter 16

Data Refinement

Writing a formal specification is a worthwhile activity in its own right: there
is much to be gained from a good understanding and a simple description.
However, we may also wish to develop a specification in such a way that it
leads us towards a suitable implementation. This process of development is
called refinement.

We may refine a formal specification by adding more information. For
example, we might be more precise about how data is to be stored, or about
how certain calculations are to be carried out. Clearly, it is important that our
new, more detailed description is consistent with our original specification: the
refinement must be correct.

In this chapter we explain what it means for one partial relation to refine
another. Then, using the concepts of forwards and backwards simulation, we
develop a theory of refinement for abstract data types, including a set of rules
for proving correctness.

16.1 Refinement

The Concise Oxford Dictionary (8th edition) contains the following definition:

refinement n. Refining or being refined; fineness of feeling or taste,
polished manners etc.; subtle or ingenious manifestation of,
piece of elaborate arrangement, (all the refinements of
reasoning, torture; a countermine was a refinement beyond
their skill); instance of improvement (up)on; piece of subtle
reasoning, fine distinction.
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Although the bit about subtle reasoning is amusing, the relevant words here
are ‘instance of improvement upon’. For us, refinement is all about improving
specifications.

The process of improvement involves the removal of nondeterminism, or
uncertainty. An abstract specification may leave design choices unresolved;
a refinement may resolve some of these choices, and eliminate some of the
nondeterminism. Several refinement steps may be performed, each removing
another degree of uncertainty, until the specification approaches executable
program code.

Example 16.1 A resource manager allocates identical but numbered resources
to client programs or users. Using a set of numbers to describe the free re-
sources, the state of the system is characterised by the following schema:

ResourceManager
free : F N

Any resource that is currently free may be allocated. The effect of an allocation
is described by the following operation schema:

Allocate
∆ResourceManager
r ! : N

r ! ∈ free ∧ free′ = free \ {r !}

If there is more than one resource free, then this specification is nondetermin-
istic. It is also partial: we have not explained what is to be done if there are no
resources left to be allocated.

This specification may be refined by another in which we decide that,
should there be more than one resource free, the resource with the lowest
number should be allocated first. In this new specification, the effect of an
allocation is described by

Allocate1

∆ResourceManager
r ! : N

r ! = min free ∧ free′ = free \ {r !}

This specification is deterministic, provided that there is at least one resource
to allocate. It is still partial.
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A further refinement might explain that the resources are modelled by an
array of bits, one bit per resource. A resource is free if the corresponding bit
is set to 0. Assuming a suitable definition for ‘array of’, we may define

ResourceManager2

free2 : array of Bit

where Bit is the set containing just 0 and 1.
The effect of an allocation is determined by searching for the first bit that

is set to 0, starting from the lowest position. When this bit is found, it is set to
1 and its index is returned. If there are no 0 bits, an error report is generated.
This specification respects the decision made in the previous refinement step:
that the lowest numbered resource should be allocated. It is also total: the
effect of an allocation is described in all circumstances.

Any client who is happy with the first specification will also be happy with
the third. Of course, this two-step development could have been performed in
a single, more complicated step in which the free set was implemented by the
array directly, an allocation used the lowest index with an unset bit, and the
specification was strengthened to add the error-handling. �

Example 16.2 When the Parliament of the European Union passes legislation,
it does so in the form of a European directive. Each of the member countries is
then required to enact the legislation, and in the United Kingdom this is done
by passing an Act of Parliament. Regulatory authorities, such as the Health and
Safety Executive, produce regulations, which they then seek to enforce. These
legal instruments are so arranged that compliance with the regulations implies
compliance with the Act, and compliance with the Act implies compliance with
the directive. It is usually the case that the regulations are rather more strict
than the original directive, because the legislation has been through two stages
of interpretation, each taking into account considerations peculiar to the United
Kingdom. We might say that the Act is a refinement of the directive, and that
the regulations are a refinement of the Act. �

Example 16.3 For reasons that we are unable to explain, we would like to raise
a million pounds sterling. One way to do this would be to raise the money in
the United States of America. However, there is a problem with exchange rate
fluctuations. At the time of writing, the exchange rate was £1.00 = $ 1.45, so
we would need to raise $1,450,000 in the United States. If the exchange rate
changes so that there is parity between the currencies, then we would have to
raise only $1,000,000; and if it changes so that there are two US dollars for each
pound sterling, then we would need to raise $2,000,000.
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To place a bound on the amount of US dollars we need to raise, we place
a bound on the exchange rate. In our lifetime, the pound has never exceeded
$2.40 in value. We can safely assume that, in the week in which we need to earn
the money, £1.00 ≤ $2.40. A suitable refinement of our plan, therefore, might
involve raising $2,400,000: we are then sure to achieve our target.

This particular form of refinement is called data refinement, in that we
are changing the representation of data (money) from pounds to dollars. In the
specification, any amount over £1,000,000 is acceptable; the implementation is
stronger in insisting on over $2,400,000. It may be that this implementation is
infeasible, in that it requires too much. �

16.2 Relations and nondeterminism

We obtain a simple definition of refinement if we restrict our attention to total
relations. If R and S are total relations, then R refines S exactly when R ⊆ S .
Wherever S relates the same element x to two distinct elements y1 and y2, R
may remove a degree of uncertainty by omitting either x , y1 or x , y2.

To decide if one partial relation refines another, we may consider their
totalised versions. To do this, we augment the source and target of each relation
with a distinguished element ⊥, denoting undefinedness. We may then add a set
of pairs to any partial relation ρ, associating any element outside the domain
of ρ with every element of the augmented target.

If ρ is a partial relation between types X and Y , then we may totalise ρ by
adding the following set of pairs:

{x : X ⊥; y : Y ⊥ | x 6∈ dom ρ • x , y}

where X ⊥ and Y ⊥ denote the augmented versions of the source and target.
For convenience, we will use the expression s to denote the complement

of a set s in its type. For example, if s is a set of type P X , then

s = { x : X | x ∉ s }

We will write
•
ρ to denote the totalised form of ρ, where

•
ρ ∈ X ⊥ ↔ Y ⊥

and

•
ρ = ρ ∪ (dom ρ

⊥ × Y ⊥)

The expression
•
ρ can be pronounced ‘ρ-dot’.
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Figure 16.1 Totalisation

Example 16.4 If we define a free type L by

L ::= a | b | c | d

and a relation ρ by

ρ == {a , a, a , b, b , b, b , c}

then the totalised version of ρ is given by

•
ρ == {a , a, a , b, b , b, b , c,

c , ⊥, c , a, c , b, c , c, c , d,
d , ⊥, d , a, d , b, d , c, d , d,
⊥ , ⊥, ⊥ , a, ⊥ , b, ⊥ , c, ⊥ , d}

This extension is shown in Figure 16.1. �

Totalising relations in this way captures the view of operations that we
have described in this book: an operation ρ behaves as specified when used
within its precondition—its domain; outside its precondition, anything may
happen. The role of ⊥ is to ensure that undefinedness is propagated through
relational composition. To see this, suppose that κ0 denotes the constant func-
tion that maps every number to 0:

κ0 == { z : Z • z , 0 }
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and consider the relational composition

•
∅ o

9

•
κ0

The first component—a lifted version of the empty relation—represents un-
definedness by associating every number with every other number: in com-
puting terms, this might correspond to a run-time error being encountered
whatever the initial value. If this is our intention, then the composition should
have the same effect.

With the augmented types, the relational composition has precisely this
interpretation:

•
∅ o

9

•
κ0

= (∅ ∪ (dom ∅⊥ × Z⊥)) o
9 (κ0 ∪ (dom κ0

⊥ × Z⊥)) [dot]

= (∅⊥ × Z⊥) o
9 (κ0 ∪ (Z

⊥ × Z⊥)) [properties of ∪ and dom]

= (Z⊥ × Z⊥) o
9 (κ0 ∪ (∅⊥ × Z⊥)) [properties of ]

= ((Z⊥ × Z⊥) o
9 κ0) ∪ ((Z⊥ × Z⊥) o

9 ({⊥} × Z⊥)) [property of ×]

= κ0 ∪ (Z⊥ × Z⊥) [properties of ×]

= Z⊥ × Z⊥ [property of ∪]

Without the addition of an undefined element, we find that the composition
recovers from the original undefinedness and behaves exactly as κ0:

•
∅ o

9

•
κ0

= (∅ ∪ (dom ∅ × Z)) o
9 (κ0 ∪ (dom κ0 × Z)) [dot without ⊥]

= (∅ × Z) o
9 (κ0 ∪ (Z × Z)) [properties of ∪ and dom]

= (Z × Z) o
9 (κ0 ∪ (∅ × Z)) [properties of ]

= (Z × Z) o
9 (κ0 ∪ ∅) [property of ×]

= (Z × Z) o
9 κ0 [property of ∪]

= κ0 [property of o
9]

With our interpretation of operations, this is overly generous; it suggests that
a run-time error can be avoided by adding a subsequent operation.

Having decided upon totalisation using ⊥, we may derive the conditions
for one partial relation to be a correct refinement of another. If σ and ρ are

two partial relations of the same type, then σ refines ρ precisely when
•
σ is a

subset of
•
ρ. This is true if and only if the domain of σ is at least as big as that

of ρ and σ agrees with ρ on dom ρ.
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The first of these conditions insists that σ is at least as defined as ρ, while
the second insists that σ respects the information contained in ρ. Thus we may
refine a relation by enlarging the domain, or by removing alternatives.

Example 16.5 If ρ is as defined in Example 16.4, and σ is defined by

σ == {a , a, b , b, b , c, c , c}

then σ is a refinement of ρ. It has both extended the domain and resolved
some of the nondeterminism. That is,

dom σ = {a, b, c}
⊇ {a, b}
= dom ρ

and

dom ρ / σ = {a , a, b , b, b , c, }
⊆ ρ

Equivalently, we might observe that
•
σ ⊆ •

ρ, since

•
σ = {a , a, b , b, b , c, c , c, d , ⊥, d , a, d , b, d , c, d , d,

⊥ , ⊥, ⊥ , a, ⊥ , b, ⊥ , c, ⊥ , d}

and each of these pairs is present in
•
ρ. �

Example 16.6 If the relation τ is defined by

τ == {a , a, c , c}

then τ is not a refinement of ρ, as

dom ρ = {a, b} 6⊆ {a, c} = dom τ

We can remove pairs to reduce nondeterminism, but not at the expense of
restricting the domain. �

Example 16.7 We may corrupt a bit—an element of the set {0, 1}—by changing
its value:

∼ : Bit → Bit

∼ 0 = 1
∼ 1 = 0
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The relation corruptsto associates two sequences of bits if the second is no
longer than the first, and no two adjacent bits have been corrupted:

corruptsto : seq Bit ↔ seq Bit

∀ bs, bs′ : seq Bit •
bs corruptsto bs′ a

#bs′ ≤ #bs ∧ ∀ i : 1 . . #bs′ − 1 •
bs i ≠ bs′ i ⇒ bs(i + 1) = bs′(i + 1)

For example,

〈1, 1, 0, 1, 1, 1, 0, 0〉 corruptsto 〈0, 1, 0, 0, 1〉

〈1, 0, 0, 0, 1, 1〉 corruptsto 〈1, 0, 1, 0, 0, 1〉

The relation changesto associates two sequences of bits if the second is no
longer than the first and every bit with an odd index has been corrupted:

changesto : seq Bit ↔ seq Bit

∀ bs, bs′ : seq Bit •
bs changesto bs′ a

#bs′ ≤ #bs ∧ ∀ i : 1 . . (#bs′ − 1) •
i ∈ { n : N1 • 2 ∗ n } ⇒ bs i = bs′ i ∧
i ∈ { n : N • 2 ∗ n + 1 } ⇒ bs i ≠ bs′ i

For example,

〈1, 1, 0, 1, 1, 1, 0, 0〉 changesto 〈0, 1, 1, 1, 0〉

〈1, 0, 0, 0, 1, 1〉 changesto 〈0, 0, 1, 0, 0, 1〉

In moving from corruptsto to changesto, we have traded the fact that in every
output pair of bits, at least one is correct, for the fact that in every output pair
of bits exactly one is correct.

The second relation is a refinement of the first: both are total relations
on seq Bit , and changesto resolves all of the nondeterminism present in the
definition of corruptsto. If we are content with the behaviour of corruptsto,
then we will be content with that of changesto. Indeed, we may be more so, as
every bit with an even index is guaranteed to be correct. �
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16.3 Data types and data refinement

For our purposes, a data type comprises a space of values—or states—and an
indexed collection of operations. Any use of the data type in a global state G
must start with an initialisation and end with a matching finalisation. A data
type X is thus a tuple (X , xi, xf , { i : I • xoi }), where

• X is the space of values;

• xi ∈ G ↔ X is an initialisation;

• xf ∈ X ↔ G is a finalisation;

• { i : I • xoi } is an indexed collection of operations, such that xoi ∈ X ↔ X

Both xi and xf are total, but each xoi may be partial.
For our purposes, a program is a sequence of operations upon a data

type. It may be seen as a relation between input and output, recorded by the
initialisation and finalisation steps at the beginning and end of this sequence.
For example, the sequence di o

9 do1
o
9 do2

o
9 df is a program that uses the data

type D = (D, di, df , {do1, do2}).
The choice of data representation within the data type is not relevant to

the overall behaviour of the program; it is encapsulated by initialisation and
finalisation. Thus programs may be parameterised by data types: the above
example could be written as P(D), where

P(X) = xi o
9 xo1

o
9 xo2

o
9 xf

and X is a variable data type with a suitable index set.
If two abstract data types A and C use the same index set for their opera-

tions, then they will support the same selection of programs: for every program
P(A), there must be a corresponding program P(C). What is more, any two pro-
grams P(A) and P(C) will be comparable, since they have the same source and
target sets.

We may find that the effect of P(C) is defined whenever the effect of P(A)
is defined. We may find also that P(C) resolves some of the nondeterminism
present in P(A). If this is the case for every choice of P , then it is reasonable
to say that C is a refinement of A.

As in our theory of refinement for relations, we will find it convenient to
consider totalisations. An abstract data type X may be totalised by augmenting
each component:

•
X = (X ⊥,

•
xi,

•
xf , { i : I •

•
xoi })
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Since xi and xf are total, the process of totalisation does nothing but augment
each of them with the set of pairs {⊥} × X ⊥.

We are now able to present a suitable definition of refinement for abstract
data types. If data types A and C share the same indexing set, then A is refined
by C if and only if for each program P(A)

P(
•
C) ⊆ P(

•
A)

If A and C are both indexed by the set I , then this definition requires us to
prove that, for sequences 〈s1, s2, . . . sn〉 in seq I ,

•
ci o

9

•
cos1

o
9

•
cos2

o
9 · · · o

9

•
cosn

o
9

•
cf ⊆

•
ai o

9

•
aos1

o
9

•
aos2

o
9 · · · o

9

•
aosn

o
9

•
af

In practice, this may be a difficult result to establish. In the next section, we
will see how this requirement may be simplified by considering the relationship
between abstract and concrete values.

Example 16.8 We may define two data types for handling sequences of bits, A
and C. Each will accept a sequence of bits at initialisation, and deliver another
sequence at finalisation. In each case, the state space is defined as a collection
of tuples:

A == seq Bit × Action × seq Bit

C == seq Bit × Action × seq Bit

where Bit is the set containing just 0 and 1, and Action is defined by

Action ::= yes | no

The first component of the state tuple represents the unconsumed part of the
input sequence, the second indicates whether or not the next bit must be faith-
fully reproduced, and the third represents the accumulated output.

The initialisation and finalisation operations are the same for both data
types. Initially, the whole of the input sequence waits to be consumed, the
output sequence is empty, and the next bit may be corrupted.

ai : seq Bit ↔ A
ci : seq Bit ↔ C

∀ bs : seq Bit ; a : A; c : C •
bs ai a a a = (bs, no, 〈〉)
bs ci c a c = (bs, no, 〈〉)
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Finally, any remaining input is discarded, as is the action component. The
accumulated output sequence is all that remains:

af : A ↔ seq Bit
cf : C ↔ seq Bit

∀ bs : seq Bit ; a : A; c : C •
a af bs a bs = a.3
c cf bs a bs = c.3

The effect of this operation is simply to project out the third component of the
current state tuple.

Each data type has a single operation. That of A is nondeterministic:
it may choose to act faithfully, appending the next input bit b to the output
sequence. However, if the last bit was faithfully reproduced, it may choose to
append the corrupted bit ∼b instead.

ao : A ↔ A

∀ a, a′ : A •
a ao a′ a a′.1 = tail a.1

a.2 = yes ⇒
a′.3 = a.3_〈head a.1〉 ∧ a′.2 = no

a.2 = no ⇒
a′.3 = a.3_〈∼head a.1〉 ∧ a′.2 = yes

∨
a′.3 = a.3_〈head a.1〉 ∧ a′.2 = no

Whenever a bit is corrupted, the action component of the next state is set to
yes, indicating that the next bit must be appended faithfully.

In contrast, the operation of C is completely deterministic. It alternates
between corruption and fidelity, changing the value of the action component
each time it is applied. This has the effect of removing the disjunction from the
above definition, leaving the state after fully determined by the state before.

co : C ↔ C

∀ c, c′ : C •
c co c′ a c′.1 = tail c.1

c.2 = yes ⇒
c′.3 = c.3_〈head c.1〉 ∧ c′.2 = no

c.2 = no ⇒
c′.3 = c.3_〈∼head c.1〉 ∧ c′.2 = yes
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The relationship between A and C is the same as that between corruptsto and
changesto in Example 16.7. That is, C is a refinement of A. To prove this, we
must show that

ci o
9 cf ⊆ ai o

9 af

ci o
9 co o

9 cf ⊆ ai o
9 ao o

9 af

ci o
9 co o

9 co o
9 cf ⊆ ai o

9 ao o
9 ao o

9 af

...

It is easy to show that this reduces to the requirement that co ⊆ ao. The result
then follows from the definitions of the two operations. �

16.4 Simulations

We obtain a simpler characterisation of refinement if we consider the values
produced at each step of a program’s execution. If data types A and C share
the same indexing set, then the programs P(A) and P(C) will have the same
number of steps: one for each operation involved. We may therefore compare
the two programs on a step-by-step basis.

To do this, we must describe the relationship between the representation
of data in A and that in C. We define a relation between the two sets of states:
an element of either A ↔ C or C ↔ A. If ρ is a relation of type A ↔ C , then we
may ask the following questions:

• Is ci a subset of ai o
9 ρ? That is, can any initialisation of C be matched by

taking an initialisation of A and following it with ρ?

• Is ρ o
9 cf a subset of af ? That is, can any finalisation of C be matched by

preceding it with ρ and comparing it with a finalisation of A?

• Is ρ o
9 coi a subset of aoi

o
9 ρ, for each index i? That is, can any operation

in C be matched by the corresponding operation in A?

If the answer to each question is yes, then we say that ρ is a simulation for the
two data types. The effect of any program step in C can be simulated by a step
in A. Therefore, for any program P ,

P(C) ⊆ P(A)

and we are safe to conclude that C is a refinement of A.
To ensure that this definition is applicable to data types with partial op-

erations, we require that the relations and state spaces are augmented to allow
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Figure 16.2 Lifting

for undefinedness. It is not necessary to totalise the relation ρ, but it is neces-
sary to propagate undefinedness. We add ⊥ to its domain and associate it with
every element of the target type. If ρ is a relation of type X ↔ Y , then

◦
ρ ∈ X ⊥ ↔ Y ⊥

◦
ρ = ρ ∪ ({⊥} × Y ⊥)

We say that
◦
ρ is the lifted form of ρ.

Example 16.9 If we define a free type L by

L ::= a | b | c | d

and a relation ρ by

ρ == {a , a, a , b, b , b, b , c}

then the lifted version of ρ is given by

◦
ρ == {a , a, a , b,

b , b, b , c,
⊥ , ⊥, ⊥ , a, ⊥ , b,
⊥ , c, ⊥ , d}

This extension is shown in Figure 16.2. �
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Figure 16.3 Forwards simulation

If data types A and C share the same indexing set, and r is a relation of
type A ↔ C , then r is a forwards simulation if

•
•
ci ⊆

•
ai o

9

◦
r

• ◦
r o

9

•
cf ⊆

•
af

• ◦
r o

9

•
coi ⊆ •

aoi
o
9

◦
r for each index i

These requirements are illustrated in Figure 16.3. The first insists that the effect
of ci can be matched by ai followed by r , a two-step path around the diagram;
the second that the effect of r followed by cf , another two-step path, can be
matched by af ; the third that the effect of moving downwards and then across
can be matched by moving across and then downwards.

The lower path in the diagram corresponds to a program using data type
C. The upper path corresponds to the same program using data type A. Since
the effect of each program step can be simulated, it is easy to see that C is a
refinement of A.

Valid moves in the concrete data type may be simulated by moves in the
abstract data type. The relation r is said to be a forwards simulation because, if
we consider similar concrete and abstract states, then any valid move forwards
to a new concrete state can be matched by a move to a similar abstract state.
Since r relates abstract values down to concrete ones—see Figure 16.3—such a
relation is sometimes called a downwards simulation.
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Figure 16.4 Backwards simulation

If data types A and C share the same indexing set, and s is a relation
of type C ↔ A between concrete and abstract states, then s is a backwards
simulation if

•
•
ci o

9

◦
s ⊆

•
ai

•
•

cf ⊆ ◦
s o

9

•
af

• •
coi

o
9

◦
s ⊆ ◦

s o
9

•
aoi for each index i

The requirements are similar to those for a forwards simulation, except that
the position of the simulation is reversed. The first insists that the effect of
ci followed by s can be matched by ai ; the second that the effect of cf can be
matched by s followed by af ; the third that the effect of moving across and
then upwards can be matched by moving upwards and then across.

As before, the lower path in the diagram—Figure 16.4—corresponds to
a program using data type C, and the upper path corresponds to the same
program using data type A. We have that C is a refinement of A.

Again, valid moves in the concrete data type may be simulated by moves
in the abstract data type. The relation s is said to be a backwards simulation
because, if we consider similar concrete and abstract states, then any valid move
to this concrete state from an old concrete state can be matched by a move from
a similar abstract state. Since s relates concrete values up to abstract ones—see
Figure 16.4—such a relation is sometimes called an upwards simulation.
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16.5 Relaxing and unwinding

The definitions of forwards and backwards simulation presented above are
given in terms of totalised operations and lifted relations. By considering do-
main and range restrictions, we can obtain an equivalent set of requirements
that mention neither totalisation nor lifting. These requirements constitute a
more relaxed set of rules for data refinement.

We begin with the requirements for forward simulation. Our first relaxa-
tion uses the fact that, for a total relation ρ, the totalised and lifted forms are
identical; there is nothing outside the domain of ρ, so each extension adds the
product of {⊥} with the target type. Because initialisation is always total, we
can argue as follows:

•
ci ⊆

•
ai o

9

◦
r

a
◦
ci ⊆

◦
ai o

9

◦
r [ai and ci are both total]

a ci ⊆
◦

ai o
9

◦
r ∧ {⊥} × C⊥ ⊆

◦
ai o

9

◦
r [property of subset]

a ci ⊆ ai o
9 r ∧ {⊥} × C⊥ ⊆

◦
ai o

9

◦
r [⊥ 6∈ dom ci]

a ci ⊆ ai o
9 r ∧ {⊥} × C⊥ ⊆

◦
ai o

9 (r ∪ {⊥} × C⊥) [lifting]

a ci ⊆ ai o
9 r [⊥ ∈ ran

◦
ai]

A similar argument shows that the requirement upon the two finalisation op-
erations can be relaxed to

r o
9 cf ⊆ af

In each case, the ‘dot’ of totalisation and the ‘spot’ of lifting can be safely re-
moved from the defining condition.

To obtain a suitable relaxation of the third requirement, we consider the
following result: if ρ, σ , and τ are relations of type X ↔ Z , X ↔ Y , and Y ↔ Z ,
respectively, then

ρ ⊆ •
σ o

9

◦
τ a (dom σ) / ρ ⊆ σ o

9 τ

This may be proved as follows:

ρ ⊆ •
σ o

9

◦
τ

a ρ ⊆ (σ ∪ (dom σ
⊥ × Y ⊥)) o

9

◦
τ [totalisation]

a ρ ⊆ (σ o
9

◦
τ) ∪ ((dom σ

⊥ × Y ⊥) o
9

◦
τ) [distribution]
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a ρ ⊆ (σ o
9 τ) ∪ ((dom σ

⊥ × Y ⊥) o
9

◦
τ) [⊥ 6∈ ran σ ]

a ρ ⊆ (σ o
9 τ) ∪ (dom σ

⊥ × Y ⊥) o
9 (τ ∪ {⊥} × Z⊥) [lifting]

a ρ ⊆ (σ o
9 τ) ∪ (dom σ

⊥ × Z⊥) [property of o
9]

a (dom σ) / ρ ⊆ σ o
9 τ [property of relations]

We will call this result ‘spot-dot elimination’. Returning to the third requirement
for simulation, we proceed as follows:

◦
r o

9

•
co ⊆ •

ao o
9

◦
r

a dom ao / (
◦
r o

9

•
co) ⊆ ao o

9 r [spot-dot elimination]

a (dom ao /
◦
r) o

9

•
co ⊆ ao o

9 r [property of / and o
9]

a (dom ao / r) o
9

•
co ⊆ ao o

9 r [⊥ 6∈ dom ao]

a (dom ao / r) o
9 (co ∪ dom co

⊥ × C⊥) ⊆ ao o
9 r [totalisation]

a (dom ao / r) o
9 co ⊆ ao o

9 r

∧
(dom ao / r) o

9 (dom co
⊥ × C⊥) ⊆ ao o

9 r

[property of ⊆]

The first conjunct insists that the effect of co is consistent with that of ao,
wherever ao is defined. The second conjunct requires further investigation:
since ⊥ is outside the range of ao o

9 r , it is equivalent to the condition that

ran(dom ao / r) ⊆ dom co

Informally, this requires that the operation co is defined for every value that
can be reached from the domain of ao using relation r .

We may also derive a set of relaxed requirements for proving backwards
simulation. The requirements upon initialisation and finalisation lose their
spots and dots,

ci o
9 s ⊆ ai

cf ⊆ s o
9 af

and the third requirement becomes

dom(s � (dom ao)) � co o
9 s ⊆ s o

9 ao ∧ dom co ⊆ dom(s � (dom ao))

The first conjunct insists that the effect of co must be consistent with that of
ao. The second insists—somewhat awkwardly—that the set of values for which
co is not defined must be a subset of those for which ao is not defined.
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F-init-rel-seq ci ⊆ ai o
9 r

F-fin-rel-seq r o
9 cf ⊆ af

F-corr-rel-seq (dom ao) / r o
9 co ⊆ ao o

9 r

ran((dom ao) / r) ⊆ dom co

B-init-rel-seq ci o
9 s ⊆ ai

B-fin-rel-seq cf ⊆ s o
9 af

B-corr-rel-seq dom(s � (dom ao)) � co o
9 s ⊆ s o

9 ao

dom co ⊆ dom(s � (dom ao))

Table 16.1 Relaxed rules for simulations

These results yield a collection of relaxed proof rules for simulations, col-
lected in Table 16.1. The rules are named according to the type of simulation—F
for forwards, B for backwards—and the type of rule: init for initialisation; fin for
finalisation; corr for correctness of operations. We add an additional qualifier
rel to indicate that we are working within a theory of relations.

These rules may be applied to operations involving input and output only
by providing all inputs at initialisation, and delaying all outputs until finalisa-
tion. The initial state of a program would include a sequence of inputs—the
input values required during execution—and the final state a sequence of out-
puts. Each rule in Table 16.1 is labelled with the suffix seq to indicate that input
and output must be represented in this way.

It is possible to derive an equivalent set of rules in which inputs and out-
puts may occur at each program step. Suppose that op is an operation that
involves input and output: a relation of type

(State × Input) ↔ (State × Output)

In this case, there exists a corresponding operation ops of type

State × (seq Input × seq Output) ↔ State × (seq Input × seq Output)
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that behaves as follows: the effect of ops upon the state is that of op, given the
head of the first sequence as input. Any output from op is added to the end of
the second sequence. That is,

∀ s, s′ : State; is : seq Input ; os : seq Output •
∀ i : Input ; o : Output | (s, i) op (s′, o) •

(s, (〈i〉_is, os) ) ops (s′, (is, os_〈o〉) )

In our use of ops , we may regard the input and output sequences as part of the
state information.

To obtain ops from op, we must extract the next value from the input
sequence. We define a function that takes a state and a pair of sequences and
returns a state, an input, and a new pair of sequences:

[State, Input , Output]
split : State × (seq Input × seq Output) 7→

(State × Input) × (seq Input × seq Output)

∀ s : State; is : seq Input ; os : seq Output •
split(s, (is, os)) = ((s, head is), (tail is, os))

When we apply split , the first input is selected, and the results are assembled in
a useful combination. The state and next input are presented as a pair, ready
for consumption by an operation.

To simplify the process of reasoning about split , we derive an equivalent
definition that avoids mentioning the arguments of the function. This will re-
quire three new operators for manipulating pairs and sequences. The first is a
form of parallel composition:

[W , X , Y , Z]
‖ : (W ↔ Y ) × (X ↔ Z) → W × X ↔ Y × Z

∀ ρ : W ↔ Y ; σ : X ↔ Z ; w : W ; x : X ; y : Y ; z : Z •
(w, x) , (y , z) ∈ ρ ‖ σ a w , y ∈ ρ ∧ x , z ∈ σ

This allows us to relate a pair of arguments to a pair of results, applying two
operations separately and simultaneously.

The second is an operator which duplicates its input:

[X ]
cp : X ) X × X

∀ x : X • cp x = (x, x)
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cp

second

id

tail

id

s s

(is, os) head is

(s, head is)

((s,head is), (tail is, os))

(tail is, os )

tail is

os os

is

(is, os)

(s, (is, os) )

(s, (is, os) )

(s, (is, os) )

first head9
o

Figure 16.5 split data flow

The third operator takes a value–sequence pair and appends the value to the
end of the sequence:

[X ]
ap : X × seq X ) seq X

∀ x : X ; xs : seq X • ap(x, xs) = xs_〈x〉

Using these combinators, we can define split as:

split = cp o
9

id ‖ (first o
9 head)

‖
second o

9 (tail ‖ id)

This definition may be explained in terms of data flow, as in the diagram of
Figure 16.5. The first operator, cp, makes two copies of the input pair. One
copy is fed into the parallel combination of ‘id’ and first o

9 head , yielding the first
component of the output. The other copy is fed through second into the parallel
combination of tail and ‘id’, yielding the second component of the output.
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cp

cp

second

second

second

first first

ap

first

o

r

os

(r, o)

(is, os)

(is, os) is

os <o>

(is, os <o>)

(r, o)

(r, (is,os <o>) )�

�

�

((r, o),(is, os))

((r, o), (is, os))

((r, o), (is, os))

((r, o), (is, os))

((r, o), (is, os))

Figure 16.6 merge data flow

We will also need a function that adds to the sequence of outputs:

[State, Input , Output]
merge : (State × Output) × (seq Input × seq Output) 7→

State × (seq Input × seq Output)

∀ s : State; o : Output ; is : seq Input ; os : seq Output •
merge((s, o), (is, os)) = (s, (is, os_〈o〉))

To simplify the process of reasoning, we observe that

merge = cp o
9 first o

9 first

‖
cp o

9 second o
9 first

‖
(second ‖ second) o

9 ap

A data flow diagram for this construction is given in Figure 16.6.
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We may use split and merge to translate an operation that involves input
and output to one that expects these values to be present as sequences. If ρ is
such an operation, then we may define

ρs = split o
9 (ρ ‖ id) o

9 merge

The operation ρ acts on a pair—a before-state, and an input—to produce an-
other pair—an after-state, and an output. The split and merge operators act as
translators between the two representations of input and output.

If we wish to compare ρ with another operation σ , in order to verify a
proposed refinement, then we might decide to translate σ to a ‘sequenced’
operation σs and compare σs with ρs . However, the definitions of split and
merge support a direct comparison between ρ and σ : we may unwind the
rules for simulation so that input and output occur at each step.

Suppose that ao and co are operations that consume input and produce
output. To compare these operations using the existing rules, we must define
equivalent operations aos and cos that expect input and output in the form of
sequences. We may define these operations using split and merge:

aos = split o
9 (ao ‖ id) o

9 merge

cos = split o
9 (co ‖ id) o

9 merge

where ‘id’ is the identity relation on pairs of input and output sequences.
Furthermore, since r is a relation between states without input and output

sequences, we must construct an equivalent relation that acts on the enhanced
form of the state. If r is a relation of type

AState ↔ CState

then we require a relation rs of type

AState × (seq Input × seq Output) ↔ CState × (seq Input × seq Output)

in order to compare aos and cos .
For our comparison to make sense, the two operations must have the same

type of input and output values. The relation rs between enhanced states is then
defined by

rs = r ‖ id

The rules for the correctness of a forwards simulation—given in Table 16.1—
require that

(dom aos) / rs
o
9 cos ⊆ aos

o
9 rs
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F-init-rel ci ⊆ ai o
9 r

F-corr-rel (dom ao) / (r ‖ id) o
9 co ⊆ ao o

9 (r ‖ id)

ran((dom ao) / (r ‖ id)) ⊆ dom co

B-init-rel ci o
9 s ⊆ ai

B-corr-rel dom((s ‖ id) � (dom ao)) � co o
9 (s ‖ id) ⊆ (s ‖ id) o

9 ao

dom co ⊆ dom(s � (dom ao))

Table 16.2 Unwound rules for simulations

The operations cos and aos have the same effect upon the two sequences: they
remove a value from one and append a value to the other. The relation rs has
no effect upon the sequences, so this requirement is equivalent to

(dom ao) / (r ‖ id[Input]) o
9 co ⊆ ao o

9 (r ‖ id[Output])

Where ao is defined, the effect of applying co can be matched by applying ao
and then moving from one state space to the other.

The other condition—that cos is defined everywhere that aos is defined—
leads to a second constraint:

ran((dom ao) / (r ‖ id[Output])) ⊆ dom co

The presence of the identity relation reflects the fact that output is no longer
treated as part of the state.

A set of unwound rules for forwards and backwards simulation is presen-
ted in Table 16.2. Finalisation is no longer a special case—any program step
may produce output—so there are only two rules for each form of simulation.
Because these rules may be applied directly, without regarding input and out-
put as special components of the state, we drop the suffix seq from the name
of each rule.





Chapter 17

Data Refinement and Schemas

In the previous chapter we presented a theory of data refinement for partial
and total relations. In this chapter we see how this theory may be extended
to cover specifications written in the schema notation. Each operation schema
corresponds to a relation on states, and an operation is correctly refined exactly
when that relation is correctly refined. In this way, our existing refinement rules
can be restated in terms of schemas.

17.1 Relations and schema operations

An operation schema defines an operation upon the state of a system. It does
this by describing how the state after the operation is related to the state before.
The meaning of an operation schema, for our purposes, is thus a relation upon
states. This relation need not be total: if the precondition of the schema is not
true, then there will be states outside the domain.

Where the precondition is not satisfied, the result of the operation is left
undefined: anything may happen. For example, an operation that takes the
reciprocal of a real number r is specified by the following operation schema:

Recip =̂ [ ∆S | r ≠ 0 ∧ r ′ = 1/r ]

where S =̂ [ r : R ]. This is a partial operation: when r is zero, it may fail to
terminate, and if it does, then the value of r ′ may be any real number. Ignoring
the question of input and output for the moment, the relation corresponding to
Recip is the totalisation—in the sense of the previous chapter—of the relation:

{ Recip • θS , θS ′ }
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If we totalise this, and then simplify the resulting expression, then we get to the
true specification of Recip (‘true’ in the sense that it describes all the behaviour
of Recip, including what happens outside the precondition):

•︷ ︸︸ ︷
{ r , r ′ : R | r ≠ 0 ∧ r ′ = 1/r • θS , θS ′ }

which is the relation:

{ r , r ′ : R⊥ | r ≠ 0 ∧ r ≠ ⊥ ∧ r ′ = 1/r ∨ r = 0 ∨ r = ⊥ • θS , θS ′ }

This relates any state in which r is non-zero to one in which it has the reciprocal
value. A state in which r is zero, or is undefined, is related to all possible states.

The reader may be forgiven for asking: if this relation is the true specific-
ation of the operation, then why didn’t we write it like this in the first place?
The answer is that totalised relations are more complicated to write, and more
difficult to compose. For example, we can add error handling to Recip by using
schema disjunction (as in Recip ∨ Error ); this would be harder to do with a
totalised version.

An operation schema may also include input and output components. To
represent these, the domain of the corresponding relation will be a Cartesian
product of states and inputs, and the range will be a product of states and
outputs. If Op describes an operation on a state S , then the corresponding
relation will be a lifted, totalised version of

{ Op • (θS , i?) , (θS ′, o!) }

That is,

•︷ ︸︸ ︷
split o

9 ({ Op • (θS , i?) , (θS ′, o!) } ‖ id) o
9 merge

Using this correspondence, we may translate between the language of schemas
and the language of relations. A schema specification S is really a relaxed and
unwound relational specification on a data type D.

Suppose now that data types A and C are described using schemas, the
two state schemas being A and C respectively. A proposed simulation between
the two data types can itself be expressed as a schema:

R
A
C

...
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The relationship that this schema records is called a retrieve relation: it shows
how the representation of data in A—which may be more abstract—can be
retrieved from the representation of data in C.

To decide whether or not R is a simulation, we will need to compare op-
erations with the same index; let us consider two such operations, AO and CO,
each with a single input i? and a single output o!. We will also need to exam-
ine the initialisations of A and C; let us suppose that these are described by
schemas AI and CI , respectively.

17.2 Forwards simulation

To apply the existing rules for forwards simulation, we consider the relations
that correspond to the retrieve and operation schemas:

r = { R • θA , θC }
ao = { AO • (θA, i?) , (θA′, o!) }
co = { CO • (θC , i?) , (θC ′, o!) }

We consider also the sets of states produced at initialisation:

ai = { AI • θA′ }
ci = { CI • θC ′ }

To simplify the process of reasoning about ai and ci , we will regard each as a
trivial form of relation, in which the first component of each pair is ignored.

The unwound rules for forwards simulation, presented towards the end
of the last chapter, insist that the following condition must hold for the two
initialisations:

ci ⊆ ai o
9 r

We may express this condition in terms of schemas:

ci ⊆ ai o
9 r

a ∀ c : C • c ∈ ci ⇒ c ∈ ai o
9 r [by property of ⊆]

a ∀ C • θC ∈ ci ⇒ θC ∈ ai o
9 r [by schema calculus]

a ∀ C • θC ∈ ci ⇒
∃ A • θA ∈ ai ∧ θA , θC ∈ r

[by property of o
9]

a ∀ C • θC ∈ { CI • θC ′ } ⇒
∃ A • θA ∈ { AI • θA′ } ∧

θA , θC ∈ { R • θA , θC }

[by definition]
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F-init ∀ C ′ • CI ⇒ ∃ A′ • AI ∧ R′

F-corr ∀ A; C • pre AO ∧ R ⇒ pre CO

∀ A; C ; C ′ • pre AO ∧ R ∧ CO ⇒ ∃ A′ • AO ∧ R′

Table 17.1 Rules for forwards simulation

a ∀ C ′ • CI ⇒ ∃ A′ • AI ∧ R′ [by comprehension]

The unwound rules insist also that

(dom ao) / (r ‖ id) o
9 co ⊆ ao o

9 (r ‖ id)

and that

ran((dom ao) / (r ‖ id)) ⊆ dom co

for every pair of operations ao and co. These requirements lead to a pair of
conditions upon the corresponding operation schemas.

The first condition is that the concrete operation CO must be defined in
any state whose abstract equivalent satisfies the precondition of AO.

∀ A; C • pre AO ∧ R ⇒ pre CO

This tells us that the development step has—if anything—weakened the pre-
condition of the operation.

The second condition tells us that the concrete operation produces results
that are consistent with those of the abstract:

∀ A; C ; C ′ •
pre AO ∧ R ∧ CO ⇒ ∃ A′ • AO ∧ R′

Suppose that two concrete states C and C ′ are related by the concrete operation
CO. Suppose also that A, the abstract equivalent of C , lies within the precon-
dition of AO. Then for CO to be a correct refinement of AO, there must be an
abstract state A′, corresponding to C ′, that can be reached from A by applying
AO. The three conditions are presented together in Table 17.1.
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Example 17.1 We require a system that will monitor the access to a building.
The system should keep track of the people who are inside the building, and
should forbid entry by more than a specified number of people at any time. Let
Staff be the set of all members of staff:

[Staff ]

and let maxentry be the maximum number of people that may enter the building
at any time:

maxentry : N

We can model the state of our system by recording the names of those cur-
rently inside the building; the state invariant restricts the number of people
accordingly:

ASystem =̂ [ s : P Staff | #s ≤ maxentry ]

Initially, there is no-one in the building; this satisfies the invariant, no matter
what the value of maxentry :

ASystemInit =̂ [ ASystem′ | s′ = ∅ ]

A person who is not already recorded as being inside the building may enter it,
providing there is enough room:

AEnterBuilding
∆ASystem
p? : Staff

#s < maxentry
p? ∉ s
s′ = s ∪ {p?}

A person who is in the building may leave it:

ALeaveBuilding
∆ASystem
p? : Staff

p? ∈ s
s′ = s \ {p?}
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A more concrete specification might model the state of the system as an
injective sequence: a sequence with no repetitions. The length of this sequence
must be less than maxentry :

CSystem =̂ [ l : iseq Staff | #l ≤ maxentry ]

where the generic symbol ‘iseq’ is as defined in Section 9.2.
The length of l represents the number of people inside the building, since

l contains no duplicates. Initially, there is no one in the building:

CSystemInit =̂ [ CSystem′ | l′ = 〈〉 ]

A person who is not already inside the building may enter it, providing there is
enough room:

CEnterBuilding
∆CSystem
p? : Staff

#l < maxentry
p? ∉ ran l
l′ = l_〈p?〉

A person who is in the building may leave it:

CLeaveBuilding
∆CSystem
p? : Staff

p? ∈ ran l
l′ = l u (Staff \ {p?})

Although both specifications describe the same system, the first is more ab-
stract: it doesn’t record the order in which people enter the building. The use
of a sequence certainly makes the second specification a bit more awkward: we
have to say that it contains no duplicates. The second specification also makes
certain design decisions: for example, new people are appended to the end of
the sequence.

We regard the first description as an abstract specification, and the second
as a step on the way to producing a design. We intend to implement the set
of names using an array, in which the elements will be ordered. We take a
design decision to record the names in order of arrival. This decision may be
documented using a retrieve relation:
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ListRetrieveSet
ASystem
CSystem

s = ran l

This is a formal record of the design step. It will help us to demonstrate that
the second specification is a correct implementation of the first.

In order to prove that this refinement is correct, we must establish that
each of the following statements is a theorem:

∀ CSystem′ • CSystemInit ⇒
(∃ ASystem′ • ASystemInit ⇒ ListRetrieveSet ′)

∀ ASystem; CSystem; p? : Staff • pre AEnterBuilding ∧ ListRetrieveSet ⇒
pre CEnterBuilding

∀ ASystem; CSystem; CSystem′; p? : Staff •
pre AEnterBuilding ∧ ListRetrieveSet ∧ CEnterBuilding ⇒

(∃ ASystem′ • ListRetrieveSet ′ ∧ AEnterBuilding)

∀ ASystem; CSystem; p? : Staff • pre ALeaveBuilding ∧ ListRetrieveSet ⇒
pre CLeaveBuilding

∀ ASystem; CSystem; CSystem′; p? : Staff •
pre ALeaveBuilding ∧ ListRetrieveSet ∧ CLeaveBuilding ⇒

(∃ ASystem′ • ListRetrieveSet ′ ∧ ALeaveBuilding)

�

Example 17.2 We are required to produce a program that finds the average of
some numbers. We decide that the program should find the arithmetic mean of
some natural numbers. Our specification describes a simple interface consist-
ing of two operations: an operation AEnter that adds a number to our data set
and an operation AMean that calculates the arithmetic mean of the numbers
entered thus far.

The state of the program is modelled using a sequence of natural numbers
to represent the data set:

AMemory =̂ [ s : seq N ]

The use of a sequence or a bag—rather than a set—is important here, as we
may be faced with many copies of the same natural number.
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Operation Precondition

AMemoryInit true

AEnter true

AMean s ≠ 〈〉

Table 17.2 Specification of the Mean Machine

In the initial state, the sequence of numbers is empty:

AMemoryInit =̂ [ AMemory ′ | s′ = 〈〉 ]

As each number is entered, it is added to the end of the sequence:

AEnter
∆AMemory
n? : N

s′ = s_〈n?〉

The arithmetic mean of a series is its sum divided by its length. The following
schema makes it clear exactly what is to be calculated:

AMean
ΞAMemory
m! : R

s ≠ 〈〉

m! =
∑#s

i=1(s i)
#s

The result makes sense only if the length of the sequence is strictly positive:
this leads us to the precondition recorded in Table 17.2.

It is not necessary to keep the entire sequence of numbers that has been
input; there is another way to compute the mean. In a specification we are more
concerned with clarity than with efficiency, so the summation over a series is
entirely appropriate. We will now consider a design in which only two numbers
are stored: the running total and the sample size.
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Operation Precondition

CMemoryInit true

CEnter true

CMean size ≠ 0

Table 17.3 Design of the Mean Machine

The state comprises two natural numbers:

CMemory =̂ [ sum : N; size : N ]

In the initial state, both of these are zero.

CMemoryInit =̂ [ CMemory ′ | sum′ = 0 ∧ size′ = 0 ]

When a number is entered, it is added to the running total, and the sample size
is increased by one:

CEnter
∆CMemory
n? : N

sum′ = sum + n?
size′ = size + 1

If at least one number has been entered, then the mean may be obtained by
dividing the running total by the sample size. In our design, the effect of this
operation is described by

CMean
ΞCMemory
m! : R

size ≠ 0
m! = sum

size

The precondition for this schema is recorded in Table 17.3.
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To understand what is being computed by CMean, we must consider what
happens if we enter a sequence of numbers and divide their sum by the num-
ber of entries. The relationship between specification and design should be
obvious:

SumSizeRetrieve
AMemory
CMemory

sum =
#s∑

i=1

(s i)

size = #s

The retrieve relation is not functional from concrete to abstract, as it was in
Example 17.1. Instead, it is functional from abstract to concrete.

The correctness of the design should also be obvious: if we take CEnter
and CMean, and replace sum and size by the expressions that Retrieve gives us
for them in terms of s, then we obtain the abstract descriptions of these oper-
ations. In order to prove this, we must prove that the following are theorems:

∀ CMemory ′ • CMemoryInit ⇒
(∃ AMemory ′ • AMemoryInit ⇒ SumSizeRetrieve′)

∀ AMemory ; CMemory ; n? : N • pre AEnter ∧ SumSizeRetrieve ⇒ pre CEnter

∀ AMemory ; CMemory ; CMemory ′; n? : N •
pre AEnter ∧ SumSizeRetrieve ∧ CEnter ⇒

(∃ AMemory ′; m! : R • SumSizeRetrieve′ ∧ AEnter)

∀ AMemory ; CMemory ; n? : N • pre AMean ∧ SumSizeRetrieve ⇒ pre CMean

∀ AMemory ; CMemory ; CMemory ′; n? : N •
pre AMean ∧ SumSizeRetrieve ∧ CMean ⇒

(∃ AMemory ′; m! : R • SumSizeRetrieve′ ∧ AMean)

We may now translate our design into the refinement calculus—the sub-
ject of the next chapter—using a mixture of program code and specification
statements. Briefly, the specification statement w : [ pre, post ] describes a pro-
gram that must terminate if started in any state satisfying pre, yielding a state
satisfying post , while changing only those variables mentioned in w .

The result of our translation is shown below. The body of the procedure
enter comprises a specification which insists that the global variable sum must
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be increased by the value of the n?, and that size must be incremented.

var sum, size : N •
. . .
proc enter (val n? : N);

sum, size : [ true, sum′ = sum + n? ∧ size′ = size + 1 ];
proc mean (res m! : R);

m! : [ size ≠ 0, m! = sum/size ]

The body of the procedure mean comprises another specification that insists
that m! must have the final value sum/size. In this case, the implementor may
assume that the value of size is not 0.

We may fill in some detail by refining the specification statements into a
target programming language: in this case, Pascal. The result is a program that
correctly implements our original specification:

PROGRAM MeanMachine(input,output);
VAR

n,sum,size: 0..maxint;
m: real;

PROC Enter(n: 0..maxint);
BEGIN

sum := sum + n;
size := size + 1

END;
PROC Mean(VAR m: real);

BEGIN
m := sum / size

END;
BEGIN

sum := 0;
size := 0;
WHILE NOT eof DO

BEGIN
read(n);
Enter(n)

END;
Mean(m);
write(m)

END.

�
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Example 17.3 We wish to use a dictionary to check the spelling of words. If
the word is in the dictionary, then it is considered to be spelt correctly; if not,
then it is considered to be spelt incorrectly. Abstractly, the dictionary is simply
a set of words

ADict =̂ [ ad : P Word ]

The task of implementing the dictionary efficiently is a searching problem. One
solution is to keep the dictionary in a sorted order, and employ a binary search
method. This design is recorded by the following schema:

CDict1

cd1 : iseq Word

∀ i, j : dom cd1 | i ≤ j • (cd1 i) ≤W (cd1 j)

The words are kept (without duplicates) in a sequence in ascending order. We
have taken that ≤W is the ordering on Word .

Alternatively, we could divide the words according to length, and a search
would proceed by looking at only those words of the same length as the word
we are checking, thus cutting down the search space.

CDict2

cd2 : seq(P Word)

∀ i : dom cd2 • ∀ w : (cd2 i) • #w = i

This design starts by introducing a sequence of sets of words, with each of the
sets containing only words of a particular length: the first set has words of
length 1, the second of length 2, and so on.

As a third alternative, suppose that we are more interested in space ef-
ficiency. In this case, we might choose to exploit the common prefixes in the
dictionary. As an example, suppose that our dictionary were rather sparsely
filled with the following words: and , ant , bee, can, and cat . Instead of storing
all 15 letters, we need store only 11 of them. The data structure that we have
in mind is a tree. At its root there are three branches, one for a, one for b, and
one for c . Below each of these branches, there is another prefix tree.

If X 7→1 Y denotes the set of all non-empty functions between X and Y ,
then the free type of prefix trees is given by

WordTree ::= tree〈〈Letter 7→1 WordTree〉〉 |
treeNode〈〈Letter 7→ WordTree〉〉
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Figure 17.1 A word tree

The use of two injections—tree and treeNode—means that we can capture proper
prefixes.

With this definition, the design of the dictionary can be described by the
following schema:

CDict3 =̂ [ cd3 : WordTree ]

Our five-word dictionary—illustrated in Figure 17.1—may be expressed form-
ally as a WordTree:

tree {a , tree{n , tree{d , treeNode ∅, t , treeNode ∅}},

b , tree{e , tree{e , treeNode ∅}},

c , tree{a , tree{n , treeNode ∅, t , treeNode ∅}}
}

As a final example, consider a little dictionary which contains only the words
tin and tiny . This has the representation as a word tree which is linear:

tree{t , tree{i , tree{n , treeNode{y , treeNode ∅}}}}

The injection treeNode is used to mark a node that contains the end of a word,
even if it is a proper prefix of another word.

Each of the three designs—CDict1, CDict2, and CDict3—forms the basis for
a correct data refinement of ADict . �
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B-init ∀ A′; C ′ • CI ∧ R′ ⇒ AI

B-corr ∀ C • (∀ A • R ⇒ pre AO) ⇒
∀ A′; C ′ • CO ∧ R′ ⇒ ∃ A • R ∧ AO

∀ C • (∀ A • R ⇒ pre AO) ⇒ pre CO

Table 17.4 Rules for backwards simulation

17.3 Backwards simulation

Some valid refinements cannot be proved correct using forwards simulation.
We may characterise these as refinements in which the resolution of nondetermin-
ism is postponed. Where this is the case, backwards simulation should be used
instead. In backwards simulation, it is as if the abstract system can simulate
the concrete one by being able to anticipate its actions.

As in the case of forwards simulation, the rules for the refinement of
relations—presented at the end of the previous chapter—give rise to a corres-
ponding set of conditions for the refinement of specifications. For any initial
concrete state, the equivalent abstract state(s) must be initial abstract states

∀ A′; C ′ • CI ∧ R′ ⇒ AI

Whatever abstract equivalent A′ we choose, it must meet the constraints of
initialisation AI .

If operation CO is to correctly implement abstract operation AO, then it
must work whenever AO is guaranteed to work.

∀ C • (∀ A • R ⇒ pre AO) ⇒ pre CO

Finally, for any abstract equivalent A′ of the after-state C ′, there must be an
abstract equivalent A of the before-state C such that A and A′ are correctly
related: that is, related by AO.

∀ C • (∀ A • R ⇒ pre AO) ⇒ (∀ A′; C ′ • CO ∧ R′ ⇒ (∃ A • R ∧ AO))

These rules are summarised in Table 17.4.
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Example 17.4 The Phoenix is a cinema whose box office works as follows. A
customer may telephone and ask for a ticket. The box office clerk decides if
there is an unsold ticket so as to accommodate the request. If there is, then a
note is made to reserve a ticket for the caller. When the customer arrives, the
box office clerk allocates an unsold ticket which identifies the seat.

We contrast this procedure with that of the Apollo theatre. At the Apollo,
a customer may telephone and ask for a ticket. The box office clerk decides if
there is an unsold ticket so as to accommodate the request. If there is, then
one is allocated and put to one side for the caller. When the customer arrives,
the clerk presents the allocated ticket which identifies the seat.

The customer cannot tell the difference between the two booking proced-
ures. The point at which the ticket is allocated—and a nondeterministic choice
of seat number is made—cannot be detected by the caller. The transaction ap-
pears the same in each case: the customer telephones the box office, arrives at
the place of entertainment, obtains a ticket, and takes the indicated seat.

The Phoenix maintains a pool of tickets, drawn from a given set

[Ticket]

We will concentrate on the activities of a single customer, keeping track not
only of the pool of unused tickets, but also of whether or not this customer has
booked a ticket. The state of the Phoenix box office is then

Phoenix
ppool : P Ticket
bkd : Booked

where Booked is the free type

Booked ::= yes | no

The booking operation requires that the customer has not already booked,
and that there is a ticket to be allocated:

PBook
∆Phoenix

bkd = no
ppool ≠ ∅
bkd′ = yes
ppool′ = ppool
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A successful arrival requires that the customer has booked and that a
ticket has been left for them:

PArrive
∆Phoenix
t ! : Ticket

bkd = yes
ppool ≠ ∅
bkd′ = no
t ! ∈ ppool
ppool′ = ppool \ {t !}

Afterwards, the record is updated to say that there is no booking, a ticket is
allocated, and the pool of tickets is updated accordingly.

Our model of the Apollo system requires a more sophisticated form of
ticket. We employ a free type with a constant null :

ATicket ::= null | ticket〈〈Ticket〉〉

The state of the Apollo box office contains a pool of ordinary tickets, and a
possibly-null ticket:

Apollo
apool : P Ticket
tkt : ATicket

tkt ≠ null ⇒ ticket∼ tkt ∉ apool

The booking operation requires that no ticket has already been reserved by the
customer, and that the pool is not empty.

ABook
∆Apollo

tkt = null
apool ≠ ∅
tkt ′ ≠ null
ticket∼ tkt ′ ∈ apool
apool′ = apool \ {ticket∼ tkt ′}

Afterwards, a single ticket is removed from the pool and reserved in the state
component tkt .
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A successful arrival operation requires that the customer has reserved a
ticket. This ticket is then issued, and the pool remains unchanged.

AArrive
∆Apollo
t ! : Ticket

tkt ≠ null
tkt ′ = null
t ! = ticket∼ tkt
apool′ = apool

The relationship between the two systems may be documented by the
following retrieve relation:

ApolloPhoenixRetr
Phoenix
Apollo

bkd = no ⇒ tkt = null ∧ ppool = apool
bkd = yes ⇒ tkt ≠ null ∧ ppool = apool ∪ {ticket∼ tkt}

We put forward two conjectures:

• The Phoenix system is data refined by the Apollo system.

• The Apollo system is data refined by the Phoenix system.

The first of these can be proved using forwards simulation; the second cannot.
To see why, consider the following statement:

pre AArrive ∧ ApolloPhoenixRetr ∧ PArrive ⇒
∃ Apollo′ • ApolloPhoenixRetr ′ ∧ AArrive

To prove this, we must show that t ! = ticket∼ tkt : one of the predicates of
AArrive. The most that we can deduce from the antecedents is that t ! ∈ apool ∪
{ticket∼ tkt}. This is not enough. Notice that when we prove the refinement
the other way around, the proof will work as expected.

As the reader will have guessed, we need the backwards simulation rules
in order to be able to prove the second conjecture. Our troublesome predicate
asks the very question that backwards simulation sets out to answer: that is, is
there a state that the abstract operation could have started in that would have
led to this situation? �
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Example 17.5 The game of MastermindTM was popular some twenty years ago.
In this game, one player chooses a code of six coloured pegs, and the other tries
to guess what this code is. The guesser is allowed a number of attempts; the
setter replies to each attempt by stating how many of the guess’s pegs are of
the correct colour, and how many of these are in the correct order.

In the specification of an electronic version of MastermindTM, we might
state that a random sequence is chosen when the system is switched on. An
implementation may do exactly this, or it may postpone the choice until the first
attempt is made. Since there is no way to detect that the choice has not already
been made, this would be a valid refinement of the specification, provable using
backwards simulation.

An implementation might also choose to postpone the choice until the last
possible moment. The system could then maintain a set of codes—consistent
with the answers it has given the user thus far—and leave the decision about
the ‘real’ code until it has no room left to manoeuvre. Of course, delaying the
choice of code is against the spirit of the game, but with this interface there is no
way to detect the ‘fraud’: our cheating implementation is a correct refinement
of the specification. �

Example 17.6 Here is another example of a refinement which requires the back-
wards rules; it also has a novel twist. It concerns a greatly simplified model of a
vending machine, which dispenses drinks in response to three-digit codes typed
in by its users. The specification abstracts from the detail of the digits being
input one-by-one, and requires instead that the sequence is entered atomically.
This kind of abstraction, where the level of atomicity in the system is changed,
is useful in describing many similar interfaces, such as that used in telephone
systems.

We begin with a few global definitions. The free type Status is used to
signal the success or failure of the current interaction with the machine, and
to keep track of whether a transaction is in progress; Digits are those numbers
between 0 and 9; and seq3[X ] is the set of sequences of X s whose length is
exactly 3.

Status ::= yes | no

Digit == 0 . . 9
seq3[X ] == { s : seq X | #s = 3 }

The state of our specification contains two boolean variables; these indicate
whether it is in use, and whether the current transaction will be successful.

VMSpec =̂ [ busy , vend : Status ]
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Initially, both variables are set to no:

VMSpecInit =̂ [ VMSpec′ | busy ′ = vend′ = no ]

A user interacts by inputting a three-digit sequence, and then collecting
the drink, if the numbers were correctly chosen. We have abstracted from the
need to pay, and even from the kind of drink that gets dispensed. The first part
of the transaction is to choose the drink.

Choose
∆VMSpec
i? : seq3 Digit

busy = no
busy ′ = yes

Note that the value of vend is left undetermined by the operation: its value is
nondeterministically chosen. The end of the transaction simply signals whether
the transaction is successful or not:

VendSpec
∆VMSpec
o! : Status

busy ′ = no
o! = vend

At the design level, digits are entered separately. All we actually need
to record is the number of digits entered. Initially, there is no transaction in
progress:

VMDesign =̂ [ digits : 0 . . 3 ]

VMDesignInit =̂ [ VMDesign′ | digits′ = 0 ]

A transaction starts with a user punching in the first digit:

FirstPunch
∆VMDesign
d? : Digit

digits = 0
digits′ = 1
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and continues with the user punching in further digits:

NextPunch
∆VMDesign
d? : Digit

(0 < digits < 3 ∧ digits′ = digits + 1) ∨
(digits = 0 ∧ digits′ = digits)

Notice that NextPunch is ineffective unless a transaction is in progress. The
operation VendDesign, which describes the act of dispensing the drink, chooses
the output o! nondeterministically:

VendDesign
∆VMDesign
o! : Status

digits′ = 0

It should be clear that there is a refinement between the abstract and concrete
systems that we have presented. Suppose that we want the drink referred to by
the digit-sequence 238. Abstractly, the transaction proceeds by invoking the
Choose operation with input 238; next, we invoke the VendSpec operation, and
receive the indication o! telling us whether we were successful.

Concretely, the transaction proceeds by invoking the FirstPunch operation
with input 2; then NextPunch with input 3; then NextPunch with input 8; then
we invoke the VendDesign operation, and receive the indication o! telling us
whether we were successful.

There are three differences between the two systems: they have a different
set of operation names; they have different types of inputs; and they make the
nondeterministic choice at different times.

If we are to prove the refinement, then we must explain the correspond-
ence between the two sets of operations. We want the two Vend operations to
correspond, and for the abstract Choose operation to be related to the concrete
FirstPunch operation. There is no operation in the abstract interface that cor-
responds to the concrete NextPunch operation, but instead, we relate it to the
identity on the abstract state. To summarise:

VMSpecInit is refined by VMDesignInit

Choose is refined by FirstPunch

ΞVMSpec is refined by NextPunch

VendSpec is refined by VendDesign
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The difference in the types of inputs means that we cannot use the proof
rules that we have derived from the definition of refinement. However, recall
that our treatment of inputs and outputs started by considering them as dis-
tinguished items of state. In fact, it is not necessary for the two operations to
have the same inputs and outputs. To see this, consider the retrieve relation
described by the following schema:

RetrieveVM
VMSpec
VMDesign

busy = no a digits = 0

To prove the forwards simulation correctness rule for Choose–FirstPunch: we
must prove the following:

∀ VMSpec ; VMDesign; VMDesign′ •
pre Choose ∧ RetrieveVM ∧ FirstPunch ⇒

∃ VMSpec′ • RetrieveVM ′ ∧ Choose

It is sufficient to prove

∀ busy , vend : Status; digits, digits′ : 0 . . 3; i? : seq3 Digit ; d? : Digit •
busy = no ∧
busy = no a digits = 0 ∧
digits = 0 ∧ digits′ = 1 ⇒

∃ busy ′, vend′ : Status •
busy ′ = no a digits′ = 0 ∧ busy ′ = yes

which is clearly true.
The difference in the point at which the nondeterministic choice is made is

more interesting. In the abstract system, this choice is made at the beginning of
the transaction, in the operation Choose. In the concrete system, the decision is
delayed until the end of the transaction, during the operation VendDesign. This
postponement of nondeterminism is characteristic of backwards refinement,
and will mean that we will fail in our attempt to show that this refinement is a
forwards simulation.

If the vending machine made more use of the digits offered by the user
as input, then the retrieve relation might be more interesting; as it is, all that
the retrieve relation can do is to identify what it means to be in a transaction in
the abstract and concrete states. Consider the forwards simulation correctness
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rule for the operation of vending:

∀ VMSpec ; VMDesign; VMDesign′ •
pre VendSpec ∧ RetrieveVM ∧ VendDesign ⇒

∃ VMSpec′ • RetrieveVM ′ ∧ VendSpec

To prove this, we must establish that

∀ busy , vend : Status; digits, digits′ : 0 . . 3; o! : Status •
busy = no a digits = 0 ∧
digits′ = 0 ⇒

∃ busy ′, vend′ : Status •
busy ′ = no a digits′ = 0 ∧ busy ′ = no ∧ o! = vend

This is clearly false. Thus, this is not a forwards simulation; it is however, a
backwards simulation. In the implementation, the choice is made later, only
after all the digits have been punched. It is as if the specification can prophesy
the future. �

Example 17.7 A simple distributed operating system allows users to store files
in a shared file store. A natural specification of this system might contain a
mapping from names to files.

AFS =̂ [ afs : Name 7→ File ]

Initially, there are no files:

AFSInit =̂ [ AFS ′ | afs′ = ∅ ]

Files may be read from the file store:

Read
ΞAFS
n? : Name
f ! : File

n? ∈ dom afs
f ! = afs n?

or stored in it:
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Store
∆AFS
f ? : File
n? : Name

n? ∉ dom afs
afs′ = afs ∪ {n? , f ?}

The atomicity implied by this specification would, of course, be inappropriate
for a realistic implementation. It would require that other transactions are
halted while the file is stored. At the design level, files are transferred byte by
byte to the file store. The atomic steps of this transaction may be interleaved
with the actions of other users.

The concrete system contains two mappings: a concrete file system, and
a temporary file system. The latter is used to store partial files that are in
the process of being transferred over the network. Files are represented as
sequences of bytes.

CFS
cfs : Name 7→ seq Byte
tfs : Name 7→ seq Byte

dom cfs ∩ dom tfs = ∅

Initially, there are no files:

CFSInit =̂ [ CFS ′ | cfs′ = tfs′ = ∅ ]

The act of storing a file in the distributed file store is performed not by a single
operation, but by a transaction. First, the user must Start the transaction; Next
the user must transfer the file byte by byte; and finally the user must Stop the
transaction.

The transaction is started by making a reservation in the temporary file
store:

Start
∆CFS
n? : Name

n? ∉ dom cfs ∪ dom tfs
tfs′ = tfs ⊕ {n? , 〈〉}
cfs′ = cfs
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The file is accumulated in the temporary file store:

Next
∆CFS
n? : Name
b? : Byte

n? ∈ dom tfs
tfs′ = tfs ⊕ {n? , (tfs n?)_〈b?〉}
cfs′ = cfs

When the transaction is finalised, it is transferred to the concrete file system:

Stop
∆CFS
n? : Name

n? ∈ dom tfs
tfs′ = {n?} � tfs
cfs′ = cfs ⊕ {n? , tfs n?}

The retrieve relation is simply the conversion between the abstract type of a
file and its representation as a sequence of bytes:

retr file : seq Byte → File

RetrieveACFS
AFS
CFS

afs = cfs o
9 retr file

There is a forwards simulation between the following two systems

(AFS , AFSInit , ΞAFS , ΞAFS , Store, Read)

(CFS , CFSInit , Start , Next , Stop, Read)

and a backwards simulation between

(AFS , AFSInit , Store, ΞAFS , ΞAFS , Read)

(CFS , CFSInit , Start , Next , Stop, Read)

�



Chapter 18

Functional Refinement

When the relations used in refining or structuring our specifications turn out
to be functions, then our proof obligations can be simplified. If the retrieve
relation is functional, then we may employ a different set of proof rules; we
may even be able to proceed by calculation. If the state description involves a
functional promotion, then the promotion of the refinement is the refinement
of the promotion. In this chapter we examine these simplifications, and show
how they may be applied to the refinement of specifications.

18.1 Retrieve functions

Suppose that we have a data type A, and a forwards simulation which is a
total function from concrete to abstract: that is, we have a retrieve relation f ∼,
where f is a total function. In this case, the proof rule for correctness may be
simplified, using a cancellation law for relational composition. If R and S are
relations, and f is a total function, then

R ⊆ S o
9 f ∼ a R o

9 f ⊆ S

The proof of this cancellation law is instructive, and we present it here:

R ⊆ S o
9 f ∼

a ∀ x : X ; y : Y • x , y ∈ R ⇒ x , y ∈ S o
9 f ∼ [by def of ⊆]

a ∀ x : X ; y : Y •
x , y ∈ R ⇒ ∃ z : Z • x , z ∈ S ∧ z , y ∈ f ∼

[by def of o
9]

a ∀ x : X ; y : Y •
x , y ∈ R ⇒ ∃ z : Z • x , z ∈ S ∧ y , z ∈ f

[by def of ∼]
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F-init-func-rel ci o
9 f ⊆ ai

F-fin-func-rel f ∼ o
9 cf ⊆ af

F-corr-func-rel dom ao / f ∼ o
9 co o

9 f ⊆ ao

ran((dom ao) / f ∼) ⊆ dom co

Table 18.1 Rules for retrieve functions

a ∀ x : X ; y : Y • x , y ∈ R ⇒ ∃ z : Z • x , z ∈ S ∧ z = f (y) [f is total]

a ∀ x : X ; y : Y • x , y ∈ R ⇒ f (y) ∈ Z ∧ x , f (y) ∈ S [by ∃-opr]

a ∀ x : X ; y : Y • x , y ∈ R ⇒ x , f (y) ∈ S [f is total]

a ∀ x : X ; y : Y • f (y) ∈ Z ∧ x , y ∈ R ⇒ x , f (y) ∈ S [f is total]

a ∀ x : X ; y : Y ; z : Z • z = f (y) ∧ x , y ∈ R ⇒ x , z ∈ S [by ∀-opr]

a ∀ x : X ; y : Y ; z : Z • x , y ∈ R ∧ y , z ∈ f ⇒ x , z ∈ S [f is total]

a ∀ x : X ; z : Z •
(∃ y : Y • x , y ∈ R ∧ y , z ∈ f ) ⇒ x , z ∈ S

[by pred calc]

a ∀ x : X ; z : Z • x , z ∈ R o
9 f ⇒ x , z ∈ S [by def of o

9]

a R o
9 f ⊆ S [by def of ⊆]

It is, in fact, not necessary to insist that f is total; the weaker condition that
ran R ⊆ dom f is enough.

Now consider the correctness rule for forwards simulation, but with the
inverse of a total function f for the retrieve relation. We must prove that

dom ao / f ∼ o
9 co ⊆ ao o

9 f ∼

Using the cancellation law, we see that this is equivalent to

dom ao / f ∼ o
9 co o

9 f ⊆ ao

In practice, the transformed rule is simpler to prove than the the original. A
similar transformation may be made to the rule for initialisation. The rules for
refinement with a total retrieve function are presented in Table 18.1.
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F-func ∀ C • ∃1 A • R

F-init-func ∀ A′; C ′ • CI ∧ R′ ⇒ AI

F-corr-func ∀ A; A′; C ; C ′ • pre AO ∧ R ∧ CO ∧ R′ ⇒ AO

∀ A; C • pre AO ∧ R ⇒ pre CO

Table 18.2 Rules for functional refinement

18.2 Functional refinement

The new rules for the refinement of relations give rise to a set of rules for
the functional refinement of specifications. Any application of these rules will
require a proof that the retrieve relation is a total function: that is,

∀ C • ∃1 A • R

Once this requirement has been established, we are left with the rules shown
in Table 18.2. Notice that these are easier to apply than those given at the end
of the previous chapter.

If we are able to present a set of equations that defines each abstract com-
ponent as a total function of concrete components, then our retrieve relation
must be a function. The resulting form of retrieve relation is quite common in
realistic specifications.

Example 18.1 In Example 17.1, the retrieve relation was defined by an equation
expressing the abstract component—a set—as a total function of the concrete
component—a list.

ListRetrieveSet
ASystem
CSystem

s = ran l

This retrieve relation is a total, surjective function from concrete to abstract;
that is, every concrete list represents exactly one abstract set, and every set is so
represented. The proof of this follows immediately from the observation that
ListRetrieveSet is essentially just ran, which is itself a total, surjective function.
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Since the retrieve relation is a total function, we could have proved the
simpler set of proof obligations:

∀ CSystem • ∃1 ASystem • ListRetrieveSet

∀ CSystem′; ASystem′ •
CSystemInit ∧ ListRetrieveSet ′ ⇒ ASystemInit

∀ ASystem; CSystem • pre AEnterBuilding ∧ ListRetrieveSet ⇒
pre CEnterBuilding

∀ ASystem; ASystem′; CSystem; CSystem′ •
pre AEnterBuilding ∧
ListRetrieveSet ∧
CEnterBuilding ∧
ListRetrieveSet ′

⇒ AEnterBuilding

∀ ASystem; CSystem • pre ALeavebuilding ∧ ListRetrieveSet ⇒
pre CLeaveBuilding

∀ ASystem; ASystem′; CSystem; CSystem′ •
pre ALeaveBuilding ∧
ListRetrieveSet ∧
CLeaveBuilding ∧
ListRetrieveSet ′

⇒ ALeaveBuilding

�

18.3 Calculating data refinements

One way of developing an implementation from a specification is to write down
the description of the concrete state, record the retrieve relation, and then
calculate the rest of the concrete system. This is easily done if the retrieve
relation is a total surjective function from concrete to abstract.

The result of this calculation is the weakest refinement of the specification,
with respect to the retrieve relation, if there is any refinement at all. Let’s
call this refinement W ; it is the weakest refinement in the sense that it is a
refinement of A (A v W ) and that, for every other C which is also a refinement
of A using the forwards simulation f ∼, we have that W v C.



18.3 / Calculating data refinements 285

F-init-calc-rel wi == ai o
9 f ∼

F-corr-calc-rel wo == f o
9 ao o

9 f ∼

Table 18.3 Calculating refinements

How can we find W? Consider one of its operations wo, a refinement of
the abstract operation ao; it may be calculated from the identity

wo == f o
9 ao o

9 f ∼

To see how this works, observe that the definition chosen for wo solves the
forwards simulation inequality exactly. The result is the largest relation that is
a refinement of ao.

f ∼ o
9 wo

= f ∼ o
9 f o

9 ao o
9 f ∼ [by definition]

= id[ran f ] o
9 ao o

9 f ∼ [by relational calculus]

= ao o
9 f ∼ [since f is surjective]

Again, notice that, rather than insisting that f is surjective, the weaker condition
that dom ao ⊆ ran f would suffice. The rules for calculating refinements are
given in Table 18.3.

To see how this extends to specifications, suppose that we have an abstract
state described by the schema A, an initialisation

AI =̂ [ A′ | p ]

and an operation

AO =̂ [ ∆A | q ]

Suppose further that we have a total surjective function f from the concrete
state C to A which is used in the retrieve relation

F =̂ [ A; C | θA = f (θC) ]
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F-init-calc CI =̂ CI o
9 F ′

F-corr-calc CO =̂ F o
9 AO o

9 F ′

Table 18.4 Calculating refinements with schemas

If this is the case, then the weakest refinement with respect to f is given by the
initialisation

CI =̂ CI o
9 F ′ = [ C ′ | p[f (θC ′)/θA′] ]

and the operation

CO =̂ F o
9 AO o

9 F ′ = [ ∆C | q[f (θC), f (θC ′)/θA, θA′] ]

For completeness, these definitions are summarised in Table 18.4.

Example 18.2 As ListRetrieveSet is a total surjective function, we could have
calculated the weakest refinement, which is strictly weaker than our concrete
system in the previous example.

This would have avoided the decision to put newcomers at the end of the
list. Recall that the specification s′ = s ∪ {p?}. The retrieve relation states
that s = ran l , and the dashed counterpart, so we can calculate the weakest
refinement as ran l′ = ran l ∪ {p?}. This requires that the right elements are in
the list, without prescribing their order.

Similarly, it would have avoided the design decision to preserve the order
of the list after the leave operation, requiring merely that the right elements are
present. We can see from this the value of calculating the weakest refinement:
we make exactly the design step recorded in the retrieve relation. �

Example 18.3 In Example 17.2, the retrieve relation SumSizeRetrieve is a total,
surjective function, but it goes from abstract to concrete. That is, every abstract
sequence can be reduced to a unique sum and size—sequences are finite—and
every pair of numbers sum and size can be expressed in the more abstract
form of a sequence. Thus, the retrieve relation cannot be used to simplify
the refinement proof obligations, nor can it be used to calculate the weakest
refinement in the manner that we have shown. �
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Example 18.4 We wish to build a temperature sensor as part of some larger
piece of equipment. We might encapsulate the recording of the temperature
in the following Fahrenheit abstract data type. Fahrenheit temperatures range
from absolute zero up to a maximum temperature of 5000◦F. Since absolute
zero is −459.4◦F, we define

◦F == { f : R | −459.4 ≤ f ≤ 5000 }

Our temperature store keeps track of one value:

FTemp
f : ◦F

Standard temperature is 65◦F:

StdTemp == 65

and this is used to provide a default value at initialisation-time:

FTempInit
FTemp′

f ′ = StdTemp

The temperature can always be incremented, provided that the value does not
go above the maximum:

FTInc
∆FTemp

f ≤ 4999
f ′ = f + 1

Similarly, the temperature can always be decremented, provided that the value
does not go below the minimum:

FTDec
∆FTemp

f ≥ −458.4
f ′ = f − 1

At the design stage, the internal representation need not be kept in Fahren-
heit: it could easily be maintained in Celsius. Celsius values are those above
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absolute zero, which is −273◦C. For convenience, we choose a maximum value
of 2760◦C.

Celsius == { t : R | −273 ≤ t ≤ 2760 }

CTemp =̂ [ c : C ]

The retrieve relation between these representations is well-known:

RetrieveFC
FTemp
CTemp

f = (9/5) ∗ c + 32

The schema RetrieveFC , regarded as a relation from CTemp to FTemp, is a
total bijection: each Celsius temperature corresponds to exactly one Fahrenheit
value. We can therefore use RetrieveFC to calculate a refinement.

We begin with the concrete initialisation:

CTemp′

(9/5) ∗ c′ + 32 = StdTemp

We may rewrite the predicate part of this schema to make the initial value of c′

more explicit:

CTempInit
CTemp′

c′ = (5/9) ∗ (StdTemp − 32)

The concrete version of the increment operation is described by the following
schema:

∆CTemp

(9/5) ∗ c + 32 ≤ 4999
(9/5) ∗ c′ + 32 = (9/5) ∗ c + 32 + 1

Again, we may rewrite the predicate part:
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CTInc
∆CTemp

c ≤ 2759 ∗ (4/9)
c′ = c + (5/9)

Finally, the concrete version of the decrement operation is

∆CTemp

(9/5) ∗ c + 32 ≥ −458.4
(9/5) ∗ c′ + 32 = (9/5) ∗ c + 32 − 1

which may be rewritten as

CTDec
∆CTemp

c > 272 ∗ (4/9)
c′ = c − (5/9)

Given the new representation, we can calculate the refinement. The calculation
is straightforward, although the results may need to be simplified before they
are used; this is typical of the calculational approach. �

18.4 Refining promotion

Promotion is a powerful tool for structuring specifications; it allows us to con-
struct multi-layer descriptions of large systems. An important feature of pro-
motion, one not discussed in Chapter 13, is that it is monotonic with respect to
refinement. This result may be summarised as ‘the refinement of a promotion
is the promotion of the refinement’. If our specification includes a promoted
abstract data type, we can refine this data type independently, while preserving
its relationship with the rest of the system.

The simplest form of promotion uses a function to index a data type S,
whose operations are then promoted. Suppose that the enclosing data type is
P , and that the state of P is described by

P =̂ [ f : I 7→ S ]

A suitable promotion schema might be
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Promote
∆S
∆P
i? : I

i? ∈ dom f
θS = f (i?)
f ′ = f ⊕ {i? , θS ′}

If SO is an operation of S , then it may be promoted in the usual way: that is,

PO =̂ ∃ ∆S • Promote ∧ SO

To model this form of promotion in the relational calculus, we define three
operators. The first applies a function to an argument; the second is a prefix
version of overriding; the third is a curried version of relational image:

[X , Y ]
apply : (X → Y ) × X → Y
ovr : ((X → Y ) × X ) × Y → X → Y
img : (X ↔ Y ) → P X → P Y

∀ f : X → Y ; x : X • apply(f , x) = f (x)
∀ f : X → Y ; x : X ; y : Y • ovr((f , x), y) = f ⊕ {x , y}
∀ R : X ↔ Y ; S : P X • (img R)S = R (| S |)

If op is an operation on a data type D, then we can promote it to an operation
Φ(op) on a data type Φ(D) whose space of values is I → D, for some indexing
set I . The definition of Φ(op) is given by

Φ(op) == cp o
9

id

‖
apply o

9 op

o
9 ovr

where cp and ‖ are as defined in Chapter 16.
If the data types A and C are linked by a forwards simulation ρ, then the

retrieve relation between promoted data types Φ(A) and Φ(C) is identified by
the following equation:

r = img(id ‖ ρ)

We will now demonstrate that r defines a forwards simulation from A to C , and
thus that Φ(C) refines Φ(A). Consider the correctness condition for a matching
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pair of operations ao and co:

(r ‖ id) o
9 Φ(co) ⊆ Φ(ao) o

9 r

Observe that each side is a relation drawn from A × I ↔A; we require the index
of that part of the state which is being updated.

We may rewrite the left-hand side of this inequation using the laws of the
relational calculus, the definitions of apply and ovr , and the properties of our
retrieve and promotion relations.

(r ‖ id) o
9 Φ(co)

= (r ‖ id) o
9 cp o

9

id

‖
apply o

9 co

o
9 ovr [by definition of Φ(co)]

⊆ cp o
9

r ‖ id

‖
r ‖ id

o
9

id

‖
apply o

9 co

o
9 ovr [property of cp]

= cp o
9

(r ‖ id) o
9 id

‖
(r ‖ id) o

9 apply o
9 co

o
9 ovr [abiding property]

= cp o
9

r ‖ id

‖
(img(id ‖ ρ) ‖ id) o

9 apply o
9 co

o
9 ovr [id unit]

= cp o
9

r ‖ id

‖
apply o

9 ρ o
9 co

o
9 ovr [property of apply]

⊆ cp o
9

r ‖ id

‖
apply o

9 ao o
9 ρ

o
9 ovr [since A v C]

= cp o
9

id o
9 (r ‖ id)

‖
apply o

9 ao o
9 ρ

o
9 ovr [id unit]

= cp o
9

id

‖
apply o

9 ao

o
9

r ‖ id

‖
ρ

o
9 ovr [abiding property]
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A

C co

ao

(A)

(C)

(ao)

(co)

Figure 18.1 Refining promotion

= cp o
9

id

‖
apply o

9 ao

o
9

img(id ‖ ρ) ‖ id

‖
ρ

o
9 ovr [definition of r ]

= cp o
9

id

‖
apply o

9 ao

o
9 ovr o

9 img(id ‖ ρ) [property of ovr ]

= cp o
9

id

‖
apply o

9 ao

o
9 ovr o

9 r [definition of r ]

= Φ(ao) o
9 r [definition of Φ(ao)]

This shows that the promotion of co correctly refines the promotion of ao, as
in Figure 18.1. The application of this should be obvious: we may specify an
abstract data type, and then calculate its promotion. When we come to refine
the abstract data type, the same calculation promotes the more concrete data
type into a correct refinement of the promoted system.
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Example 18.5 The simple temperature sensor may be used in situations where
there is more than one temperature to record. As a specification, we may take
the obvious promotion of the Fahrenheit data type. If Ind represent the set of
indices used to refer to the individual temperatures, then the state consists of
a total function:

FTDisplay =̂ [ fd : Ind → FTemp ]

The promotion of each operation is simple:

FTPromote
∆FTDisplay
∆FTemp
i? : Ind

θFTemp = fd i?
fd′ = fd ⊕ {i? , θFTemp′}

The promoted operations are

FTDisplayInc =̂ ∃ ∆FTemp • FTPromote ∧ FTInc

FTDisplayDec =̂ ∃ ∆FTemp • FTPromote ∧ FTDec

The concrete state of the new system is described by

CTDisplay =̂ [ cd : Ind → CTemp ]

with the following promotion:

CTPromote
∆CTDisplay
∆CTemp
i? : Ind

θCTemp = cd i?
cd′ = cd ⊕ {i? , θCTemp′}

The refined, promoted operations are

CTDisplayInc =̂ ∃ ∆CTemp • CTPromote ∧ CTInc

CTDisplayDec =̂ ∃ ∆CTemp • CTPromote ∧ CTDec

�





Chapter 19

Refinement Calculus

We have seen that an abstract specification may be refined until a suitable
concrete design is reached. Such a design may be translated into an abstract
programming notation and then refined further, to yield a description in the
language of guarded commands. This description may be translated into a
standard programming language.

Specification (schemas)

e refinement

Design (schemas)

e translation

Algorithm (abstract program)

e refinement

Code (guarded commands)

e translation

Code (programming language)

The abstract programming notation that we will use is a refinement calculus for
the schema language. In this chapter, we will see how to translate schemas into
specification statements, and how to refine these statements towards executable
program code.
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19.1 The specification statement

In our formal specifications, we use schemas to describe operations upon an
abstract data type. An alternative approach involves the use of specification
statements: abstract programs consisting of a precondition, a postcondition,
and a list of variables.

If frame is a list of variables, and precondition and postcondition are both
predicates upon the state, then

frame : [ precondition, postcondition ]

is a specification statement. It describes an operation that begins in a state
satisfying precondition and ends in a state satisfying postcondition. Only those
variables listed in frame are affected.

Example 19.1 In Example 12.10, we used a schema to describe an operation
with a single output: the number of free seats remaining in the box office. This
operation could also be described by the following specification statement:

available! : [ true, available! = free(θBoxOffice) ]

The operation changes the value of available! so that it is equal to the value of
free(θBoxOffice). �

If a specification statement refers to a variable that is not declared in its
frame, then it must leave the value of that variable unchanged.

Example 19.2 The following specification statement describes the operation of
finding an approximate root for a function—a value m such that f (m) is close
to zero—within a particular interval [a, b]. It will fail if no such value exists:

m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.1 < f (m′) < 0.1

a ≤ m′ ≤ b

]

The operation is not allowed to change a, b, or f in order to achieve the desired
result: these variables are not included in the frame. �

A specification statement is a program that terminates if started when
precondition is true, modifies only those variables in frame, and produces a
result satisfying postcondition. We can combine this program with others,
using the constructs of the guarded command language: if · · · fi, do · · · od,
begin · · · end, and ‘ ; ’.
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If the precondition of a specification statement is false, then there is no
guarantee that the corresponding program will terminate. The specification
statement abort is an extreme example of this:

abort = w : [ false, true ]

This represents a program that may fail to terminate whatever the initial state.
Even if it does terminate, we can say nothing about the final state.

Another statement that may produce any result is choose w . In this case,
the program is guaranteed to terminate, but may do anything to the values of
variables in w :

choose w = w : [ true, true ]

The special case in which there are no variables to modify—the list w is empty—
is described by skip:

skip = [ true, true ]

This is guaranteed to terminate, but can change nothing.
The statement magic describes an impossible program: a program guar-

anteed to terminate and establish the postcondition false:

magic = w : [ true, false ]

Notice that this program cannot be described by an operation schema: in the
schema language, an impossible constraint leads to a false precondition.

19.2 Assignment

A program in the refinement calculus may consist of a mixture of specification
statements and code. For example, the following program is the sequential
composition of a specification statement and an assignment:

x, y :

[
x = X

y = Y ,
x′ = X − Y

y ′ = X

]
; x := y − x

Any specification statement may be refined towards code, using a number of
simple laws. An application of the refinement calculus may involve a number of
refinements, beginning with a single specification statement, and ending with
a program consisting only of guarded commands.
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If a program P is correctly refined by another program Q , then we write
P v Q : pronounced ‘P is refined by Q ’. Naturally, refinement is transitive:

P v Q ∧ Q v R ⇒ P v R

In our use of the refinement calculus, each refinement step will correspond to
the application of a law involving the v symbol.

A simple way to refine a specification statement is to strengthen the post-
condition: we are then agreeing to do more than was originally required.

Law 19.1 (strengthen postcondition) If post2 is stronger than post1 whenever
pre is true—that is, if

pre ∧ post2 ⇒ post1

—then

w : [ pre, post1 ] v w : [ pre, post2 ]

�

Example 19.3 Since x < 0.01 ⇒ x < 0.1, we have that

m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.1 < f (m′) < 0.1

a ≤ m′ ≤ b

]

v (strengthen postcondition)

m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.01 < f (m′) < 0.01

a ≤ m′ ≤ b

]

The refinement step has produced a more deterministic program, one that in-
sists upon a closer approximation. �

Another simple way to refine a specification statement is to weaken the
precondition: we have broadened the terms of our guarantee with respect to
termination.

Law 19.2 (weaken precondition) If pre1 ⇒ pre2 then

w : [ pre1, post ] v w : [ pre2, post ]

�
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Example 19.4 Since

f (a) ∗ f (b) ≤ 0 ∧ a ≤ b ⇒ f (a) ∗ f (b) ≤ 0

we have that

m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.01 < f (m′) < 0.01

a ≤ m′ ≤ b

]

v (weaken precondition)

m :

[
f (a) ∗ f (b) ≤ 0

,
−0.01 < f (m′) < 0.01

a ≤ m′ ≤ b

]

We now require an implementation to produce a correct result even when a and
b fail to describe an interval. This may be too much to ask: if b < a, then the
postcondition will not be satisfiable. �

A specification statement is said to be feasible if and only if, whenever
the precondition holds, there is an instantiation of the frame variables which
satisfies the postcondition. For example, if the frame contains x and y of types
X and Y respectively, pre is the precondition, and post is the postcondition,
then

pre ⇒ ∃ x′ : X ; y ′ : Y • post

If a specification is infeasible, then we will not be able to refine it to code.

Example 19.5 If a = 1, b = −3, and f (x) = x, then it is certainly true that

f (a) ∗ f (b) ≤ 0

but there can be no m′ such that a ≤ m′ ≤ b. Hence the implication

f (a) ∗ f (b) ≤ 0 ⇒
∃ m′ : R • −0.01 < f (m′) < 0.01 ∧ a ≤ m′ ≤ b

is false, and the specification statement

m :

[
f (a) ∗ f (b) ≤ 0

,
−0.01 < f (m′) < 0.01

a ≤ m′ ≤ b

]

is infeasible. �
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In the refinement calculus, program variables may be introduced using a
declaration and a constraint; we call the constraint an invariant, as it must be
true whenever the variables are used. The start of a declaration is marked by
the symbol begin, the start of the corresponding variable scope by •, and the
end of a scope by the symbol end.

Law 19.3 (introduce local block) If x is a variable that does not appear in frame
w , and inv is a predicate on x, then

w : [ pre, post ] v begin

var x : T | inv •
w, x : [ pre, post ]

end

Where the scope of the declaration is clear, we may choose to omit the begin
and end symbols. �

Example 19.6

m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.1 < f (m′) < 0.1

a ≤ m′ ≤ b

]

v (introduce local block)

begin

var x, y : T •

x, y , m :

[
f (a) ∗ f (b) ≤ 0

a ≤ b ,
−0.1 < f (m′) < 0.1

a ≤ m′ ≤ b

]
end

�

We require some way of distinguishing between the value of a variable
before an operation, and the value of that same variable afterwards. If x is a
variable that appears in the frame, we write x to denote its value beforehand,
and x′ to denote its value afterwards. There is no need to decorate variables
that are not in the frame, as they cannot be changed by the operation.

A postcondition may include free occurrences of both decorated and un-
decorated after variables, as in the statement

x : [ true, x′ < x ]
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which requires that x be decreased: its value afterwards must be strictly less
than its value before.

If there is a substitution of decorated variables that makes the postcon-
dition an immediate consequence of the precondition, then we may refine the
specification statement to an assignment.

Law 19.4 (assignment introduction) If E is an expression with the same type as
w such that

pre ⇒ post[E/w′, x/x′]

then

w, x : [ pre, post ] v w := E

�

Any variable that is not assigned to will have the same value after the operation
as before, hence the substitution of x for x′ above.

Example 19.7 Since (x′ = x + 1)[x + 1/x′] we have

x : [ true, x′ = x + 1 ] v x := x + 1

�

If the current values of the variables in the frame are enough to make the
postcondition true, then the specification statement can be replaced by skip.

Law 19.5 (skip introduction) If pre ⇒ post[w/w′] then

w : [ pre, post ] v skip

�

Example 19.8 Since x = 5 ∧ y = x3 ⇒ x = 5, we have that

x, y : [ x = 5 ∧ y = x3, x′ = 5 ]

v skip

�
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19.3 Logical constants

It is often convenient to introduce fresh mathematical variables to represent
certain values. For example, in the following program we use variables X and
Y to represent the initial values of x and y :

x, y :

[
x = X

y = Y ,
x′ = X − Y

y ′ = X

]
; x := y − x

The variables X and Y will not form part of the final code; they are merely a
logical device. They are called logical constants, and may be declared as follows:

begin con X : T • prog end

This declaration introduces a logical constant named X , which ranges over T .
Its scope is delimited by the local block begin · · · end.

Example 19.9 The following composition of specification statements describes
a program that must strictly increase the value of variable x twice:

begin
con X • x : [ x = X , x′ > X ]

end ;
begin

con X • x : [ x = X , x′ > X ]
end

The scope of each logical constant is important. The following statement de-
scribes a program with quite different behaviour:

begin
con X • x : [ x = X , x′ > X ] ; x : [ x = X , x′ > X ]

end

�

Logical constants are used to give names to things that already exist. A
simple example is the way in which they may be used to fix the before value of
a variable: for example,

begin con X • x : [ x = X , x′ > X ] end

The variable X takes a value that makes subsequent preconditions true, if pos-
sible. Within the scope of X , there is only one precondition, x = X , and X takes
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on this value: namely, the value of x before the specification statement. This
particular statement is equivalent to

begin con X • x : [ true, x′ > x ] end

More generally, we can introduce a logical constant in much the same way as
we would introduce an existential quantifier.

Law 19.6 (introduce logical constant) If pre1 ⇒ (∃ C : T • pre2), and C is a
fresh name, then

w : [ pre1, post ] v


begin

con C : T • w : [ pre2, post ]
end

�

Conversely, if a logical constant is no longer mentioned in a program,
then we can eliminate its declaration. This corresponds to the elimination of
an existential quantifier.

Law 19.7 (eliminate logical constant) If C occurs nowhere in prog, then

begin

con C : T • prog

end

 v prog

�

Logical constants are rarely found in programming languages, and are cer-
tainly not the kind of constant that one finds in C. In order to declare a more
conventional constant, one can introduce a state variable which has an invari-
ant that says that it never changes. For example, one might wish to declare a
constant whose value is a fixed approximation to π . This is done by introducing
a variable, and then constraining it to be constant:

begin
var pi : R | pi = 22/7 •

...
end
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19.4 Sequential composition

A specification statement describes a task: change the values of the variables
in the frame so that the postcondition is achieved. It is often possible to di-
vide this task into two smaller tasks, to be performed sequentially. Instead of
proceeding directly from pre to post , we use one program to move from pre to
an intermediate result mid . A second program can then be used to move from
mid to post .

The intermediate result mid is characterised by a predicate upon the vari-
ables in the frame. Without loss of generality, suppose that x is the only variable
that is changed during the first task. The first program is then

x : [ pre, mid ]

To obtain the precondition and postcondition for the second program, some
substitutions are necessary.

In the precondition of the second program, we use x to refer to the value of
x when that program starts. This is precisely the value of that variable when the
first program finishes, represented by x′ in mid . The precondition might also
make reference to the value of x when the first program starts, represented by
x in mid . To avoid confusion, we will replace this value with a logical constant
X .

The postcondition is similar to post , except that we can no longer use x to
refer to the value of x when the first program starts. We must replace x with
the same logical constant X . The second program is then

w, x : [ mid[X /x, x/x′], post[X /x] ]

Notice that the second task may involve changing variables other than x.

Law 19.8 (sequential composition introduction) For fresh constants X ,

w, x : [ pre, post ] v



begin

con X •
x : [ pre, mid ] ;

w, x : [ mid[X /x, x/x′], post[X /x] ]
end

The predicate mid must not contain before variables other than x. �

Example 19.10

x : [ true, x′ = x + 2 ]



19.4 / Sequential composition 305

v (sequential composition introduction)

con X •
x : [ true, x′ = x + 1 ] ;

x : [ x = X + 1, x′ = X + 2 ]

�

Example 19.11 Suppose that we want to swap two variables without using a
third variable to store the intermediate value. Suitable code might be developed
as follows:

x, y : [ true, x′ = y ∧ y ′ = x ]

v (sequential composition introduction)

con X1, Y1 : Z •
x, y : [ true, x′ = x − y ∧ y ′ = x ] ; [/]

x, y :

[
x = X1 − Y1

y = X1 ,
x′ = Y1

y ′ = X1

]
[†]

v (sequential composition introduction)

con X2, Y2 •
x, y : [ true, x′ = x − y ∧ y ′ = y ] ; [/]

x, y :

[
x = X2 − Y2

y = Y2 ,
x′ = X2 − Y2

y ′ = X2

]
[‡]

v (assignment introduction)

x := x − y

‡
v (assignment introduction)

y := x + y

†
v (assignment introduction)

x := y − x

Note the use of marginal markers. The / symbol always points to the next
part of the program to be refined. Other marginal markers refer to parts of the
program whose development proceeds at a later point.
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The development is recorded as a flattened tree of refinements. It is not
difficult to see how the tree may be walked in order to extract the code from
the development. If we do this, we obtain

x, y : [ x = X ∧ y = Y , x = Y ∧ y = X ]

v
begin con X1, Y1 : Z •

begin con X2, Y2 •
x := x − y ;

y := x + y

end ;

x := y − x

end

v
x := x − y ;

y := x + y ;

x := y − x

�

If we want to introduce a sequential composition where the mid and post
predicates make no reference to the before variables, then a simpler version of
the rule may be used:

Law 19.9 (simple sequential composition) If the predicates mid and post make
no reference to before variables, then

w, x : [ pre, post ] v x : [ pre, mid ] ; w, x : [ mid[x/x′], post ]

�

We will often wish to introduce a sequential composition and then reduce
one of the two statements to an assignment. There are two ways in which this
can be done, corresponding to the following pair of derived rules.

Law 19.10 (leading assignment)

w, x : [ pre[E/x], post[E/x] ] v x := E ; w, x : [ pre, post ]

�
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Law 19.11 (following assignment)

w, x : [ pre, post ] v w : [ pre, post[E/x′] ] ; x := E

�

These rules are easy to apply. First we decide upon the assignment that is to
be performed, then we calculate the new specification statement.

19.5 Conditional statements

In our abstract programming notation, the language of guarded commands, a
conditional statement takes the following form:

if G1 → com1

� G2 → com2
...

� Gn → comn

fi

Each branch Gi → comi is a guarded command: Gi is the guard, and comi is
the command. When this conditional is activated the guards G1, G2, . . . , Gn are
evaluated, and one of the commands whose guard is true is executed. If no
guard is true, then the program aborts.

Law 19.12 (conditional introduction) If pre ⇒ (G1 ∨ G2 ∨ . . . ∨ Gn) then

w : [ pre, post ] v



if G1 → w : [ G1 ∧ pre, post ]
� G2 → w : [ G2 ∧ pre, post ]
...

� Gn → w : [ Gn ∧ pre, post ]
fi

�

If the specification is required to terminate, then the conditional must not abort:
the precondition must establish that at least one guard is true. Furthermore,
whichever branch is taken must implement the specification, under the assump-
tion that the corresponding guard is true.

We will also employ a generalised form of the conditional statement, in
which the indexing variable may take any finite range:

if i : S � Gi → comi fi
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where S is a finite set.

Law 19.13 (generalised conditional introduction) If pre ⇒ ∃ i : S • Gi and S is
a finite set, then

w : [ pre, post ] v if i : S � Gi → w : [ Gi ∧ pre, post ] fi

�

Example 19.12 Given two variables x and y , we may develop a program that will
ensure that x ≤ y , by preserving their values, or swapping them if necessary:

x, y :


true ,

x ≤ y ∧ x′ = x ∧ y ′ = y

∨
y ≤ x ∧ x′ = y ∧ y ′ = x


v (conditional introduction)

if x ≤ y → x, y :


x ≤ y ,

x ≤ y ∧ x′ = x ∧ y ′ = y

∨
y ≤ x ∧ x′ = y ∧ y ′ = x

 [/]

� y ≤ x → x, y :


y ≤ x ,

x ≤ y ∧ x′ = x ∧ y ′ = y

∨
y ≤ x ∧ x′ = y ∧ y ′ = x)

 [†]

fi

v (strengthen postcondition)

x, y : [ x ≤ y , x ≤ y ∧ x′ = x ∧ y ′ = y ]

v (skip introduction)

skip

We complete the development with

†
v (strengthen postcondition)

x, y : [ y ≤ x, y ≤ x ∧ x′ = y ∧ y ′ = x ]

v (assignment introduction)

x, y := y , x
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Notice that the disjunction of the guards is true, thus validating the introduction
of the conditional. The program is

if x ≤ y → skip
� y ≤ x → x, y := y , x
fi

�

To end this section, we present a pair of laws for manipulating the frame
in a specification statement. If we drop the name of a variable from the frame,
then it cannot change; thus, we may remove the after decoration from any of
its occurrences in the postcondition.

Law 19.14 (contract frame)

w, x : [ pre, post ] v w : [ pre, post[x/x′] ]

�

Conversely, we can expand the frame of a statement by adding additional vari-
ables. These new variables may not be changed by the postcondition.

Law 19.15 (expand frame)

w : [ pre, post ] = w, x : [ pre, post ∧ x′ = x ]

�

19.6 Iteration

In our language of guarded commands, the iteration construct is similar in form
to the conditional statement:

do G1 → com1

� G2 → com2
...

� Gn → comn

od

When this statement is reached, the guards are evaluated and one of the com-
mands whose guard is true is executed. This is repeated until no guard is true,
at which point the statement terminates.
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To see how a refinement law for this construct may be formulated, sup-
pose that inv is an invariant property of the loop: that is, a predicate that must
be true before and after every iteration. Suppose further that G represents the
disjunction of guards: the condition that must be true if the statement is not to
terminate immediately. Such a loop may refine a specification statement that
includes inv in the precondition, and inv ∧ ¬G in the postcondition.

For the refinement to be correct, the loop must be guaranteed to terminate.
It is enough to identify a variant for the loop: an integer-valued function that
must decrease with each iteration, but which never passes zero. If V is such a
function, then the loop

do G → w : [ inv ∧ G, inv[w′/w] ∧ 0 ≤ V [w′/w] < V ] od

will refine the statement w : [ inv , inv[w′/w] ∧ ¬G[w′/w] ]. More formally,
we have the following law:

Law 19.16 (loop introduction)

w :

[
inv ,

¬G[w′/w]
inv[w′/w]

]
v



do

G →

w :

[
G

inv ,
inv[w′/w]

0 ≤ V [w′/w] < V

]
od

�

Example 19.13 Suppose that we have an injective sequence s of integer values,
one of which is our target , and we want to establish where in the sequence it
lies. If we want to put the target ’s index into the variable i , then we can specify
this task as

i : [ target ∈ ran s, s(i′) = target ]

As we don’t have any information on how the members of s are arranged, we
shall have to search s, and we may as well do a linear search, starting at the
beginning and working up.

Consider the variant for the loop that will be required. Since we know that
the target appears in the sequence, we know that #s is an upper bound for the
total number of iterations, and in practice, we hope to do better than this. We
can actually give a precise value to the number of iterations required by using
a logical constant to name the position we are looking for. Since

target ∈ ran s ⇒ ∃ I : Z • s(I ) = target
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we can refine our specification to

begin

conI : 1 . . #s •
i : [ s(I ) = target , s(i′) = target ]

end

Our variant will be I − i , and our invariant will be that I indexes the target , and
that we haven’t passed it by: s(I ) = target ∧ i ≤ I .

In order to set up the pattern for the loop introduction rule, we split the
specification in two, thus:

i : [ s(I ) = target , s(I ) = target ∧ i′ ≤ I ] ;
i : [ s(I ) = target ∧ i ≤ I , s(i′) = target ]

The first specification statement is easily disposed of using the assignment
introduction rule, to yield i := 1. We may then strengthen the postcondition of
the second to obtain

i :

 s(I ) = target

i ≤ I ,

s(i′) = target

s(I ) = target

i′ ≤ I


Now the specification matches the pattern for the application of the loop

rule, we turn the handle, and out pops

do
s(i) ≠ target →

i :


s(I ) = target

i ≤ I

s(i) ≠ target ,

s(I ) = target

i′ ≤ I

0 ≤ I − i′ < I − i


od

The body of the loop is implemented by the assignment i := i +1. Summarising
all this, we have the (entirely obvious) program

i := 1 ; do

s(i) ≠ target →
i := i + 1

od

In this development, the use of a logical constant was a useful device in
developing the variant and the invariant for the loop. Once it was clear what
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these were, the appropriate pattern was set up by splitting the specification into
two, the first part becoming the initialisation, and the second part becoming
the loop itself; the invariant defined what the mid predicate should be. The
postcondition was then strengthened so that it contained the invariant, and
the remainder formed the (negated) guard. �

Example 19.14 Suppose that we wish to initialise an integer array so that every
entry is zero. An array may be modelled mathematically as a total function from
a set of indices to values (in this case, numbers):

ar : (1..n) → N

The initialisation operation has the task of assigning the value 0 to every ele-
ment in the array. Its specification is given by

Init = ar : [ true, ran ar ′ = {0} ]

Our first step in developing the code for this rather simple operation is to
use an obvious transformation of the postcondition:

Init = ar : [ true, ∀ j : 1..n • ar ′ j = 0 ]

The reason for this is that we intend to implement the operation using a loop,
and the universal quantifier points to the way that the loop might be developed.
One strategy for loop development is to take such a quantified expression, and
replace a constant by a variable. The following shorthand helps us in doing
this:

zeroed(i, ar) = ∀ j : 1..i • ar j = 0

The development of the code now follows. The refinement calculus should be
used with a light touch, rather than in this heavy-handed manner; however, we
go into greater detail so that the reader may follow our reasoning.

ar : [ true, zeroed(n, ar ′) ]
v
var j : 1 . . n + 1 •

j , ar : [ true, zeroed(n, ar ′) ]

The variable j will be used as a loop counter; thus it will range from the smallest
element in the domain of ar to just after the highest.

v (simple sequential composition)
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j , ar : [ true, zeroed(j ′ − 1, ar ′) ] ; [/]

j , ar : [ zeroed(j − 1, ar), zeroed(n, ar ′) ] [†]

We introduce the semicolon in order to choose the loop invariant. At the be-
ginning of the loop, and after each iteration, we will have zeroed all the blocks
up, but not including j . The specification statement before the semicolon must
establish the invariant, and the one after must be developed into the loop.

v (assignment introduction)

j := 1

If we set j to 1, then we have zeroed no blocks.
Our development continues with a refinement of †:

†
v (strengthen postcondition)

j , ar : [ zeroed(j − 1, ar), zeroed(j ′ − 1, ar ′) ∧ j ′ = n + 1 ]

Provided that zeroed(j ′ − 1, ar ′) ∧ j ′ = n + 1 ⇒ zeroed(n, ar ′).
Having added the invariant to the postcondition, we can apply the loop

introduction rule:

v (loop introduction)

do j ≠ n + 1 →

j , ar :

[
j ≠ n + 1

zeroed(j − 1, ar) ,
0 ≤ n − j ′ + 1 < n − j + 1

zeroed(j ′ − 1, ar ′)

]
od

The function n − j + 1 is our variant: when we enter the loop with j = 1, we
have n more iterations to perform:

v (following assignment)

ar :

[
j ≠ n + 1

zeroed(j − 1, ar) , zeroed(j , ar ′)

]
; [/]

j := j + 1

In the implementation of the body of the loop, we shall need to increment j .
Since we started j with the value 1, the assignment to j must be done at the end
of the loop.
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The only thing left to do is to free the next element of ar , that is, the j th

element:

v (assignment introduction)

ar := ar ⊕ {j , 0}

There are several small proof obligations to be fulfilled: the more signific-
ant ones are

• zeroed(0, ar)

• zeroed(j − 1, ar) ∧ j = n + 1 ⇒ zeroed(n, ar)

• j ≠ n + 1 ∧ zeroed(j − 1, ar) ⇒ j ≠ n + 1 ∧ zeroed(j , ar ⊕ {j , 0})

The first and third predicates are simple properties of zeroed , and the second
follows from the properties of equality. Summarising our development, we
have shown that Init is refined by

begin
var j : N | 1 ≤ j ≤ n + 1 •

j := 1 ;
do j ≠ n + 1 →

ar := update(ar , j , 0) ;
j := j + 1

od
end

This might be translated into Modula2 as

PROCEDURE Init ;
BEGIN

FOR j := 1 TO n DO ar[j] := 0
END

�

Example 19.15 We would like to develop an algorithm that converts numbers
from a base β to the base 10. For an n +1 digit number, a solution that requires
more than n multiplications is not acceptable.

Take as an example the following binary number: 10011100. It is well
known that it may be converted to the decimal number calculated from the
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following expression:

1 ∗ 27 + 0 ∗ 26 + 0 ∗ 25 + 1 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 0 ∗ 20

= 156

Clearly, the calculation has used a polynomial to relate binary to decimal num-
bers. To express this, suppose for convenience that the number in base β is
presented in an array of n elements, with each digit in a separate element, and
with a1 representing the least significant digit. The elements of the array rep-
resent the coefficients of a polynomial of degree n − 1:

a1 + a2 ∗ β + a3 ∗ β2 + · · · + an ∗ βn−1

How should we develop some code that will evaluate this polynomial for a
particular value of β? A straightforward approach might be to adapt some
code that simply sums the elements of an array. If we insert into each location
i in the array the value of the expression ai ∗ βi−1, then this solution will be
correct; however, it is far from optimal.

A more efficient algorithm may be developed if we recall from numerical
analysis the method known as Horner’s rule. This is based on the identity:

a1 + a2 ∗ β + a3 ∗ β2 + · · · + an ∗ βn−1

= a1 + β ∗ (a2 + β ∗ (· · · β ∗ (an−2 + β ∗ (an−1 + β ∗ an)) · · ·))

The intended algorithm starts from the high-order coefficients and works
downwards. Clearly this requires fewer multiplications than the straightfor-
ward approach. As a formal specification, let’s take the recurrence relation
that a numerical analyst would use:∑n

i=1 ai ∗ βi−1 = H1,n

where

Hn,n = an

Hi,n = ai + β ∗ Hi+1,n for i < n

Now, suppose that we have a number in base β with digits anan−1 . . . a2a1, then
our algorithm must satisfy the specification

d : [ true, d′ =
∑n

i=1 ai ∗ βi−1 ]

and our specification can be rewritten as

d : [ true, d′ = H1,n ]
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The strategy for calculating the code for this algorithm is quite clear: we can
develop a loop which varies the first index of H . It is easy enough to establish
Hn,n, and we want to end up with H1,n, so the loop counter is decreasing, and
the invariant will involve d = Hj ,n, for loop counter j .

d : [ true, d′ = H1,n ]

v
var j : 1 . . n •
d, j : [ true, d′ = H1,n ]

v (sequential composition introduction)

d, j : [ true, d′ = Hj ′,n ] ; [/]

d, j : [ d = Hj ,n, d′ = H1,n ] [†]

v (assignment introduction)

d, j := an, n

The statement labelled † may be further refined:

†
v (strengthen postcondition)

d, j : [ d = Hj ,n, d′ = H1,n ∧ j ′ = 1 ]

v (strengthen postcondition)

d, j : [ d = Hj ,n, d′ = Hj ′,n ∧ j ′ = 1 ]

The second refinement is, of course, an equivalence. We are now ready to in-
troduce a loop:

v (loop introduction)

do

j ≠ 1 →

d, j :

[
j ≠ 1

d = Hj ,n ,
0 ≤ j ′ < j

d′ = Hj ′,n

]
od

The body of the loop is equivalent to the specification statement

d, j : [
(

j ≠ 0

d = Hj+1,n

)
[j − 1/j],

(
0 ≤ j ′ ≤ j

d′ = Hj ′,n

)
[j − 1/j] ]
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which may be further refined as follows:

v (leading assignment)

j := j − 1 ;

d, j :

[
j ≠ 0

d = Hj+1,n ,
0 ≤ j ′ ≤ j

d′ = Hj ′,n

]

v (contract frame)

d :

[
j ≠ 0

d = Hj+1,n ,
0 ≤ j ≤ j

d′ = Hj ,n

]

v (strengthen postcondition)

d : [ j ≠ 0 ∧ d = Hj+1,n, d′ = aj + β ∗ Hj+1,n ]

v (strengthen postcondition)

d : [ j ≠ 0 ∧ d = Hj+1,n, d′ = aj + β ∗ d ]

v (assignment introduction)

d := aj + β ∗ d

Thus, we have derived the program text

begin
var j : 1 . . n •

d, j := an, n ;
do j ≠ 1 →

j := j − 1 ;
d := aj + x ∗ d

od
end

which corresponds to the following procedure:

PROCEDURE Translate ;
BEGIN

d := a[n] ;
FOR j := n DOWNTO 1 DO

d := a[j] + x * d
END

�





Chapter 20

A Telecommunications Protocol

This chapter describes a case study in using abstraction and refinement. The
subject of the study is a telecommunications protocol, Signalling System No. 7,
an international standard for signalling between telephone exchanges.

We begin with an abstract specification of the protocol. This may then
serve as an independent correctness criterion for a subsequent refinement. The
abstraction explains the service offered by the protocol; the refinement explains
how this is to be achieved.

20.1 Specification: the external view

Let M be the set of messages that the protocol handles. The abstract specific-
ation of this protocol is quite small, and we call it the external view :

Ext
in, out : seq M

∃ s : seq M • in = s_out

The state comprises two sequences: the messages that have come in and those
that have gone out. We will use these sequences to keep track of the message
traffic handled by the protocol.

As we shall see, messages will be added to the left-hand end of these se-
quences, so that the oldest messages are to be found towards the right. The
invariant states that the out sequence is a suffix of the in sequence: the pro-
tocol must deliver messages without corruption or re-ordering. The missing
messages are in flight, as it were, in the system. For example, a suitable pair of
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sequences satisfying this invariant would be

in = 〈m5, m4, m3, m2, m1〉 out = 〈m3, m2, m1〉

This models the situation in which five messages have been input to the pro-
tocol, three have been output, and two are still in flight.

Initially, no messages have been sent:

ExtInit =̂ [ Ext ′ | in′ = 〈〉 ]

This forces both InFlight and out to be empty.
We will model two operations, describing the transmission and reception

of messages. New messages are added to the in sequence:

Transmit
∆Ext
m? : M

in′ = 〈m?〉_in
out ′ = out

Messages are received from the in-flight stream, which might not have reached
the destination. Thus, either the output sequence gets one longer (and by the
state invariant, this must be the next message in sequence), or there is no mes-
sage available in flight:

Receive
∆Ext

in′ = in
#out ′ = #out + 1 ∨ out ′ = out

There are many other operations relevant to trunk signalling, but these two will
serve to illustrate our refinement.

20.2 Design: the sectional view

The published description of Signalling System No. 7 is a rather large document;
the specification that we have just produced is exceedingly small. We have
obtained this economy through the use of abstraction, demonstrating that the
specifications of large systems need not themselves be large. The abstraction
of the specification is linked to the detail of the implementation by means of
data refinement.
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As an aid to understanding, we introduce a sectional view. Suppose that
SPC is the set of signalling point codes, identifying points in the network. A
sectional view describes the route that the messages must take: a non-empty
sequence of SPCs, without repetition. Each section in this route may receive
and send messages; those which have been received but not yet sent are said
to be in the section.

The description is formalised in the following specification:

Section
route : iseq SPC
rec, ins, sent : seq(seq M )

route ≠ 〈〉
#route = #rec = #ins = #sent
rec = ins __ sent
front sent = tail rec

where ins represents the sequence of messages currently inside this section,
rec represents the sequence of messages that have been received, and sent
represents the sequence of messages that have been sent.

The expression ins __ sent denotes the pair-wise concatenation of the two
sequences. Thus, if we have that

rec = ins __ sent

then we must also have, for appropriate i , that

rec i = (ins i)_(sent i)

Pairwise concatenation is defined as follows:

[X ]
__ : seq(seq X ) × seq(seq X ) 7→ seq(seq X )

∀ s, t : seq(seq X ) | #s = #t •
∀ i : dom s •

(s __ t)i = (s i)_(t i)

That is, the pairwise concatenation of any two sequences of sequences is the
sequence obtained by concatenating each element of the first sequence with
the corresponding element of the second.

We now rewrite our operations in terms of the new viewpoint. We leave
the route component unspecified in the initialisation: the resulting specification
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may then be strengthened to provide the initialisation for a particular route:

SectionInit
Section′

∀ i : dom route′ • rec′ i = ins′ i = sent ′ i = 〈〉

In Transmit , the new message is received by the first section in the route; that
is, it is added to the sequence head rec :

STransmit
∆Section
m? : M

route′ = route
head rec′ = 〈m?〉_(head rec)
tail rec′ = tail rec
head ins′ = 〈m?〉_(head ins)
tail ins′ = tail ins
sent ′ = sent

The Receive operation should be delivering the message to the output from the
protocol. In the sectional view, this means transferring it to last sent . But where
should this message come from? The answer is that it comes from within the
previous section:

SReceive
∆Section

route′ = route
rec′ = rec
front ins′ = front ins
last ins′ = front(last ins)
front sent ′ = front sent
last sent ′ = 〈last(last ins)〉_(last sent)

In the external view, messages arrive at the destination nondeterministically.
In the sectional view, the nondeterminism is explained by the progress of the
message through the series of sections: For this to make sense, we must add an
operation which moves messages through the series of sections in the route.

We call this operation Daemon, and it chooses nondeterministically a sec-
tion i , which will make progress. Daemon transfers the oldest message in i ’s
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section to the following section, i + 1. Nothing else changes. The successful
part of this operation is:

Daemon0

∆Section

∃ i : 1 . . #route − 1 |
ins i ≠ 〈〉 •
ins′ i = front(ins i)
ins′(i + 1) = 〈last(ins i)〉_ins(i + 1)
∀ j : dom route | j ≠ i ∧ j ≠ i + 1 • ins′ j = ins j

This operation is not part of the user interface. The user cannot invoke Daemon,
but it is essential to our understanding of the system and to its correctness.
How do such operations fit into our view of specification?

We imagine such operations as daemons that work in the background,
invoked nondeterministically. It should be clear that we could dispense with
such operations, but only by adding the required degree of nondeterminism to
the remainder of our specification. The important thing about a daemon is that
its effects are invisible from an abstract point of view. In this specification, the
sectional operation Daemon corresponds to the external operation ΞExt .

We should remark that the specification of the abstract state does not in-
sist that messages actually arrive, since it is possible to satisfy the specification
trivially by insisting that out = 〈〉. This problem could be addressed by adding
an integer-valued variant to the state to measure the progress of a message
through the system. We could then add a constraint to each operation to insist
that the variant is decreased while the message is in flight. This would then be
enough to guarantee delivery.

20.3 Relationship between external and sectional views

We should prove that two views that we have of our protocol are consistent,
both internally and with one another. In our description of the external view,
we insisted that the protocol should deliver messages without corruption or
re-ordering. To retrieve the external view from the sectional view, we have only
to observe that the head of rec corresponds to the sequence in; the last of
sent corresponds to the sequence out ; and the distributed concatenation of ins
corresponds to the discrepancy between them.

The consistency of the external view is summed up by the predicate part
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of the schema Ext :

∃ s : seq M • in = s_out

There must be some sequence of messages s which, when prefixed to the se-
quence out , produces the sequence in.

The consistency of the sectional view depends on the same property hold-
ing true in terms of the concrete model. That is, with head rec in place of in,
last sent in place of out , and the contents of all the sections, in order, in place
of the existentially quantified variable s.

The following inference asserts that this property holds in Section:

Section
head rec = (_/ ins)_(last sent)

We may prove this by induction upon the length of the route, #route. The base
case requires that the result holds for #route = 1:

(_/ ins)_(last sent)
= (_/〈ins 1〉)_(last 〈sent 1〉) [#route = #ins = #sent = 1]

= (ins 1)_(sent 1) [by definition of_/]

= rec 1 [from Section]

= head rec [by definition of head]

The inductive step involves the assumption that

head(front rec) = (_/(front ins))_(last(front sent))

and proceeds as follows:

(_/ ins)_(last sent)
= (_/((front ins)_〈last ins〉))_(last sent) [#ins = #route > 1]

= (_/(front ins))_(last ins)_(last sent) [by the definition of_/]

= (_/(front ins))_(last rec) [from Section]

= (_/(front ins))_(last (tail rec)) [#rec = #route > 1]

= (_/(front ins))_(last (front sent)) [from Section]

= head(front rec) [by the induction hypothesis]

= head rec [by a property of head]

The sectional view is more detailed than the external view, and the above
result helps to demonstrate that it is in some way a refinement. The proof of
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the theorem is simple, increasing our confidence in our abstractions. We can
explain the refinement by documenting the retrieve relation:

RetrieveExtSection
Ext
Section

in = head rec
out = last sent

This may be used to prove that the various operations on the concrete sectional
view are correct with respect to their corresponding abstractions. Notice that
the retrieve relation is actually functional from concrete to abstract. We must
prove that the retrieve relation is a total function:

∀ Section • ∃1 Ext • RetrieveExtSection

We must prove that the initialisation is correct,

∀ Ext ′; Section′ • SectionInit ∧ RetrieveExtSection′ ⇒ ExtInit

that the transmit and receive operations are correct,

∀ Ext ; Section • pre Transmit ∧ RetrieveExtSection ⇒ pre STransmit

∀ Ext ; Ext ′; Section; Section′ •
pre Transmit ∧ RetrieveExtSection ∧ STransmit ∧

RetrieveExtSection′ ⇒
Transmit

∀ Ext ; Section • pre Receive ∧ RetrieveExtSection ⇒ pre SReceive

∀ Ext ; Ext ′; Section; Section′ •
pre Receive ∧ RetrieveExtSection ∧ SReceive ∧ RetrieveExtSection′ ⇒

Receive

and that the daemon is correct:

∀ Ext ; Section • pre ΞExt ∧ RetrieveExtSection ⇒ pre Daemon

∀ Ext ; Ext ′; Section; Section′ •
pre ΞExt ∧ RetrieveExtSection ∧ Daemon ∧ RetrieveExtSection′ ⇒

ΞExt
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20.4 Enriching the model

The additional detail in the sectional view allows us to introduce concepts that
were not relevant in the external view. For example, we may wish to add a new
signalling point to the route. This operation has no relevance at the higher
level, and cannot be expressed in terms of the abstract model.

To describe such an operation, we require an operator on sequences that
allows us to insert an additional element after a given point: for example,

〈a, b, d, e, f 〉 insert (2, c) = 〈a, b, c, d, e, f 〉

Such an operator may be defined by

[X ]
insert : seq X × (N × X ) → seq X

∀ s : seq X ; i : N; x : X •
s insert (i, x) = (1 . . i) / s_〈x〉_squash((1 . . i) � s)

where squash takes a function and yields a valid sequence, as in Chapter 9.
The InsertSection operation inserts a new SPC after a given point in the

route. The new section has no messages in it, but it is glued into the route by
making its input stream the output stream of the preceding section, and its
output stream the input stream of the following section:

InsertSection
∆Section
s?, new? : SPC

s? ∈ ran(front route)
new? ∉ ran route

∃ i : 1 . . (#route − 1) |
i = route∼ s? •

route′ = route insert (i, new?)
rec′ = rec insert (i, sent i)
ins′ = ins insert (i, 〈〉)
sent ′ = sent insert (i, rec i + 1)

To end the chapter, we prove a useful result about our design: messages
in transit are unaffected by the insertion of a new section. If ins and ins′ are
related according to the definition of InsertSection above, then

_/ ins′
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=_/(ins insert (i, 〈〉)) [InsertSection]

=_/((1 . . i / ins)_〈〈〉〉_(squash(1 . . i � ins))) [definition of insert ]

=_/(1 . . i) / ins_
_/〈〈〉〉_
_/ squash((1 . . i) � ins)

[definition of_/]

=_/(1 . . i / ins)_

〈〉_
_/ squash(1 . . i � ins)

[definition of_/]

=_/(1 . . i / ins)_
_/ squash(1 . . i � ins)

[property of 〈〉]

=_/((1 . . i / ins)_squash(1 . . i � ins)) [property of_/]

=_/ ins [properties of / and �]

This shows that messages in transit are not affected by the insertion of a new
signalling point in the route. That is, the lower-level operation of manipulating
the route in this way is invisible at the higher level of abstraction. The operation
is therefore a daemon; this is important for the integrity of the abstraction.





Chapter 21

An Operating System Scheduler

In this chapter we describe a case study in the specification and design of a
piece of software. The accent is on rigorous development, and we try to keep
the overt formality to a minimum. An important aspect is the use of an auxiliary
data type and its refinement; this is a common practice in large projects, where
re-use is important.

The subject of the study is a scheduler : the component of an operating
system that determines which process should be run, and when. We describe
the service that the scheduler provides to the remainder of the operating sys-
tem: the way in which it controls access to a processor. We then describe an
implementation that provides this service.

21.1 Processes

The purpose of an operating system is to allow many processes to share the
resources of a computer. In our system, there is a single processor to be shared,
and this is made available to one process at a time. We say that a process is
running when it is making use of the processor. The purpose of a scheduler is
to determine which process is running, and when.

Processes must be created before they may be scheduled, and may be
destroyed after they have served their purpose. While they exist, they may
occupy one of three states:

Current Since there is a single processor, at any time, there will be at most one
process running. We will call this the current process.

Ready There may be several processes that are waiting to use the processor.
These processes are said to be ready.
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Blocked There may be some processes that are waiting, not for the processor,
but for a different resource or event. These processes are said to be
blocked.

While a process is running it has exclusive use of the processor. At some point,
control will be passed to the kernel. This may happen because the current
process has issued a service call, or it may be that the kernel interrupts it.
Whatever, the scheduler will be asked to dispatch another process.

21.2 Specification

Our system will deal with up to n processes, where n is a natural number.

n : N

Each process will be associated with a process identifier, or pid . For our pur-
poses, a pid can be represented by a number between 1 and n.

PId == 1 . . n

Zero is used to represent the ‘null process’: a marker that says that there is no
process where this value is found.

nullPId == 0

An ‘optional pid’ can be either a true pid or the null pid:

OptPId == PId ∪ {nullPId}

The abstract state of the scheduler classifies every process in one of four ways:
a process is either the current process, or it is ready, blocked, or free. There
might not be a current process:

AScheduler
current : OptPId
ready : P PId
blocked : P PId
free : P PId

〈{current} \ {nullPId},
ready ,
blocked,
free〉 partition PId
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The free set describes those process identifiers that are not currently in
use. Initially, all process identifiers are free, and there is no current process:

ASchedulerInit
AScheduler ′

current ′ = nullPId
ready ′ = ∅
blocked′ = ∅
free′ = PId

If there is no current process, then any process that is ready may be dispatched
to the processor:

ADispatch
∆AScheduler
p! : PId

current = nullPId
ready ≠ ∅
current ′ ∈ ready
ready ′ = ready \ {current ′}
blocked′ = blocked
free′ = free
p! = current ′

Any process which is dispatched is permitted to execute for a period of time
before being interrupted. When this time period expires, it is returned to the
set of ready processes:

ATimeOut
∆AScheduler
p! : PId

current ≠ nullPId
current ′ = nullPId
ready ′ = ready ∪ {current}
blocked′ = blocked
free′ = free
p! = current

The role of the nullPId value as place-holder should now be obvious.
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If the current becomes blocked, it is removed and added to the set of
blocked processes:

ABlock
∆AScheduler
p! : PId

current ≠ nullPId
current ′ = nullPId
ready ′ = ready
blocked′ = blocked ∪ {current}
free′ = free
p! = current

A blocked process may be woken up. This is the system signalling that the
required resource is now available. The woken process must wait its turn for
scheduling, so it is added to the set of ready processes:

AWakeUp
∆AScheduler
p? : PId

p? ∈ blocked
current ′ = current
ready ′ = ready ∪ {p?}
blocked′ = blocked \ {p?}
free′ = free

When a process is created, an identifier must be assigned from the set of free
identifiers. Clearly, the free set must be non-empty for this to be possible:

ACreate
∆AScheduler
p! : PId

free ≠ ∅
current ′ = current
ready ′ = ready ∪ {p!}
blocked′ = blocked
free′ = free \ {p!}
p! ∈ free

At the end of its life, a process may be destroyed. If the designated process
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is the current process, then afterwards there is no current process, and the
process identifier becomes available for further use.

ADestroyCurrent
∆AScheduler
p? : PId

p? = current
current ′ = nullPId
ready ′ = ready
blocked′ = blocked
free′ = free ∪ {p?}

If the process is ready, it is destroyed and the identifier becomes available for
further use:

ADestroyReady
∆AScheduler
p? : PId

p? ∈ ready
current ′ = current
ready ′ = ready \ {p?}
blocked′ = blocked
free′ = free ∪ {p?}

The designated process might be a blocked process; again, it is destroyed, and
the identifier becomes available again:

ADestroyBlocked
∆AScheduler
p? : PId

p? ∈ blocked
current ′ = current
ready ′ = ready
blocked′ = blocked \ {p?}
free′ = free ∪ {p?}

The destroy operation comprises these three cases:

ADestroy =̂ ADestroyCurrent ∨ ADestroyReady ∨ ADestroyBlocked
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21.3 Chains

Our scheduler is a piece of low-level system software, and its implementation
may use only very simple facilities. We intend to write a program with a simple
data structure using an array and a few counters. If we were using a high-
level programming language, we might well use a linked list implemented with
pointers. As it is, we must implement our linked list directly.

A chain is a finite injection from PId to PId with a unique start and a unique
end. The start is a pid that is in the domain of the injection but not the range;
the end is a pid that is in the range but not the domain. We will include both
the start and the end of a chain as components in a schema that characterises
the data type of chains. For convenience, we will include another component,
set , to identify the set of all pids that appear:

Chain
start , end : OptPId
links : PId 7 7) PId
set : F PId

set = dom links ∪ ran links ∪ ({start} \ {nullPId})
links = ∅ ⇒ start = end
links ≠ ∅ ⇒

{start} = (dom links) \ ran links

{end} = (ran links) \ dom links
∀ e : set | e ≠ start • start , e ∈ links+

The final part of the data type invariant insists that the elements of the chain
are connected, in the sense that every one may be reached from the start pid by
applying the function links a finite number of times. This is enough to guarantee
the uniqueness of the start and end elements.

For convenience, we use the null pid to represent the start and end points
of an empty chain. With the above invariant, it is the case that

set = ∅ ⇒ start = nullPId ∧ end = nullPId

The initial state of a chain is described by the following schema:

ChainInit
Chain′

start ′ = nullPId
end′ = nullPId
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We will define three operations on elements of this data type. The first
describes the effect of pushing an element onto the end of a chain. There are
two cases to consider. If there is no end point, then the injection must be empty,
and the new element will become the end point:

PushEmpty
∆Chain
p? : PId

end = nullPId
end′ = p?
links′ = links

If there is an end point, then we update the chain so that the end points to the
new element:

PushNonEmpty
∆Chain
p? : PId

end ≠ nullPId
links′ = links ∪ {end , p?}

A successful push operation is then

Push =̂ PushEmpty ∨ PushNonEmpty

Our second operation describes the effect of popping an element from the
front of a chain; this will be successful if there is at least one element present.
Again, there are two cases to consider. If the chain has only one element—if
links must be empty but start is not null—then the new start will be null:

PopSingleton
∆Chain
p! : PId

start ≠ nullPId
links = ∅
start ′ = nullPId
links′ = links
p! = start

Notice that the new value of end is determined by the state invariant.
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If there is more than one element in the chain, then the start element is
provided as output, and the start point moved along the chain.

PopMultiple
∆Chain
p! : PId

links ≠ ∅
start ′ = links start
links′ = {start} � links
p! = start

A successful pop operation is then

Pop =̂ PopSingleton ∨ PopMultiple

Our third operation describes the effect of deleting an element from a
chain. If this element is the first element in the chain, then the delete operation
has an effect that is similar to Pop:

DeleteStart
∆Chain
p? : PId

p? = start
∃ p! : PId • Pop

Notice how we simply ignore the popped element, hiding the output from the
Pop operation within an existential quantification.

If the designated element is at the end of the chain, then the effect is
different. The last link in the chain simply disappears:

DeleteEnd
∆Chain
p? : PId

p? ≠ start
p? = end
links′ = links � {end}

The disappearance is described by range subtraction; the data type invariant is
enough to determine the new value of end .
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links p?
~

p? links p?

Figure 21.1 A middle element

If the designated element is in the chain, but at neither end, then the
effect is different again. Consider the situation pictured in Figure 21.1. The
previous element—which is identified as links∼ p?—will be mapped to the next
element—which is identified as links p?. In the following schema, p? itself is
removed using domain restriction:

DeleteMiddle
∆Chain
p? : PId

p? ≠ start
p? ≠ end
p? ∈ set
links′ = {p?} � links ⊕ {links∼ p? , links p?}

A successful delete operation is then

Delete =̂ DeleteStart ∨ DeleteMiddle ∨ DeleteEnd

21.4 Design

We will now formulate a design for the scheduler based upon the chain data
type. Our design will involve three chains: one each for the sets of ready,
blocked, and free processes.

ReadyChain =̂
Chain[rstart/start , rend/end, rlinks/links, rset/set]

BlockedChain =̂
Chain[bstart/start , bend/end, blinks/links, bset/set]

FreeChain =̂
Chain[fstart/start , fend/end, flinks/links, fset/set]
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The initial states of the ready and blocked chains are defined in terms of
the initialisation schema ChainInit :

ReadyChainInit =̂
ChainInit[rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

BlockedChainInit =̂
ChainInit[bstart ′/start ′, bend′/end′, blinks′/links′, bset ′/set ′]

The free chain, however, is initially full:

FreeChainFull
FreeChain

fset ′ = PId

We will require push and pop operations on the ready and free chains,
and push and delete operations on the blocked chain. We may define these by
renaming the components of the corresponding operations on Chain:

PushReadyChain =̂
Push[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PopReadyChain =̂
Pop[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

DeleteReadyChain =̂
Delete[rstart/start , rend/end, rlinks/links, rset/set ,

rstart ′/start ′, rend′/end′, rlinks′/links′, rset ′/set ′]

PushBlockedChain =̂
Push[bstart/start , bend/end, blinks/links, bset/set ,

bstart ′/start ′, bend′/end′, blinks′/links′, bset ′/set ′]

DeleteBlockedChain =̂
Delete[bstart/start , bend/end, blinks/links, bset/set ,

bstart ′/start ′, bend′/end′, blinks′/links′, bset ′/set ′]

PushFreeChain =̂
Push[fstart/start , fend/end, flinks/links, fset/set ,

fstart ′/start ′, fend′/end′, flinks′/links′, fset ′/set ′]

PopFreeChain =̂
Pop[fstart/start , fend/end, flinks/links, fset/set ,

fstart ′/start ′, fend′/end′, flinks′/links′, fset ′/set ′]
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The state of the concrete scheduler comprises the three chains, together
with an optional current process:

CScheduler
ReadyChain
BlockedChain
FreeChain
current : OptPId
chainstore : PId → OptPId

〈{current} \ {nullPId}, rset , bset , fset〉 partition PId
rlinks = rset / chainstore . rset
blinks = bset / chainstore . bset
flinks = fset / chainstore . fset
current ≠ nullPId ⇒ chainstore current = nullPId

It is also useful to identify the working space used: the component chainstore
is the union of the three chain functions, plus an optional map to nullPId .

Initially, there is no current process, and all chains are empty:

CSchedulerInit
CScheduler ′

ReadyChainInit
BlockedChainInit
FreeChainFull

current ′ = nullPId

When a process is dispatched to the processor, the ready chain is popped;
the result becomes the current process.

CDispatch
∆CScheduler
p! : PId
ΞBlockedChain
ΞFreeChain

current = nullPId
rset ≠ ∅
PopReadyChain
current ′ = p!
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When the current process times out, it is pushed onto the ready chain. If there
is no such process, this is impossible.

CTimeOut
∆CScheduler
p! : PId
ΞBlockedChain
ΞFreeChain

current ≠ nullPId
PushReadyChain[p!/p?]
current ′ = nullPId
p! = current

When the current process is blocked, it is pushed onto the blocked chain. Again,
if there is no such process, this is impossible.

CBlock
∆CScheduler
p! : PId
ΞReadyChain
ΞFreeChain

current ≠ nullPId
PushBlockedChain[p!/p?]
current ′ = nullPId
p! = current

When a blocked process is woken up, it is pushed onto the ready chain:

CWakeUp
∆CScheduler
p? : PId
ΞFreeChain

p? ∈ bset
DeleteBlockedChain
PushReadyChain
current ′ = current

For this operation to be successful, it must be applied only when the process
identifier in question is present in the blocked chain.
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When a process is created, an identifier is popped off the free chain and
pushed onto the ready chain.

CCreate
∆CScheduler
p! : PId
ΞBlockedChain

fset ≠ ∅
current ′ = current
PopFreeChain
PushReadyChain[p!/p?]

Since PushReadyChain expects an identifier as input, we use schema renaming
to capture the effect of process creation: the identifier in question is not chosen
by the environment of the scheduler, but is instead supplied as output.

If the current process is destroyed, then the ready and blocked chains are
unaffected. The process identifier is pushed onto the free chain:

CDestroyCurrent
∆CScheduler
p? : PId
ΞReadyChain
ΞBlockedChain

p? = current
current ′ = nullPId
PushFreeChain

If a process is destroyed when ready, then the current process and the blocked
chain are unaffected. The appropriate identifier is deleted from the ready chain
and pushed onto the free chain:

CDestroyReady
∆CScheduler
p? : PId
ΞBlockedChain

p? ∈ rset
current ′ = current
DeleteReadyChain
PushFreeChain
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If a process is destroyed when blocked, then the current process is again
unaffected. The identifier is deleted from the blocked chain and pushed onto
the free chain:

CDestroyBlocked
∆CScheduler
p? : PId
ΞReadyChain

p? ∈ bset
current ′ = current
DeleteBlockedChain
PushFreeChain

21.5 Correctness of the design step

To see how the abstract and concrete descriptions are related, consider the
following abstract state:

current = 3

ready = {2, 4, 6}
blocked = {5, 7}
free = {1, 8, 9, 10}

There are many concrete states that correspond to this; one possibility is

current = 3

chainstore = {1 , 8, 2 , 6, 3 , 0, 4 , 2, 5 , 0,
6 , 0, 7 , 5, 8 , 9, 9 , 10, 10 , 0}

rstart = 4
rend = 6
rlinks = {4 , 2, 2 , 6}
rset = {2, 4, 6}
bstart = 7
bend = 5
blinks = {7 , 5}
bset = {5, 7}
fstart = 1
fend = 10
flinks = {1 , 8, 8 , 9, 9 , 10}
fset = {1, 8, 9, 10}
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Figure 21.2 Chains

This configuration is illustrated in Figure 21.2.

The connection between the concrete and abstract descriptions is described
by the following schema:

RetrScheduler
AScheduler
CScheduler

ready = rset
blocked = bset
free = fset

This is a functional refinement: the retrieve relation is functional from concrete
to abstract.

To show that this refinement is correct, we have only to confirm the func-
tionality of the retrieve relation,

CScheduler ` ∃1 AScheduler • RetrScheduler
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and then check the simplified requirements for initialisation and correctness:

CSchedulerInit ∧ Retr ′ ` ASchedulerInit

pre AOp ∧ Retr ∧ COp ∧ Retr ′ ` AOp

The correctness requirement should be checked for every pair of abstract and
concrete operations.
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A Bounded Buffer Module

In this chapter we present a rigorous development of a bounded buffer : a finite
data store that behaves as a first-in first-out queue. We begin by describing
the behaviour of the module as an abstract data type, using the language of
schemas. This is refined to another description that is more suggestive of a
programming language implementation. This description is then translated
into the refinement calculus and refined to code.

22.1 Specification

A bounded buffer is a data store that may hold a finite number of values. It
behaves as a first-in first-out queue: values leave in the order in which they
arrive. We will develop a programming language implementation of a bounded
buffer with three operations:

• BufferInit, an initialisation

• BufferIn, providing input to the buffer

• BufferOut, accepting output from the buffer

Each of these operations will be described at three levels of abstraction: as part
of a specification, as part of a design, and as part of an implementation.

At the specification level, the state of a bounded buffer will include three
components:

• buffer : a sequence of values

• size: the number of values present

• max size: an indication of the buffer’s capacity
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The sequence buffer , and the state itself, will use a generic parameter X
to refer to the type of values to be stored:

Buffer[X ]
buffer : seq X
size : N
max size : N1

size = #buffer
size ≤ max size

The number of values present is equal to the length of the sequence, and must
never exceed the maximum buffer size.

At initialisation, the bounded buffer is empty: buffer is equal to the empty
sequence and size is zero:

BufferInit[X ]
Buffer ′[X ]

buffer ′ = 〈〉

The value of max size is left unconstrained: a suitable value should be chosen
when the buffer is instantiated.

The capacity of the buffer cannot be changed after instantiation; this fact
is recorded as an invariant in the following schema:

UpdateBuffer[X ]
Buffer[X ]
Buffer ′[X ]

max size′ = max size

If the buffer is not full, an item may be inserted:

BufferIn0[X ]
UpdateBuffer[X ]
x? : X

size < max size
buffer ′ = buffer _〈x?〉

The new value is appended to the end of sequence buffer .
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Extracting an item is possible only if the buffer is not empty; the value
obtained is the one at the head of buffer :

BufferOut0[X ]
UpdateBuffer[X ]
x! : X

buffer ≠ 〈〉
buffer ′ = tail buffer
x! = head buffer

These schemas represent partial operations: they describe the effect of a suc-
cessful insertion and a successful extraction, respectively.

To provide a more informative interface to our data type, we consider a
pair of error cases, each with its own report. We introduce a free type of reports
with three elements:

Report ::= ok | full | empty

ok will be used to indicate a favourable outcome to an operation, full will be
used to indicate that the buffer is full, and empty will be used to indicate that
the buffer is empty.

We include a successful report as the single output component in a schema
with no constraint:

Success
report ! : Report

report ! = ok

while the other reports are associated with predicates upon the current state.
The error report full may be obtained only if size is equal to max size:

BufferInError[X ]
ΞBuffer[X ]
report ! : Report

size = max size
report ! = full

The inclusion of ΞBuffer[X ] indicates that the state of the buffer is unchanged
by this operation.
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Operation Precondition

BufferInit true

BufferIn0 size < max size

BufferInError size = max size

BufferIn true

BufferOut0 buffer ≠ 〈〉
BufferOutError buffer = 〈〉

BufferOut true

Table 22.1 Preconditions in the bounded buffer specification

The report empty may be obtained only if the sequence buffer is equal to
the empty sequence:

BufferOutError[X ]
ΞBuffer[X ]
report ! : Report

buffer = 〈〉
report ! = empty

Again, the state of the buffer is left unchanged.

We may define total versions of the input and output operations:

BufferIn[X ] =̂
(BufferIn0[X ] ∧ Success) ∨ BufferInError[X ]

BufferOut[X ] =̂
(BufferOut0[X ] ∧ Success) ∨ BufferOutError[X ]

A simple precondition analysis will confirm that the input operation will be suc-
cessful unless the buffer is full, and that the output operation will be successful
unless the buffer is empty.

The preconditions associated with these operations are summarised in
Table 22.1. Notice that the input operation is total on valid states of the system,
as the remaining possibility—that the current buffer size is greater than the
capacity—is outlawed by the state invariant.
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22.2 Design

We may now present a more concrete description of the bounded buffer: a
design for implementation. Our description is based upon the idea of a circular
array: an array in which the two ends are considered to be joined. We will
maintain two indices into this array, a bottom and a top, to delimit the values
that are of interest. This part of the array is then a concrete representation of
the bounded buffer.

At the design level, there are five components in the state schema:

• array : a sequence of values

• max size: the capacity of the buffer

• bot : the index of the first value stored

• top: the index of the last value stored

• size: the number of values stored

Although the circular array is modelled as a sequence, this sequence will be
used in a way that reflects our design intentions:

Array[X ]
array : seq X
max size : N1

bot , top : N
size : N

bot ∈ 1 . . max size
top ∈ 1 . . max size
size ∈ 0 . . max size
#array = max size
size mod max size = (top − bot + 1) mod max size

When the buffer is full, we have size = max size; when the buffer is empty, we
have size = 0. In either of these two extremes, it is the case that

(top − bot + 1) mod max size = 0

Initially,

InitArray[X ]
Array ′[X ]

size′ = 0
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As in the specification, we will insist that the capacity of the buffer cannot be
changed after installation:

UpdateArray[X ]
Array[X ]
Array ′[X ]

max size′ = max size

Since max size is included as part of the design state, the invariant property is
exactly the same.

22.3 A retrieve relation

The connection between concrete and abstract states is a simple one. If we cut
the circular buffer immediately below the bot mark, and then straighten it out,
we will find that the first size elements are the same as those in the abstract
buffer. Alternatively, if we shift the circular buffer so that bot occurs at position
1, then trim away the waste, then we have the abstract buffer.

To help us in writing the retrieve relation, we introduce a shift operator
on sequences: � . We can shift an empty sequence indefinitely, but it will
still be empty.

n � 〈〉 = 〈〉

If we shift a sequence by no places at all, then we leave it unchanged:

0 � s = s

If we shift a non-empty sequence by one place, the first becomes the last:

1 � (〈x〉_s) = s_〈x〉

A suitable generic definition would be

[X ]
� : N × seq X → seq X

∀ n : N; x : X ; s : seq X •
n � 〈〉 = 〈〉 ∧
0 � s = s ∧
(n + 1) � (〈x〉_s) = n � (s_〈x〉)
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Figure 22.1 A circular array with pointers

Returning to the retrieve relation, consider the circular buffer shown in
Figure 22.1. To extract the abstract object represented by this buffer, we may
shift the concrete sequence by two places, and then restrict the result to the
indices 1 . . 4. That is, we extract

(1 . . 4) / (2 � 〈1, 2, 3, 4, 5, 6, 7, 8〉)
= (1 . . 4) / 〈3, 4, 5, 6, 7, 8, 1, 2〉
= 〈3, 4, 5, 6〉

In general we have the retrieve relation

RetrieveBuffer[X ]
Buffer[X ]
Array[X ]

buffer = (1 . . size) / ((bot − 1) � array)

Notice that the retrieve relation is a total, surjective function, so that we can
calculate the data refinement.



352 22 / A Bounded Buffer Module

The successful part of the input operation may be calculated as

ArrayIn0[X ]
UpdateArray[X ]
x? : X

#((1 . . size) / ((bot − 1) � array)) < max size
((1 . . size′) / ((bot ′ − 1) � array ′))

= ((1 . . size) / ((bot − 1) � array))_〈x?〉

We would like to simplify the predicate part of this schema, particularly the
parts involving the following expression:

(1 . . size) / ((bot − 1) � array)

We can prove that the value of the first of these parts is equal to the number
of elements in the buffer: that is, size.

#((1 . . size) / ((bot − 1) � array))
= #(dom((1 . . size) / ((bot − 1) � array)))

[the size of a function = the size of its domain]

= #((1 . . size) ∩ dom((bot − 1) � array))
[property of domain restriction]

= #((1 . . size) ∩ dom array)
[property of shifting]

= #((1 . . size) ∩ (1 . . max size))
[consequence of the state invariant]

= #(max{1, 1} . . min{size, max size})
[property of intervals]

= #(1 . . min{size, max size})
[maximum of a singleton set]

= #(1 . . size)
[consequence of the state invariant]

= size − 1 + 1

[property of intervals]

= size

[arithmetic]

To simplify the second predicate in the schema, we will make use of a simple
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property of sequences. If we consider the expression

(1 . . m / s)_〈x〉

we notice that, if m ≤ #s, the constructed sequence has m + 1 elements, and
also that its m + 1th element is x. Thus for any m ≤ #s, we have

(1 . . m / s)_〈x〉 = (1 . . m + 1) / (s ⊕ {m + 1 , x})

The overriding operator ensures that the last element in the sequence is x.
We may now simplify the second predicate:

(1 . . size′) / (bot ′ − 1 � array ′) =
((1 . . size) / (bot − 1 � array))_〈x?〉

a (1 . . size′) / (bot ′ − 1 � array ′) =
(1 . . size + 1) / ((bot − 1 � array) ⊕ {size + 1 , x?})

[property of sequences]

⇐ size′ = size + 1 ∧
bot ′ − 1 � array ′ = (bot − 1 � array) ⊕ {size + 1 , x?}

[property of domain restriction]

a size′ = size + 1 ∧
bot ′ − 1 � array ′ =

bot − 1 � (array

⊕
{(size + 1 + bot − 1 − 1 mod #array) + 1 , x?}

[property of shifting]

⇐ size′ = size + 1 ∧ bot ′ = bot ∧
array ′ = array ⊕ {(size + bot − 1 mod #array) + 1 , x?}

[arithmetic and a property of shifting]

a size′ = size + 1 ∧ bot ′ = bot ∧
array ′ = array ⊕ {(size + bot − 1 mod max size) + 1 , x?}

[consequence of the state invariant]

a size′ = size + 1 ∧ bot ′ = bot ∧
array ′ =

array

⊕
{(size mod max size + bot − 1 mod max size) + 1 , x?}
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[arithmetic]

a size′ = size + 1 ∧ bot ′ = bot ∧
array ′ =

array

⊕
{((top − bot + 1) mod max size + bot − 1 mod max size) + 1

,
x?}

[the state invariant]

a size′ = size + 1 ∧
bot ′ = bot ∧
array ′ = array ⊕ {(top − bot + 1 + bot − 1 mod max size) + 1 , x?}

[arithmetic]

a size′ = size + 1 ∧
bot ′ = bot ∧
array ′ = array ⊕ {(top mod max size) + 1 , x?}

[arithmetic]

⇐ size′ = size + 1 ∧
bot ′ = bot ∧
top′ = (top mod max size) + 1 ∧
array ′ = array ⊕ {top′ , x?}

[property of equality]

The first step in the derivation is contingent upon size ≤ #array , which is a
consequence of the state invariant.

We have found a stronger condition that shows how we can update the
concrete state to achieve the abstract effect. The size of the buffer is increased
by 1; bot is unchanged; top is moved one place; and the new element is added
at the new top of the buffer.

The result of our calculation is a concrete operation schema that describes
the effect of a successful input:
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ArrayIn0[X ]
UpdateArray[X ]
x? : X

size < max size
size′ = size + 1
bot ′ = bot
top′ = (top mod max size) + 1
array ′ = array ⊕ {top′ , x?}

The error case for the concrete operation is easily calculated. A simple
substitution into the abstract schema yields:

ArrayInError[X ]
ΞArray[X ]
report ! : Report

#((1 . . size) / ((bot − 1) � array)) = max size
report ! = full

The calculation that we performed earlier has given us a simplification of the
first predicate:

ArrayInError[X ]
ΞArray[X ]
report ! : Report

size = max size
report ! = full

The total form of the input operation is then described by

ArrayIn[X ] =̂
(ArrayIn0[X ]
∧
Success)

∨
ArrayInError[X ]

A similar calculation yields the concrete form of the output operation:
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ArrayOut0[X ]
UpdateArray[X ]
x! : X

1 . . size / (bot − 1 � array) ≠ 〈〉
(1 . . size′ / (bot ′ − 1 � array ′) =

tail (1 . . size / (bot − 1 � array))
x! = head (1 . . size / (bot − 1 � array))

The first predicate is easily simplified:

1 . . size / (bot − 1 � array) ≠ 〈〉

a #(1 . . size / (bot − 1 � array)) ≠ 0

[property of sequences]

a size ≠ 0

[previous calculation]

To simplify the second predicate, we observe that the right-hand expression
may be rewritten as follows:

tail (1 . . size / (bot − 1 � array))

= squash (2 . . size / (1 . . size / (bot − 1 � array)))
[definition of tail]

= squash (2 . . size / (bot − 1 � array))
[property of domain restriction]

= squash (1 . . size − 1 / (1 � (bot − 1 � array)))
[by a property of shifting]

= squash (1 . . size − 1 / (bot � array))
[property of shifting]

= 1 . . size − 1 / (bot � array)
[property of squashing]

The second predicate may then be simpified:

1 . . size′ / (bot ′ − 1 � array ′) = tail (1 . . size / (bot − 1 � array)

a 1 . . size′ / (bot ′ − 1 � array ′) = 1 . . size − 1 / (bot � array)
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[previous calculation]

⇐ size > 0 ∧ size′ = size − 1 ∧
bot ′ = (bot mod max size) + 1 ∧
array ′ = array

[property of equality]

The right-hand side of the third predicate can be rewritten as follows:

head (1 . . size / (bot − 1 � array))

= (1 . . size / (bot − 1 � array)) 1 [provided that size ≠ 0]

= (bot − 1 � array) 1 [provided that size ≠ 0]

= array bot [property of shifting]

Provided that the buffer is not empty, we should decrement the size; increment
bot ; leave top alone; and output the element that was indexed by bot .

Using these calculations to simplify the operation schema that describes
the concrete output operation, we obtain

ArrayOut0[X ]
UpdateArray[X ]
x! : X

size ≠ 0
size′ = size − 1
bot ′ = (bot mod max size) + 1
array ′ = array
x! = array bot

The error case is easily calculated:

ArrayOutError[X ]
ΞArray[X ]
report ! : Report

(1 . . size) / ((bot − 1) � array) = 〈〉
report ! = empty

Again, this may be simplified:
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ArrayOutError[X ]
ΞArray[X ]
report ! : Report

size = 0
report ! = empty

The robust version of the concrete output operation is then

ArrayOut[X ] =̂ ArrayOut0[X ] ∧ Success

∨
ArrayOutError[X ]

22.4 Implementation

Our implementation of the design will be parameterised by the maximum size
of the buffer. The global declarations for our bounded buffer module will be

var

ibuffer : array [1 . . max size] of X ;

bot , top : 1 . . max size;

size : 0 . . max size ;

and

size mod max size = (top − bot + 1) mod max size

We will begin with the concrete input operation:

IBufferIn[X ] =̂ Array ′[X ] :

 true ,


ArrayIn0[X ] ∧ Success

∨
ArrayInError[X ]




The derivation of code is quite simple:

IBufferIn[X ] v
if size < max size →

Array ′[X ] : [ size < max size, ArrayIn0[X ] ∧ Success ] [/]

� size = max size →
Array ′[X ] : [ size = max size, ArrayInError[X ] ] [†]

fi
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We refine the first alternative

/
v (strengthen postcondition)

Array ′[X ] :


size < max size ,

size′ = size + 1

bot ′ = bot

top′ = (top mod max size) + 1

ibuffer ′ = ibuffer ⊕ {top′ , x?}
report ! = ok


v (assignment introduction)

size := size + 1 ;

top := (top mod max size) + 1 ;

ibuffer := ibuffer ⊕ {top , x} ;

report ! = ok

and then the second alternative:

†
v (strengthen postcondition)

Array ′[X ] :
[

size = max size , report ! = full
]

v (assignment introduction)

report ! := full

Collecting the code, and encapsulating the input operation as a parameterised
procedure with value and result parameters—with the usual programming lan-
guage interpretation—we have

procedure BufferIn[X ]
(val x : X ; res report ! : Report) ;

if size < max size →
size := size + 1 ;

top := (top mod max size) + 1 ;

ibuffer[top] := x ;

report ! = ok

� size = max size →
report ! := full

fi
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The following specification statement corresponds closely to the concrete
output operation:

IBufferOut[X ] =̂ Array ′[X ] :

 true ,


ArrayOut0[X ] ∧ Success

∨
ArrayOutError[X ]




This may be refined as follows:

IBufferOut[X ]
v (conditionalintroduction)

if size ≠ 0 →
Array ′[X ] : [ size ≠ 0, ArrayOut0[X ] ∧ Success ]

[/]

� size = 0 →
Array ′[X ] : [ size = 0, ArrayOutError[X ] ] [†]

fi

We may refine the first alternative:

/
v (strengthen postcondition)

Array ′[X ] :


size ≠ 0 ,

size′ = size − 1

bot ′ = (bot mod max size) + 1

array ′ = array

report ! = ok


v (assignment introduction)

size := size − 1; bot := (bot mod max size) + 1; report ! := ok

and the second alternative:

†
v (strengthen postcondition)

Array ′[X ] : [ size = 0, report ! = empty ]

v (assignment introduction)

report ! := empty
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We may collect the code and encapsulate the output operation as a paramet-
erised procedure:

procedure IBufferOut
(res report : ReportType) ;
if size ≠ 0 →

size := size − 1 ;
bot := (bot mod max size) + 1 ;
report ! := ok

� size = 0 →
report ! := empty

fi

Similarly, we may derive a procedure that accepts a single value and resets the
buffer to hold just that value:

procedure ResetBuffer[X ]
(val x : X ) ;
bot , top, size, ibuffer[1] := 1, 1, 1, x

A suitable initialisation for the buffer module is described by the following
assignment:

initially bot , top, size := 1, max size, 0

22.5 Executable code

We may now translate our refinement calculus implementation into executable
code. The language chosen is Modula2:

MODULE Buffer;

EXPORT
max_size, ReportType, ResetBuffer,
BufferIn, BufferOut;

CONST
max_size = N;

TYPE
ReportType = ( OK, Full, Empty );
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VAR
ibuffer: ARRAY [ 1 .. max_size ] OF X;
bot, top: 1 .. max_size;
size: 0 .. max_size;

PROCEDURE ResetBuffer ( x: X );
BEGIN

bot := 1;
top := 1;
size := 1;
ibuffer[1] := x

END;

PROCEDURE BufferIn ( x: X; VAR report: ReportType );
IF size < max_size THEN

BEGIN
size := size + 1;
top := ( top MOD max_size ) + 1;
ibuffer[top] := x;
report = OK

END
ELSE report := Full;

PROCEDURE BufferOut ( VAR report: ReportType );
IF size <> 0 THEN

BEGIN
size := size - 1;
bot := ( bot MOD max_size ) + 1;
report := OK

END
ELSE report := Empty;

BEGIN
bot := 1;
top := max_size;
size := 0

END Buffer;



Chapter 23

A Save Area

In this chapter we present the specification and development of a save area,
a module in an operating system with two operations, Save and Restore, by
means of which records are stored and retrieved in a last-in first-out manner.
Such a module may be useful in a check-pointing scheme, for instance, where
the current state of a record structure is saved. At a later time, the system can
be restored to this state.

Our specification is nondeterministic, delaying a key design decision until
a more appropriate stage of development is reached. The development itself is
in two parts: a decision is taken to introduce a two-level memory; a represent-
ation is chosen for the data structure used in main memory.

The design is produced using calculation. A concrete state is proposed,
and its relation to the abstract state is documented. The concrete operations
are then calculated from the abstract operations and the retrieve relation. The
lowest level of design provides the starting point for the calculation of the code
using the refinement calculus.

23.1 Specification

Our specification of the save area will leave abstract the details of the records
being manipulated. We introduce a basic type

[Record]

to represent the set of all records. Each operation will return a status report;
the free type of reports is defined by

Status ::= ok | full | empty
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The state of the system comprises a sequence of records:

SaveArea
save area : seq Record

Initially, no records have been stored and this sequence is empty:

InitSaveArea
SaveArea′

save area′ = 〈〉

We will use the sequence as a stack, with the last element as the top of the
stack. When a record is stored, it is placed at the end:

Save0

∆SaveArea
record? : Record
status! : Status

save area′ = save area_〈record?〉
status! = ok

It is easy to see that Save0 is total, but the Save operation may fail: there may
not always be enough room to store the new record. We do not have enough
state information to predict when this may happen.

We could remedy this by adding a component to describes the amount
of store left; this value would be updated every time save area was modified.
However, the amount of free space left in the system is influenced by factors
other than the size of the records and the number stored. We would need to
model the rest of the system in some way.

Following this path leads us away from abstraction and modularity. It
is better to admit that we do not know the circumstances—at this level of
abstraction—that determine the amount of free space and hence the success or
failure of the Save operation. Thus the error case for Save is described by

SaveFullErr
ΞSaveArea
status! : Status

status! = full
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The complete description of Save is then

Save =̂ Save0 ∨ SaveFullErr

This is a nondeterministic specification: whenever the operation is used, it may
succeed in appending the record and report ok, or it may leave the state un-
changed and report full .

It is useful at this point to draw a distinction between a nondeterministic
specification, such as this, and a loose specification. A loose specification is one
in which a constant is introduced with a range of values: for example, we may
declare a constant n thus

n : N

This constant is then a parameter to the specification.
Suppose that we have another parameterised specification, identical in

every way except for the fact that the range of n is restricted:

n : 1 . . 10

Although we have been more precise about the value of n, this restriction is not
a refinement in the sense described above: it is merely a tighter version of the
same specification.

A loosely-specified constant is there to be instantiated at any stage of de-
velopment: we may make this choice during specification, or retain the constant
as a parameter of the design. A nondeterministic operation—such as Save—
involves an internal choice of behaviours: we must propose an implementation
that will behave accordingly.

The Restore operation is wholly deterministic. We can restore a record
whenever there is at least one record in save area:

Restore0

∆SaveArea
r ! : Record
status! : Status

save area ≠ 〈〉
save area = save area′_〈r !〉
status! = ok

The last record in the save area is removed from the stack and provided as
output; the success of the operation is reported.
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Operation Precondition

Save Save0 true

SaveFullErr true

Save true

Restore Restore0 save area ≠ 〈〉
RestoreEmptyErr save area = 〈〉
Restore true

Table 23.1 Preconditions for the save area

However, if save area is empty, then we must return an error message:

RestoreEmptyErr
ΞSaveArea
status! : Status

save area = 〈〉
status! = empty

The complete description of Restore is then

Restore =̂ Restore0 ∨ RestoreEmptyErr

The preconditions for the operations in this interface are collected in Table 23.1.

23.2 Design

Our first design decision involves the introduction of a two-level memory. Large
amounts of data will be saved, and this will quickly exhaust the main memory
available to our program. Accordingly, we will employ secondary memory; once
the main memory is exhausted, we will copy it here.

Let n be the number of records that we can save in main memory. We
insist that the value of n—a parameter to the specification—is at least 1:

n : N

n ≥ 1
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We define two sets of sequences: a bounded sequence is one whose length does
not exceed n; a full sequence is one whose length is exactly n.

[X ]
bseq : P(seq X )
fseq : P(seq X )

bseq = { s : seq X | #s ≤ n }
fseq = { s : seq X | #s = n }

Our concrete design employs main and secondary memory: main memory
is a bounded sequence of records; secondary memory is a list of full sequences:

CSaveArea
main : bseq[Record]
secondary : seq(fseq[Record])

We can extract our abstract description using distributed concatenation:

Retrieve
SaveArea
CSaveArea

save area = (_/ secondary)_main

For a given value of n, there is only one way in which the save area sequence
can be split into main and secondary . Similarly, there is only one way that main
and secondary can be combined to make save area, if order is to be maintained.

The retrieve relation described by this schema is a total bijection, and we
may use it to derive an initialisation:

CSaveArea′

(_/ secondary ′)_main′ = 〈〉

There is a unique solution to the equation in the predicate part:

(_/ secondary ′)_main′ = 〈〉
a _/ secondary ′ = 〈〉 ∧ main′ = 〈〉 [catenation]

a secondary ′ = 〈〉 ∧ main′ = 〈〉 [distributed catenation]
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The initialisation of the two-level system is given by

InitCSaveArea
CSaveArea′

main′ = 〈〉
secondary ′ = 〈〉

The concrete version of Save0 may be obtained using substitution:

∆CSaveArea
record? : Record
status! : Status

(_/ secondary ′)_main′ = (_/ secondary)_main_〈record?〉
status! = ok

The first equation in the predicate part of this schema describes the concrete
state change associated with this operation. It has two solutions in terms of
main and secondary : either

_/ secondary ′ = (_/ secondary)_main ∧ main′ = 〈record?〉

or

_/ secondary ′ =_/ secondary ∧ main′ = main_〈record?〉

From the properties of distributed concatenation, it is easy to see that

_/ secondary ′ = (_/ secondary)_main ⇐
secondary ′ = secondary _〈main〉

The concrete version of Save0 is thus described by

∆CSaveArea
record? : Record
status! : Status

(main′ = 〈record?〉 ∧ secondary ′ = secondary _〈main〉) ∨
(main′ = main_〈record?〉 ∧ secondary ′ = secondary)

status! = ok
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However, the invariant property of CSaveArea, together with the declarations
of fseq and bseq, allows us to be more explicit about the factors determining
the new values of main and secondary . In the first case,

secondary _〈main〉 ∈ seq(fseq[Record])

a secondary ∈ seq(fseq[Record]) ∧ main ∈ fseq[Record]
[property of sequences]

a main ∈ fseq[Record]
[CSaveArea invariant]

a main ∈ seq Record ∧ #main = n

[definition of fseq]

a #main = n

[CSaveArea invariant]

and in the second,

main_〈record?〉 ∈ bseq[Record]

a main_〈record?〉 ∈ seq Record ∧ #(main_〈record?〉) ≤ n

[definition of bseq]

a main ∈ seq Record ∧ 〈record?〉 ∈ seq Record ∧
#(main_〈record?〉) ≤ n

[property of sequences]

a 〈record?〉 ∈ seq Record ∧ #(main_〈record?〉) ≤ n

[CSaveArea invariant]

a record? ∈ Record ∧ #(main_〈record?〉) ≤ n

[property of sequences]

a #(main_〈record?〉) ≤ n

[declaration of record?]

a (#main) + #〈record?〉 ≤ n

[property of #]

a (#main) + 1 ≤ n

[property of #]

a #main < n

[property of numbers]
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The successful part of our save operation is therefore

CSave0

∆CSaveArea
record? : Record
status! : Status

( #main = n ∧
main′ = 〈record?〉 ∧
secondary ′ = secondary _〈main〉

∨
#main < n ∧

main′ = main_〈record?〉 ∧
secondary ′ = secondary )

status! = ok

The error case is easily calculated:

CSaveFullErr
ΞCSaveArea
status! : Status

status! = full

The complete description of this operation is given by

CSave =̂ CSave0 ∨ CSaveFullErr

23.3 Further design

Our second design decision concerns the implementation of main memory stor-
age. A bounded sequence such as main can be implemented using a fixed-length
array; a suitable representation might be

[X ]
Array : P(N 7→ X )

Array = (1 . . n) → X

That is, a fixed-length array can be represented by a total function from the
indices to the target type.
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Our new design adds an array and a counter to the existing representation
of secondary memory:

CSaveArea1
array : Array[Record]
count : 0 . . n
secondary : seq(fseq[Record])

The counter is used to keep track of the number of records stored.
We may retrieve the bounded sequence of the abstract state by discarding

any array elements whose indices are greater than the current value of the
variable count :

Retrieve1
CSaveArea
CSaveArea1

main = (1 . . count) / array

The resulting retrieve relation is a total surjective function from concrete to
abstract, and we may calculate the latest refinement of the save operation:

∆CSaveArea
record? : Record
status! : Status

( #((1 . . count) / array) = n ∧
(1 . . count ′) / array ′ = 〈record?〉 ∧
secondary ′ =

secondary _〈(1 . . count) / array〉
∨
#((1 . . count) / array) < n ∧

(1 . . count ′) / array ′ =
((1 . . count) / array)_〈record?〉 ∧

secondary ′ = secondary )
status! = ok

It is easy to see that

#((1 . . count) / array) = count
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This simplification makes the predicate part more readable:

∆CSaveArea
record? : Record
status! : Status

( count = n ∧
(1 . . count ′) / array ′ = 〈record?〉 ∧
secondary ′ =

secondary _〈(1 . . count) / array〉)
∨
count < n ∧

(1 . . count ′) / array ′ =
((1 . . count) / array)_〈record?〉 ∧

secondary ′ = secondary )
status! = ok

The predicate part includes a disjunction; we proceed by analysing the two
cases. In case count = n, we have

(1 . . count ′) / array ′ = 〈record?〉

We may infer that (1 . . count ′) / array ′ is a singleton sequence. Hence

count ′ = 1

and array ′ may take any value as long as its first element is record?. secondary ′

must take the value

secondary _〈(1 . . n) / array〉

which, since dom array is by definition 1 . . n, is simply

secondary _〈array〉

In case count < n, we have

(1 . . count ′) / array ′ = ((1 . . count) / array)_〈record?〉

This tells us that these two sequences have the same length, and hence that
count ′ = count + 1.
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We may then observe that

(1 . . count ′) / array ′ = ((1 . . count) / array)_〈record?〉
a (1 . . (count + 1)) / array ′ =

= ((1 . . count) / array)_〈record?〉
[since count ′ = count + 1]

a (1 . . (count + 1)) / array ′ =
((1 . . count) / array) ⊕

{#((1 . . count) / array) + 1 , record?}
[property of_]

a (1 . . (count + 1)) / array ′ =
((1 . . count) / array) ⊕ {count + 1 , record?}

[since count ′ = count + 1]

a (1 . . (count + 1)) / array ′ =
(1 . . (count + 1)) / (array ⊕ {count + 1 , record?})

[by a property of ⊕]

There are many solutions for array ′, but an obvious one is

array ′ = array ⊕ {count + 1 , record?}.

Our new operation has been simplified to

CCSave0

∆CSaveArea1
record? : Record
status! : Status

( count = n ∧
count ′ = 1 ∧
array ′ 1 = record? ∧
secondary ′ = secondary _〈array〉

∨
count < n ∧

count ′ = count + 1 ∧
array ′ = array ⊕ {count + 1 , record?} ∧
secondary ′ = secondary )

status! = ok
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The error case is simple:

CCSaveFullErr
ΞCSaveArea1
status! : Status

status! = full

and the complete definition of the save operation is

CCSave =̂ CCSave0 ∨ CCSaveFullErr

23.4 Refinement to code

Before we move into the refinement calculus, we break the CCSave0 operation
into its component disjuncts: the secondary memory update

CCUpdateSM
∆CSaveArea1
record? : Record
status! : Status

count = n
count ′ = 1
array ′ 1 = record?
secondary ′ = secondary _〈array〉
status! = ok

and the main memory update

CCUpdateMM
∆CSaveArea1
record? : Record
status! : Status

count < n
count ′ = count + 1
array ′ = array ⊕ {count + 1 , record?}
secondary ′ = secondary
status! = ok
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If we define save to be the refinement calculus equivalent of CCSave:

save =̂ CSaveArea1, status! : [ true, CCSave ]

then

save = CSaveArea1, status! :


true ,

CCUpdateMM

∨
CCUpdateSM

∨
CCSaveFullErr


We may refine this specification statement using the refinement rule for condi-
tional introduction, to obtain

if count < n →
CSaveArea1, status! : [ count < n, CCUpdateMM ] [/]

� count = n →

CSaveArea1, status! :


count = n ,

CCUpdateSM

∨
CCSaveFullEr

 [†]

fi

The first alternative (/) can be rewritten by expanding the definition of the
CCUpdateMM operation:

count , array , status! :


count < n ,

count ′ =
count + 1

array ′ =
array ⊕ {count + 1 , record?}

status! =
ok


and then refined by assignment introduction, leaving us with the following as-
signment statement:

count , array , status! := count + 1, array ⊕ {count + 1 , record?}, ok
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The second alternative (†) can be rewritten as

count , array ,
secondary , status!

:


count = n ,

count ′ = 1 ∧
array ′ 1 = record? ∧
secondary ′ =

secondary _〈array〉 ∧
status! = ok

∨
count ′ = count ∧

array ′ = array ∧
secondary ′ = secondary ∧
status! = full)


and then refined by sequential composition introduction:

con X •

status!,
secondary

:


true ,

status! = ok ∧
secondary ′ =

secondary _〈array ′〉
∨
status! = full ∧

secondary ′ = secondary


[‡]

;

count ,
array :



status! = ok ∧
secondary =

X _〈array〉
∨
status! = full ∧

secondary = X ,

count ′ = 1 ∧
array ′ 1 =

record? ∧
secondary ′ =

X _〈array〉 ∧
status! = ok

∨
count ′ = count ∧

array ′ = array ∧
secondary ′ = X ∧
status! = full



[/]
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The precondition suggests to us that we should refine the second part of
the sequential composition using a conditional again, with the guards status! =
ok and status! = full .

if status! = ok →

count ,
array

:

 status! = ok

secondary =
X _〈array〉 ,

count ′ = 1

array ′ 1 = record?

secondary ′ = X _〈array〉
status! = ok

 [/]

� status! = full →

count ,
array

:

 status! = full

secondary = X ,

count ′ = count

array ′ = array

secondary ′ = X

status! = full


fi

The first alternative may be refined by assignment introduction to obtain

count , array := 1, array ⊕ {1 , record?}

while the second may be refined by skip introduction. We have now removed
all the specification statements except ‡, leaving the program

if count < n →
count , array , status! := count + 1, array ⊕ {count + 1 , record?}, ok

� count = n →

status!,
secondary

:


true ,

status! = ok ∧
secondary ′ = secondary _〈array ′〉

∨
status! = full ∧ secondary ′ = secondary


;

if status! = ok →
count , array := 1, array ⊕ {1 , record?}

� status! = full →
skip

fi

fi
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The remaining specification statement should look familiar: it is the spe-
cification that we started with. Our little program development turns out to
be recursive. It describes the interface to main memory in terms of some code
and an interface to secondary memory. The two interfaces are described in the
same way. Secondary memory could be implemented directly, or we could use
a tertiary memory; tertiary memory could be implemented directly, or we could
use…
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Index

abbreviation, 74
abstract data type

definition, 241
modelling, 165

abstraction
as hiding, 181
choice of, 5, 364

adequate, 128
antecedent, 14
antisymmetric, 89
arrows

functions, 108
in diagrams, 84

assignment
following, 306
introduction, 301
leading, 306
program, 297

assumptions, 13
asymmetric, 90
atomic propositions, 46
atomicity, 274
auxiliary data type, 329

bag
definition, 128
difference, 131

membership, 130
union, 131

basic types, 73
Beck, Harry, 6
bijection, 110
binary

relations, 83
trees, 137

bindings, 152
braces, 58
brackets

angled, 115
square, 149

calculation
of precondition, 206
of refinement, 284

Cantor, 57
capture of free variables, 35
cardinality, 113
Cartesian product, 65
Chapman, Mark, 52
characteristic

binding, 155
set, 81
tuple, 102, 155

CICS, 2
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closure
reflexive, 94
reflexive transitive, 97
symmetric, 94
transitive, 95

composition
of relations, 91
of programs, 304
of schemas, 182

comprehension, 61
concatenation, 115
concrete

state, 246
values, 242

conditional, 307
conjunction

logical, 11
rules, 13
schema, 166

connectives, 10
consequent, 14
constants

global, 77
logical, 302

constructed types, 69
contingencies, 25
contradictions, 23
correctness criterion, 319
counting, 129

daemon, 323
data refinement, 241
de Morgan’s laws, 20, 25
declaration

as generator, 62
in quantified expressions, 32
variable, 73

decoration
of schemas, 168
of variables, 301

definite description, 52

definition
abbreviation, 74
axiomatic, 77
declaration, 73
free type, 137
generic, 79
recursive, 75, 122
schema, 150

derivation, 11
derived rules, 12
difference, 69
discharge rules, 13
disjunction

logical, 13
rules, 13
schema, 174

distributed concatenation, 118
distributive, 124
domain

definition, 104
restriction, 86
subtraction, 86

elimination rules, 11
empty sequence, 115
empty set

definition, 76
rules, 60

enumerated type, 135
equality, 45
equational reasoning, 123
equivalence

logical, 17
relation, 93
rules, 18
schema, 150

excluded middle, 22
executable code, 295
existential

quantifier, 28
rules, 40, 41
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statements, 27
unique, 52

extension, 59

factoring operations, 185
false, 20
feasible, 299
filter, 116
finalisation, 241
finitary, 145
finite

injections, 114
sets, 112

flattening, 118
formal methods, 2
frame

contracting, 309
expanding, 309
of variables, 296

framing, 185
free types

consistency, 145
constants, 136
constructors, 136
rules, 139

fully abstract, 128
function

application, 100
bijective, 110
finite, 114
injective, 108
partial, 99
surjective, 109
total, 100

generalisation, 37
generic

abbreviation, 75
constants, 79
parameter, 79
rules, 80

given sets, 73
guard, 307
guarded commands, 295

Harris, Robert, 118
Hart-Davis, Guy, 118
Harvey, Alison, 118
hash, 113
head, 117
heterogeneous, 88
hiding, 181
Hoare, Tony, 3
homogeneous, 88
Horner’s rule, 315
Hursley, 2
hypotheses, 11

IBM, 2
identity

equality, 46
relation, 89

implication
logical, 14
rules, 15

inclusive or, 13
inconsistent definition, 78
induction

finite sequences, 125
free types, 140
natural numbers, 124
principle, 125
structural, 125

inductive hypothesis, 125
infeasible, 299
inference rule, 11
initialisation

data types, 241
theorem, 202

injection, 108
input, 170
integers, 69
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interface
file system, 217
protocol, 323

intersection, 68
introduction rules, 11
invariant

of loop, 310
of program variables, 300

inverse, 88
items, 132
iteration

of programs, 309
of relations, 95

Kenny, Tony, 3
Kinney, Andy, 27

lambda notation, 102
languages, 295
Leibniz, 46
length, 118
lifting, 245
linked list, 334
local block, 300
London Underground, 5
loop

introduction, 310
program, 309

loose
definition, 77
specification, 365

magic, 297
maplet, 84
marginal markers, 305
membership, 58
merge, 253
Mornington Crescent, 8
multiplicities, 128

natural deduction, 9
natural numbers

definition, 77
informal, 60

negation
logical, 20
rules, 20
schema, 177

nondeterminism, 234
normalisation, 159
number range, 112

occurrence
binding, 33
bound, 33
free, 33

one-point rule
existential, 49

operation
internal, 323
mixed, 185
partial, 175
precondition, 203
schema, 169

ordered pair, 66
output, 170
overriding, 106

paradox, 70
plagiarist, 48
postcondition

predicate, 296
strengthening, 298

precedence, 10
precondition

calculation, 206
definition, 203
disjunction, 210
free promotion, 212
investigation, 215
predicate, 296
refinement, 258
simplification, 208
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weakening, 298
predicate

logical, 28
symbol, 81

premiss, 11
primitive recursion, 142
program, 241
program development, 305
projection

of schema components, 153
tuples, 67

promotion
constrained, 198
definition, 193
file system, 223
free, 196

proof
degree of formality, 5
equational reasoning, 123
of consistency, 202
tree, 13

proposition, 9

quantification
logical, 28
schema, 179

quantity, 51

range
definition, 104
restriction, 86
subtraction, 86

Recorde, Robert, 46
recursive

program development, 378
refinement

calculus, 295
definition, 233
functional, 283
input and output, 251
of data types, 241

of relations, 238
of specifications, 257
weakest, 284

reflexive, 89
relational

composition, 91
image, 87

relaxation, 248
renaming

bound variables, 35
schema components, 160

retrieve
function, 281
relation, 259

reverse, 123
revolutionary, 8
Russell, 70

satisfiable, 43
schema

composition, 182
conjunction, 166
decoration, 168
disjunction, 174
hiding, 181
inclusion, 169
negation, 177
normalisation, 159
quantification, 179
renaming, 160

schemas
as declarations, 154
as predicates, 158
as relations, 257
as types, 152
generic, 162

scope
of formal parameter, 79
of bound variables, 31
of program variables, 300

sequences
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as functions, 119
finite, 119
injective, 122
laws, 123

sequential composition, 304
side condition, 11
signature, 74
simulation

backwards, 247
data types, 258
downwards, 246
forwards, 246
refinement, 244
upwards, 247

skip
introduction, 301
program, 297

source, 88
specification

loose, 365
nondeterministic, 365
parameterised, 365
statement, 296
using Z, 4

split, 251
squash, 121
state

change of, 169
enhanced, 167
indexed, 189
initial, 173
intermediate, 182
invariant, 168
representing, 165

sub-bag, 130
subset

definition, 80
rules, 61

substitution, 34
successor, 55, 133
suffix, 105

surjection, 109
symmetric, 89

tail, 117
target, 88
tautologies, 23
termination, 296
theorem, 11
totalisation

of data types, 242
of relations, 236

transitive, 92
truth tables, 11
tuples, 65
types

checking, 70
maximal sets, 57

undefinedness
propagation of, 237
symbol, 236

underscores, 82, 84, 105
union, 67
uniqueness, 52
universal

quantifier, 29
rules, 37, 38
statements, 27

University College, 52
unsatisfiable, 43
unwinding, 254

valid, 43
variables

bound, 31
free, 33
fresh, 35

variant, 310

Zermelo, Ernst, 59
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Notation

== (abbreviation), 74
∧ (and), 10
ap (append), 252

⊥ (augmented), 236

� � (bag), 128
−∪ (bag difference), 131
−ä (bag membership), 130
] (bag union), 131
bag (bags), 129
〈| |〉 (binding), 152
� (binds to), 152

_ (cat), 115
(complement), 236

o
9 (compose), 91, 182
cp (copy), 251
∼ (corrupt), 239
count (count in a bag), 129
× (cross), 66

〈〈 〉〉 (data), 136
∆ (delta), 172
_/ (distributed concatenation), 118
dom (domain), 85
� (domain subtraction), 86
/ (domain restriction), 86

〈〉 (empty sequence), 115
∅ (empty set), 75
∃ (exists), 28
∃1 (exists unique), 51

false (false proposition), 20
u (filter), 116
7 7→ (finite functions), 114
7 7) (finite injections), 114

F (finite power set), 113
∀ (for all), 29

head (head of a sequence), 117
\ (hide), 181

id (identity), 89
a (if and only if), 10
(| |) (image), 87
⇒ (implies), 10
iseq (injective sequences), 122
? (input), 171
Z (integers), 73
∼ (inverse), 88
items (items in a bag), 132

λ (lambda), 102
# (length), 118
◦

(lift), 245
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, (maps to), 84
merge (merge two relations), 253
µ (mu), 52

N (natural numbers), 60
seq1 (non-empty sequences), 122
P1 (non-empty subsets), 76
¬ (not), 10
. . (number range), 112

∨ (or), 10
! (output), 171
⊕ (override), 106

‖ (parallel), 251
7)→ (partial bijections), 108
7→ (partial functions), 99
� (partial injections), 108
7→→ (partial surjections), 108

P (power set), 64
pre (precondition), 203

ran (range), 85
� (range subtraction), 86
. (range restriction), 86
R (real numbers), 257
v (refined by), 298
∗ (reflexive transitive closure), 97
↔ (relations), 83
reverse (reverse a sequence), 123

=̂ (schema naming), 150
seq (sequences), 119
∩ (set intersection), 68
\ (set difference), 69
∈ (set membership), 58
∪ (set union), 67
] (sharp), 129
# (size), 113
split (split a relation), 251
squash (squash a function), 121
v (sub-bag), 130

tail (tail of a sequence), 117
θ (theta), 156
)→ (total bijections), 108
→ (total functions), 100
) (total injections), 108
→→ (total surjections), 108
•

(totalise), 236
+ (transitive closure), 95

⊥ (undefined), 236

Ξ (xi), 173

__ (zip), 321
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