EMU-COMPUTER ENGINEERING DEPARTMENT CMPE224 DIGITAL LOGIC SYSTEMS

Q.1. Consider the following synchronous sequential circuit

a) Is this a Moore or Mealy machine?
b) What are the next-state and output equations for this machine?
c) Analyze and draw a state transition diagram for the machine showing all possible states and all possible transitions.

Q.2. Consider the following state transition diagram of a synchronous sequential circuit.

a) Construct the state transition table for this diagram

b) Minimize the number of states by eliminating any redundant states, if possible showing all intermediate steps and
c) also show final result as a state transition diagram graph
Q.3. Design a synchronous sequential circuit with one input X and two outputs C and S such that the circuit will compute the sum and carry ouputs of the last two bits on the single input line X and assign the sum bit of addition to S and carry bit of addition to C. Overlapping of bits over the last two values of X is allowed. Carry out the design starting from the initial state transition diagram (table) to end using JK-FFs.
Q.4. A serial two's complementer is to be designed. This clocked sequential circuit has two inputs X and Y and one output Z. A binary integer of arbitrary length is presented to the circuit on input X; LSB appears first. When a given bit is presented on input X, the corresponding output bit appears on Z during the same clock cycle. To indicate that a sequence is complete and that the circuit is to be initialized to receive another sequence, input Y is set to 1 . Y is zero otherwise. [Hint: use the shortcut method of taking 2's complement].
a) Find the initial and the minimal state transition tables.
b) Make a state assignment.
c) Design the circuit using D FFs.
Q.5. Design a synchronous sequential circuit with two inputs, A and B, and a single output Y. The circuit is required to compare the previous value of A with the present values of A and B at every clock cycle and make the output $Y=1$ if the previous value of A is 1 and at least one of A or B has value a present value of 1 at the current clock cycle.
a) Draw the state transition diagram of the described circuit.
b) Write down the state transition table of the circuit.
c) Implement using JKFFs.
Q.6. Design a 3-bit counter-like circuit controlled by an input w. If $w=1$, then the counter adds 2 to its contents, wrapping around 8 or 9 . Thus, if the present state is 8 or 9 , then the next state becomes 0 or 1 , respectively. If $w=0$, then the counter subtracts 1 from its contents, acting as a normal down counter. Use RS-FFs in your design.
Q.7. We wish to design a sequence detector circuit, which detects three or more consecutive 1 's in a string of bits coming through an input line X.
(a) Find the MOORE-TYPE state transition diagram.
(b) Determine the state transition table
(c) Implement the circuit using D flip-flops.

In case of any questions, do not hesitate to ask!

