Q.1. Consider the following set of processes:

Process ID	Arrival Time	CPU Burst Time	I/O Burst Time	CPU Burst Time
Po	2	2	1	1
P ₁	0	5	5	4
P ₂	1	4	2	1

- a) Draw Gantt charts illustrating the execution of these processes using the following algorithms. (note: I/O device uses FCFS scheduling)
 - FCFS
 - SRTF
- b) Based on your work above, fill in the table below giving both the waiting time (Wait) and turnaround time (tat) for each process:

Scheduling Algorithm	Parameter	Process ID		[D
		Po	P ₁	P ₂
FCFS	Wait			
	tat			
SRTF	Wait			
	tat			

c) Calculate the CPU utilization for both FCFS and SRTF. Which of these algorithms provide a better utilization performance? Why? Explain briefly.

Q.2. Consider the CPU and I/O burst times, process arrival and priorities given in the table below. Assume that only one I/O device is available and it operates in FCFS manner. Ignore the switching times for both the CPU and I/O device.

Processes	CPU	I/O	CPU	Arrival time	Priority [*]
P1	6	2	2	0	3
P2	5	3	4	2	2
P3	3	2	4	4	1

* (smaller number indicates higher priority)

Assume that there is only one CPU and it is scheduled using the **"preemptive priority**" scheduling algorithm. Draw the Gantt charts for CPU and I/O and complete the following table.

	P1	P2	P3
Waiting time			
Turnaround time			

Q.3. Consider the following process arrival, CPU burst times and priority values where "2" corresponds to the highest priority.

Process	Arrival time	CPU	Priority
А	0	10	1
В	12	10	1
С	8	10	1
D	0	10	2
E	18	10	2

Assume that quantum = 5. Draw the Gannt chart for the following two CPU scheduling algorithms:

a) non-preemprive priority+RR algorithm

b) preemprive priority+RR algorithm