EMU-COMPUTER ENGINEERING DEPARTMENT CMPE224 DIGITAL LOGIC SYSTEMS EXERCISE QUESTIONS III

Q.1. Draw an ASM chart and state transition table to describe a sequence detector that detects a sequence of 101 .Design the control unit using JK flip-flops.

Q.2. Draw the ASM chart of a synchronous digital system, with two inputs $\mathrm{x} 1, \mathrm{x} 2$ and one output z , that recognizes the input sequence of pairs $x 1 x 2=01,01,11,00$. The output z is to be 1 when $x 1 x 2=$ 00 if and only if the three preceding pairs of inputs are $x 1 x 2=01,01,11$ in that order. Design this systems using MUX+DFF+DEC. Use JKFFs for the datapath.
Q.3.Design a synchronous digital system that will divide two n-bit unsigned numbers using the repeated subtraction method as follows. Initially A (divident) and B (divisor) are loaded with n-bit values INA and INB, respectively. Then, the system first checks if $B=0$, and if so, the system sets the output DIVERROR to 1, DIVERROR is 0 otherwise. Then, the system compares the magnitudes of A and B and if $A>=B$, the system subtracts B from A and increments a counter Q to compute the quotient of the division. Desing the datapath. Then, desing the controlpath using MUX+DFF+DEC.
Q.4. Shift and Add Multiplier: Consider the problem of multiplying two n-bit numbers A and B. This operation can be implemented using an approach similar to manual multiplication algorithm: For each bit \mathbf{i} in the multiplier that is 1 , we add to the product the value of the multiplicand shifted to the left \mathbf{i} times. This algorithm can be described in pseudocode as follows:
$\mathrm{P}=0$ // product
For $\mathrm{i}=0$ to $\mathrm{n}-1$ do
if $b_{i}=1$
$P=P+A$
Endif
Left-shift A
Endfor

Draw the ASM chart of this shift-and-add multiplier.
Design the datapath
Design the control path using JK-FFs
Q.5. Shift and subtract divider: Given two n-bit unsigned numbers A and B, we wish to design a didigital system that produces two n-bit outputs Q and R, where Q is the quotient of A / B and R is the remainder.

A method that imitates manual computation is as follows: shift the digits in A to the left, one digit at a time, into a shift register R. After each shift operation compare contents of R with B. If $R>=B$, shift a 1 into Q, otherwise, shift a 0 into Q. A pseudocode describing this method is given below:

```
R=0
For i=0 to n-1 do
    Left-shift R||A // R|A is the 2n-bit register of R (on the left) and A (on the rigth)
    if R >= B
        Q i=1
        R=R-B
        Else
            Qi=0
        Endif
Endfor
Draw the ASM chart of this Shift and Subtract Divider Desin the datapath
Design the control path using DFF + DEC.
```

Q.6. A synchronous sequential circuit contains three n-bit registers R1, R2, and R3. In state S0 these registers are loaded with contents $\ln R 1, \ln R 2, \ln R 3$, respectively. This circuit will be designed to carry out the following register operations: R1 \leftarrow R3-R2, R2 \leftarrow R3-R1.

Draw the ASM chart of this Shift and Subtract Divider
Desin the datapath
Design the control path using MUX+DFF+DEC.
Q.7. A synchronous sequential circuit contains two n-bit registers A an B. In state $S 0$ these registers are loaded with contents $\operatorname{In} A$ and $\operatorname{In} B$, respectively. This circuit will be designed to carry out the following register operations: if $A>=B$ then $A=A-B$, else $A=B-A$.

Draw the ASM chart of this Shift and Subtract Divider
Desin the datapath
Design the control path using JKFFs
Q.8. Design a digital circuit that will compute the 2 's complement of the contents of an n-bit register X.

Draw the ASM chart of this Shift and Subtract Divider
Desin the datapath
Design the control path using JKFFs
Q.9. Design a digital circuit that will compute the absolute value of the contents of an n -bit register X using the signed 2's complement reresentation..

Draw the ASM chart of this Shift and Subtract Divider Desin the datapath
Design the control path using JKFFs
Q.10. Design a digital circuit that will compute the difference between the number of 1 's and the number of 0 's within the contents of an n-bit Register X.

Draw the ASM chart of this Shift and Subtract Divider
Desin the datapath
Design the control path using JKFFs

Prepared by Assoc. Prof. Dr. Adnan ACAN

