
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 11 – File Processing

Outline
11.1 Introduction

11.2 The Data Hierarchy

11.3 Files and Streams

11.4 Steps in Processing a File

11.5 Exercises

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:

– To be able to create, read and write files.

– To become familiar with sequential access file processing.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

11.1 Introduction

• Data files

– Can be created, updated, and processed by C programs

– A file represents a sequence of byte on the disk where a

group of related data is stored.

• Why do we need data files?

– Storage of data in variables and arrays is only temporary—

such data is lost when a program terminates.

– Files are used for permanent storage of large amounts of

data.

– Computers store files on secondary storage devices

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

11.2 The Data Hierarchy

• Data Hierarchy:

– Bit – smallest data item

• Value of 0 or 1

– Byte – 8 bits

• Used to store a character

– Decimal digits, letters, and special symbols

– Field – group of characters conveying meaning

• Example: your name

– Record – group of related fields

• Represented by a struct or a class

• Example: In a payroll system, a record for a particular

employee that contained his/her identification number, name,

address, etc.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

11.2 The Data Hierarchy

• Data Hierarchy (continued):

– File – group of related records

• Example: payroll file

– Database – group of related files

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

11.3 Files and Streams

• C views each file as a sequence of bytes

– File ends with the end-of-file marker

• Or, file ends at a specified byte

• Stream created when a file is opened

– When a file is opened, a stream is associated with it

– Provide communication channel between files and programs

– Opening a file returns a pointer to a FILE structure

• Example file pointer:

• stdin - standard input (keyboard)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

11.3 Files and Streams

• FILE structure

– C Provides smart way to manipulate data using streams. In

stdio.h header file FILE structure is defined.

– FILE structure provides us the necessary information about

a FILE or stream which performs input and output operations.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

• Create the stream via a pointer variable using the

FILE structure:

FILE *p;

• Open the file, associating the stream name with

the file name.

• Read or write the data.

• Close the file.

9

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

• Open the file: fopen_s()

fopen_s(file pointer address, ―file name‖, ―mode‖);

– Function fopen_s returns a FILE pointer to file specified

– Takes 3 arguments – file pointer, file to open and file open mode

– If open fails, NULL returned

10

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

11

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

• If you attempt to read from a non-existent file, your

program will crash!!

– The fopen function was designed to cope with this eventuality. It checks if

the file can be opened appropriately. If the file cannot be opened, it

returns a NULL pointer. Thus by checking the file pointer returned by

fopen_s, you can determine if the file was opened correctly.

if (!fp)

{

 perror("File opening failed"); or printf("File opening failed");

 return EXIT_FAILURE; //OR return 1;

}

12

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

11.4 Steps in Processing a file

• Read/Write functions in standard library
– fgetc / getc

• Reads one character from a file

• Takes a FILE pointer as an argument

• fgetc() equivalent to getchar()

FILE *fp;

char ch;

…

ch=fgetc(fp);

…

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

– fputc

• Writes one character to a file

• Takes a FILE pointer and a character to write as an argument

• fputc('a', filePointer) equivalent to putchar('a')

FILE *fp;

char ch;

…

fputc(ch,fp);

…

14

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

– fgets

• Reads a line from a file

FILE *fp;

char b[20];

…

fgets(b,sizeof b,fp);

…

– fputs

• Writes a line to a file

FILE *fp;

char b[20];

…

fputs(b,fp);

…

15

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

– fprintf

• Like printf

• Takes first argument as file pointer

FILE *fp;

float salary;

…

fprintf(fp,”%f”,salary);

…

– fscanf

• Like scanf

• Takes first argument as file pointer

FILE *fp;

float salary;

…

fscanf(fp,”%f”,&salary);

16

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

– feof(FILE pointer)

• tests the end-of-file indicator for the given stream.

• Returns true if end-of-file indicator (no more data to process) is
set for the specified file

FILE *fp;

…

while(!feof(fp))

{

 …

}

…

17

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

• Close the File: fclose()

If function fclose is not called explicitly, the operating system

normally will close the file when program execution terminates.

FILE *fp;

…

…

fclose(fp);

18

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11.4 Steps in Processing a file

• Reset a file position pointer
– The statement

rewind(fp);
– causes a program’s file position pointer—which indicates the number

of the next byte in the file to be read or written—to be repositioned to

the beginning of the file (i.e., byte 0) pointed to by fp.

– The file position pointer is not really a pointer.

– Rather it’s an integer value that specifies the byte in the file at which

the next read or write is to occur.

– This is sometimes referred to as the file offset.

– The file position pointer is a member of the FILE structure associated

with each file.

19

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

READING FROM A FILE

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
char b[50], ch;

fopen_s(&fp, "..\\test.txt", "r");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
fgets(b, sizeof b, fp);
printf("%s\n", b); //or puts(b);
fclose(fp);
return 0;

}

you have to create text file
before running the program.
File -> new -> file -> text file
and save it under the project
folder.

OUTPUT

This is a test file

11.5 Exercises

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
char b[50], ch;

fopen_s(&fp, "..\\test1.txt", "r");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
ch = fgetc(fp);
while (ch != EOF)//OR (!feof(fp))
{

printf("%c", ch);
ch = fgetc(fp);

}
fclose(fp);
return 0;

}

OUTPUT

This is a test file
Line1
Line2
Line3

Reading one character at a time

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
char b[50], ch;

fopen_s(&fp, "..\\test1.txt", "r");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
while (!feof(fp))
{

fgets(b, sizeof b, fp);
printf("%s", b);

}
fclose(fp);
return 0;

}

OUTPUT

This is a test file
Line1
Line2
Line3

Reading one row/record at a time

Akile
Highlight

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
char b[50], ch;
int nlines = 0, nc = 0;
fopen_s(&fp, "..\\test1.txt", "r");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
ch = fgetc(fp);
while (!feof(fp))
{

if (ch == '\n')
nlines++;

nc++;
ch = fgetc(fp);

}
printf("There are %d characters\n", nc);
printf("There are %d lines \n", nlines);
fclose(fp);
return 0;

}

Counting number of characters and lines

OUTPUT

There are 38 characters
There are 4 Lines

Test1.txt

This is a test file
Line1
Line2
Line3

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

WRITING TO A FILE

Test2.txt

This is testing for fprintf...
This is testing for fputs...

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
fopen_s(&fp, "..\\test2.txt", "w");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
fprintf(fp, "This is testing for fprintf...\n");
fputs("This is testing for fputs...\n", fp);

fclose(fp);
return 0;

}

Akile
Highlight

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fp;
fopen_s(&fp, "..\\test2.txt", "a");
if (!fp) {

printf("File opening failed");
return EXIT_FAILURE;

}
fprintf(fp, "This is testing for ADDING...\n");
fputs("This is testing for ADDING a line...\n", fp);
fclose(fp);
return 0;

}

ADDING TO A FILE

Test2.txt

This is testing for fprintf...
This is testing for fputs...
This is testing for ADDING...
This is testing for ADDING a line...

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

ENTERING DATA FROM KEYBOARD AND WRITING TO A FILE

SCREEN

Enter n: 2
Enter n: 3
Enter n: 4
Enter n: ^Z
^Z
^Z

End-of-file key combination is CTRL + Z

program.txt

 2 3 4

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fptr;
int n;
fopen_s(&fptr, "..\\program.txt", "w");
if (!fptr) {

printf("File opening failed");
return EXIT_FAILURE;

}
printf("Enter n: ");
scanf_s("%d", &n);
while (!feof(stdin))
{

fprintf(fptr, "%4d", n);
printf("Enter n: ");
scanf_s("%d", &n);

}
fclose(fptr);
return 0;

}

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

WRITE AND READ (with rewind() function)

program1.txt

This is testing for w+

Screen

This is testing for w+

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fptr;
char ch;
fopen_s(&fptr, "..\\program1.txt", "w+");
if (!fptr) {

printf("File opening failed");
return EXIT_FAILURE;

}
fprintf(fptr, "This is testing for w+");
rewind(fptr);
ch = fgetc(fptr); // OR ch = getc(fptr);
while (ch != EOF) //OR while(!feof(fptr))
{

printf("%c", ch); // OR putchar(ch);
ch = fgetc(fptr);

}
fclose(fptr);
return 0;

}

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fptr;
char st[30]= "This is testing for w + ";
fopen_s(&fptr, "..\\program1.txt", "w+");
if (!fptr) {

printf("File opening failed");
return EXIT_FAILURE;

}
fprintf(fptr, st);
rewind(fptr);
fgets(st,sizeof st, fptr);
puts(st);
fclose(fptr);
return 0;

}

Akile
Highlight

Akile
Highlight

Akile
Highlight

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

WRITE AND READ (without rewind() function)

#include "stdafx.h"
#include "stdlib.h"
int main()
{

FILE *fptr;
char st[30] = "This is testing for w and r ";
fopen_s(&fptr, "..\\program3.txt", "w");
if (!fptr) {

printf("File opening failed");
return EXIT_FAILURE;

}
fprintf(fptr, st);
fclose(fptr);
fopen_s(&fptr, "..\\program3.txt", "r");
fgets(st, sizeof st, fptr);
puts(st);
fclose(fptr);
return 0;

}

Akile
Highlight

Akile
Highlight

Akile
Highlight

