
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

1

Chapter 3 - Structured Program

Development
Outline
3.1 Introduction

3.2 Algorithms

3.3 Pseudocode

3.4 Control Structures

3.5 The If Selection Statement

3.6 The If…Else Selection Statement

3.7 The While Repetition Statement

3.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)

3.9 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled Repetition)

3.10 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 3 (Nested Control Structures)

3.11 Assignment Operators

3.12 Increment and Decrement Operators

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Objectives

• In this chapter, you will learn:
– To understand basic problem solving techniques.

– To be able to develop algorithms through the process of top-down,

stepwise refinement.

– To be able to use the if selection statement and if…else

selection statement to select actions.

– To be able to use the while repetition statement to execute

statements in a program repeatedly.

– To understand counter-controlled repetition and sentinel-controlled

repetition.

– To understand structured programming.

– To be able to use the increment, decrement and assignment

operators.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

3.1 Introduction

• Before writing a program:

– Have a thorough understanding of the problem

– Carefully plan an approach for solving it

• While writing a program:

– Know what “building blocks” are available

– Use good programming principles

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

3.2 Algorithms

• Computing problems

– All can be solved by executing a series of actions in a

specific order

• Algorithm: procedure in terms of

– Actions to be executed

– The order in which these actions are to be executed

• Program control

– Specify order in which statements are to be executed

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

3.3 Pseudocode

• Pseudocode

– Artificial, informal language that helps us develop

algorithms

– Similar to everyday English

– Not actually executed on computers

– Helps us “think out” a program before writing it

• Easy to convert into a corresponding C++ program

• Consists only of executable statements

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

3.4 Control Structures

• Sequential execution
– Statements executed one after the other in the order written

• Transfer of control
– When the next statement executed is not the next one in

sequence

– Overuse of goto statements led to many problems

• Bohm and Jacopini
– All programs written in terms of 3 control structures

• Sequence structures: Built into C. Programs executed
sequentially by default

• Selection structures: C has three types: if, if…else, and
switch

• Repetition structures: C has three types: while, do…while
and for

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

3.4 Control Structures

Figure 3.1 Flowcharting C’s sequence structure.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

3.4 Control Structures

• Flowchart

– Graphical representation of an algorithm

– Drawn using certain special-purpose symbols connected by

arrows called flowlines

– Rectangle symbol (action symbol):

• Indicates any type of action

– Oval symbol:

• Indicates the beginning or end of a program or a section of code

• Single-entry/single-exit control structures

– Connect exit point of one control structure to entry point of

the next (control-structure stacking)

– Makes programs easy to build

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

3.5 The if Selection Statement

• Selection structure:

– Used to choose among alternative courses of action

– Pseudocode:

If student’s grade is greater than or equal to 60

Print “Passed”

• If condition true

– Print statement executed and program goes on to next

statement

– If false, print statement is ignored and the program goes

onto the next statement

– Indenting makes programs easier to read

• C ignores whitespace characters

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

10

3.5 The if Selection Statement

• Pseudocode statement in C:
if (grade >= 60)

printf("Passed\n");

– C code corresponds closely to the pseudocode

• Diamond symbol (decision symbol)

– Indicates decision is to be made

– Contains an expression that can be true or false

– Test the condition, follow appropriate path

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

3.5 The if Selection Statement

• if statement is a single-entry/single-exit structure

true

false

grade >= 60 print “Passed”

A decision can be made on

any expression.

zero - false

nonzero - true

Example:

3 - 4 is true

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

3.6 The if…else Selection Statement

• if

– Only performs an action if the condition is true

• if…else

– Specifies an action to be performed both when the condition

is true and when it is false

• Psuedocode:
If student’s grade is greater than or equal to 60

Print “Passed”

else

Print “Failed”

– Note spacing/indentation conventions

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

3.6 The if…else Selection Statement

• C code:
if (grade >= 60)

printf("Passed\n");

else

printf("Failed\n");

• Ternary conditional operator (?:)

– Takes three arguments (condition, value if true, value if

false)

– Our pseudocode could be written:

printf("%s\n", grade >= 60 ? "Passed" :
"Failed");

– Or it could have been written:

grade >= 60 ? printf(“Passed\n”) : printf(
“Failed\n”);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

3.6 The if…else Selection Statement

• Flow chart of the if…else selection statement

• Nested if…else statements

– Test for multiple cases by placing if…else selection

statements inside if…else selection statement

– Once condition is met, rest of statements skipped

– Deep indentation usually not used in practice

truefalse

print “Failed” print “Passed”

grade >= 60

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

3.6 The if…else Selection Statement

– Pseudocode for a nested if…else statement

If student’s grade is greater than or equal to 90

Print “A”

else

If student’s grade is greater than or equal to 80

Print “B”

else

If student’s grade is greater than or equal to 70

Print “C”

else

If student’s grade is greater than or equal to 60

Print “D”

else

Print “F”

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

3.6 The if…else Selection Statement

• Compound statement:

– Set of statements within a pair of braces

– Example:

if (grade >= 60)

printf("Passed.\n");

else {

printf("Failed.\n");

printf("You must take this course
again.\n");

}

– Without the braces, the statement

printf("You must take this course
again.\n");

would be executed automatically

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

3.6 The if…else Selection Statement

• Block:

– Compound statements with declarations

• Syntax errors

– Caught by compiler

• Logic errors:

– Have their effect at execution time

– Non-fatal: program runs, but has incorrect output

– Fatal: program exits prematurely

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18

3.7 The while Repetition Statement

• Repetition structure

– Programmer specifies an action to be repeated while some

condition remains true

– Psuedocode:

While there are more items on my shopping list

Purchase next item and cross it off my list

– while loop repeated until condition becomes false

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

3.7 The while Repetition Statement

• Example:
int product = 2;

while (product <= 1000)
product = 2 * product;

product <= 1000 product = 2 * product
true

false

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

3.8 Formulating Algorithms

(Counter-Controlled Repetition)

• Counter-controlled repetition
– Loop repeated until counter reaches a certain value

– Definite repetition: number of repetitions is known

– Example: A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are available to
you. Determine the class average on the quiz

– Pseudocode:

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

fig03_06.c (Part 1 of

2)

1 /* Fig. 3.6: fig03_06.c

2 Class average program with counter-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* number of grade to be entered next */

9 int grade; /* grade value */

10 int total; /* sum of grades input by user */

11 int average; /* average of grades */

12

13 /* initialization phase */

14 total = 0; /* initialize total */

15 counter = 1; /* initialize loop counter */

16

17 /* processing phase */

18 while (counter <= 10) { /* loop 10 times */

19 printf("Enter grade: "); /* prompt for input */

20 scanf("%d", &grade); /* read grade from user */

21 total = total + grade; /* add grade to total */

22 counter = counter + 1; /* increment counter */

23 } /* end while */

24

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

fig03_06.c (Part 2 of

2)

Program Output
Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

25 /* termination phase */

26 average = total / 10; /* integer division */

27

28 /* display result */

29 printf("Class average is %d\n", average);

30

31 return 0; /* indicate program ended successfully */

32

33 } /* end function main */

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Problem becomes:

Develop a class-averaging program that will process an

arbitrary number of grades each time the program is run.

– Unknown number of students

– How will the program know to end?

• Use sentinel value

– Also called signal value, dummy value, or flag value

– Indicates “end of data entry.”

– Loop ends when user inputs the sentinel value

– Sentinel value chosen so it cannot be confused with a regular

input (such as -1 in this case)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Top-down, stepwise refinement

– Begin with a pseudocode representation of the top:

Determine the class average for the quiz

– Divide top into smaller tasks and list them in order:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

• Many programs have three phases:

– Initialization: initializes the program variables

– Processing: inputs data values and adjusts program variables

accordingly

– Termination: calculates and prints the final results

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Refine the initialization phase from Initialize

variables to:
Initialize total to zero

Initialize counter to zero

• Refine Input, sum and count the quiz grades to
Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

• Refine Calculate and print the class average to
If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27

3.9 Formulating Algorithms with Top-

Down, Stepwise Refinement

Initialize total to zero

Initialize counter to zero

Input the first grade

While the user has not as yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

else

Print “No grades were entered”

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

fig03_08.c (Part 1

of 2)

1 /* Fig. 3.8: fig03_08.c

2 Class average program with sentinel-controlled repetition */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int counter; /* number of grades entered */

9 int grade; /* grade value */

10 int total; /* sum of grades */

11

12 float average; /* number with decimal point for average */

13

14 /* initialization phase */

15 total = 0; /* initialize total */

16 counter = 0; /* initialize loop counter */

17

18 /* processing phase */

19 /* get first grade from user */

20 printf("Enter grade, -1 to end: "); /* prompt for input */

21 scanf("%d", &grade); /* read grade from user */

22

23 /* loop while sentinel value not yet read from user */

24 while (grade != -1) {

25 total = total + grade; /* add grade to total */

26 counter = counter + 1; /* increment counter */

27

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29

fig03_08.c (Part 2 of

2)

28 printf("Enter grade, -1 to end: "); /* prompt for input */

29 scanf("%d", &grade); /* read next grade */

30 } /* end while */

31

32 /* termination phase */

33 /* if user entered at least one grade */

34 if (counter != 0) {

35

36 /* calculate average of all grades entered */

37 average = (float) total / counter;

38

39 /* display average with two digits of precision */

40 printf("Class average is %.2f\n", average);

41 } /* end if */

42 else { /* if no grades were entered, output message */

43 printf("No grades were entered\n");

44 } /* end else */

45

46 return 0; /* indicate program ended successfully */

47

48 } /* end function main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

30

Program Output

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

31

3.10 Nested control structures

• Problem

– A college has a list of test results (1 = pass, 2 = fail) for 10

students

– Write a program that analyzes the results

• If more than 8 students pass, print "Raise Tuition"

• Notice that

– The program must process 10 test results

• Counter-controlled loop will be used

– Two counters can be used

• One for number of passes, one for number of fails

– Each test result is a number—either a 1 or a 2

• If the number is not a 1, we assume that it is a 2

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

32

3.10 Nested control structures

• Top level outline
Analyze exam results and decide if tuition should be raised

• First Refinement
Initialize variables

Input the ten quiz grades and count passes and failures

Print a summary of the exam results and decide if tuition should

be raised

• Refine Initialize variables to
Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

33

3.10 Nested control structures

• Refine Input the ten quiz grades and count passes
and failures to

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
else

Add one to failures

Add one to student counter

• Refine Print a summary of the exam results and
decide if tuition should be raised to

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

34

3.10 Nested control structures

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else

Add one to failures

Add one to student counter

Print the number of passes

Print the number of failures

If more than eight students passed

Print “Raise tuition”

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

35

fig03_10.c (Part 1 of

2)

1 /* Fig. 3.10: fig03_10.c

2 Analysis of examination results */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 /* initialize variables in definitions */

9 int passes = 0; /* number of passes */

10 int failures = 0; /* number of failures */

11 int student = 1; /* student counter */

12 int result; /* one exam result */

13

14 /* process 10 students using counter-controlled loop */

15 while (student <= 10) {

16

17 /* prompt user for input and obtain value from user */

18 printf("Enter result (1=pass,2=fail): ");

19 scanf("%d", &result);

20

21 /* if result 1, increment passes */

22 if (result == 1) {

23 passes = passes + 1;

24 } /* end if */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

36

fig03_10.c (Part 2

of 2)

25 else { /* otherwise, increment failures */

26 failures = failures + 1;

27 } /* end else */

28

29 student = student + 1; /* increment student counter */

30 } /* end while */

31

32 /* termination phase; display number of passes and failures */

33 printf("Passed %d\n", passes);

34 printf("Failed %d\n", failures);

35

36 /* if more than eight students passed, print "raise tuition" */

37 if (passes > 8) {

38 printf("Raise tuition\n");

39 } /* end if */

40

41 return 0; /* indicate program ended successfully */

42

43 } /* end function main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

37

Program Output

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Passed 6
Failed 4

Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 2
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Enter Result (1=pass,2=fail): 1
Passed 9
Failed 1
Raise tuition

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

38

3.11 Assignment Operators

• Assignment operators abbreviate assignment
expressions

c = c + 3;

can be abbreviated as c += 3; using the addition assignment
operator

• Statements of the form
variable = variable operator expression;

can be rewritten as

variable operator= expression;

• Examples of other assignment operators:
d -= 4 (d = d - 4)

e *= 5 (e = e * 5)

f /= 3 (f = f / 3)

g %= 9 (g = g % 9)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

39

3.11 Assignment Operators

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

Assignment operator Sample expression Explanation Assigns

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 3.11 Arithmetic assignment operators.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

40

3.12 Increment and Decrement Operators

• Increment operator (++)

– Can be used instead of c+=1

• Decrement operator (--)

– Can be used instead of c-=1

• Preincrement

– Operator is used before the variable (++c or --c)

– Variable is changed before the expression it is in is evaluated

• Postincrement

– Operator is used after the variable (c++ or c--)

– Expression executes before the variable is changed

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

41

3.12 Increment and Decrement Operators

• If c equals 5, then
printf("%d", ++c);

– Prints 6

printf("%d", c++);

– Prints 5

– In either case, c now has the value of 6

• When variable not in an expression

– Preincrementing and postincrementing have the same effect

++c;

printf(“%d”, c);

– Has the same effect as

c++;

printf(“%d”, c);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

42

3.12 Increment and Decrement Operators

Operator Sample expression Explanation
++ ++a Increment a by 1 then use the new value of a in the expression in

which a resides.

++ a++ Use the current value of a in the expression in which a resides, then

increment a by 1.

-- --b Decrement b by 1 then use the new value of b in the expression in

which b resides.

-- b-- Use the current value of b in the expression in which b resides, then

decrement b by 1.

Fig. 3.12 The increment and decrement operators

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

43

fig03_13.c

1 /* Fig. 3.13: fig03_13.c

2 Preincrementing and postincrementing */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int c; /* define variable */

9

10 /* demonstrate postincrement */

11 c = 5; /* assign 5 to c */

12 printf("%d\n", c); /* print 5 */

13 printf("%d\n", c++); /* print 5 then postincrement */

14 printf("%d\n\n", c); /* print 6 */

15

16 /* demonstrate preincrement */

17 c = 5; /* assign 5 to c */

18 printf("%d\n", c); /* print 5 */

19 printf("%d\n", ++c); /* preincrement then print 6 */

20 printf("%d\n", c); /* print 6 */

21

22 return 0; /* indicate program ended successfully */

23

24 } /* end function main */

OutlineOutline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

44

Program Output

5
5
6

5
6
6

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

45

3.12 Increment and Decrement Operators

Operators Associativity Type
++ -- + - (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= right to left assignment

Fig. 3.14 Precedence of the operators encountered so far in the text.

